JPS60244445A - Separating and recovering method of used molding sand - Google Patents

Separating and recovering method of used molding sand

Info

Publication number
JPS60244445A
JPS60244445A JP9956184A JP9956184A JPS60244445A JP S60244445 A JPS60244445 A JP S60244445A JP 9956184 A JP9956184 A JP 9956184A JP 9956184 A JP9956184 A JP 9956184A JP S60244445 A JPS60244445 A JP S60244445A
Authority
JP
Japan
Prior art keywords
sand
magnetic
shell
mold
green
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9956184A
Other languages
Japanese (ja)
Other versions
JPS6253255B2 (en
Inventor
Tetsuo Haraga
原賀 哲男
Koji Kato
加藤 幸二
Kuniaki Mizuno
邦明 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP9956184A priority Critical patent/JPS60244445A/en
Publication of JPS60244445A publication Critical patent/JPS60244445A/en
Publication of JPS6253255B2 publication Critical patent/JPS6253255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/18Plants for preparing mould materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To recover efficiently and inexpensively used molding sand at high purity by separating said sand to magnetically stuck sand and non-magnetically stuck sand by magnetic separation and recovering the magnetically stuck sand to a system for recovering the metallic mold sand and a system for recovering the shell sand. CONSTITUTION:The sand mixture 2 recovered from used casting molds is conducted via a hopper 6 to the inside of a crusher 1. The crushed sand mixture 7 is conducted via a belt conveyor 8 and a hopper 9 to a screening device 10. The lumped sand mixture 15 is removed by the device 10 and the sand mixture 18 having the size smaller than a prescribed size is conducted to the down stream by conveyor 17. The ferromagnetic material 24 contained in the sand mixture 18 is removed by an auxiliary magnetic separator 19. The sand mixture 28 from which the ferromagnetic material is removed is conducted to a magnetic separator 27, by which the sand is separated to the magnetically stuck sand 29 and the non-magnetically stuck sand 30. The sands are conducted respectively to tanks 33, 34 where the sands are recovered as base sand for green sand and base sand for shell sand.

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、鋳造に係り、更に詳細には使用済の鋳物砂の
分離回収方法に係る。 従来技術 鋳型の形成に使用される鋳物砂は、従来より一般に、経
済性や省資源等の観点より鋳物用再生砂として繰返し循
環再生使用されている。 一般に、内燃機関用シリンダブロックの如く中空部を有
プ゛る鋳物の製造に使用される鋳型は、鋳物の主要部を
形成する主型(生型)と中空部を形成する中子(シ」−
鋳型)とよりなつ゛(おり、生型はケイ砂に粘土やベン
トナイトへの如き無機粘結剤や生爪の水、石炭粉などが
添加された生型砂にて形成され、シェル型はケイ砂に)
Jノール樹脂の如き有機粘結剤が添加されたシェル砂に
て形成される。かかる生型どシェル型とよりなる使用済
の鋳型より鋳物砂を回収づるに際して番よ、生型砂及び
シェル砂の種類及びイれらに添加される粘結剤の種類や
吊などが相互に異なることから、生型砂又はシェル砂に
他方の砂がiI9入リ−すと粘結剤添加量の増大、再生
処理=1ストの増大などの不具合が生じるため、生型砂
及びシェル砂が相互に混合しないようそれらをできるだ
け互に分離して回収することが望ましい。しかし紡造工
V1後の鋳型の一部は溶揚の熱影響によりその結合力を
失って崩壊し、また解枠ヤ)搬送の過程に於(機械的な
力を受けることによって崩壊し、生型砂及びシェル砂は
単粒から塊状までの種々の形態を呈し、相互に混合し易
い!、:め、それらを確実に互に分離して回収すること
は非常に困難であり、またその場合混入比率t)Iti
造条f[、鋳造設備などにより大きく変動する。 かかる問題に対処する一つの方法としで、塊状の生型砂
及びシェル砂の混合物に対し篩分けを行うと、粘結剤と
して無機粘結剤が添加された生型砂は崩れ易く、粘結剤
として有機粘結剤が添加されたシェル砂はl′Ji1れ
難いという性質を利用し、これにより生型砂とシェル砂
との混合砂を生型砂とシェル砂とに分離する方法が知ら
れている。しかしかかる方法によっては、単粒又はそれ
に近い状態にて回収さねた混合砂を生型砂及びシェル砂
にそれぞれ高l4iiにて分離することができない。 また上述の如き問題に対処する他の方法としで、特公昭
55−4510号、特開昭58−128246号、同第
58−1282/18号明III書に開示された方法が
知られおり、これらの方法は何れも使用済の鋳物砂に対
し磁選を行い、磁着分を不純物として除去し、非磁看分
に対し再生処理を行つ。 てこれをシ1ル砂として再利用せんとするものである。 しかしこれらの方法に於ては、回収砂の品質を向上させ
ようとすればでれに対応して回収砂の回収率が低下する
という問題があり、またこれらの方法によっては使用済
の鋳物砂より生型砂及びシェル砂の両方をそれぞtl、
 ia N 11にて分離回収することができないとい
う問題がある。 本願発明者等は、従来の鋳物砂の回収り法に於ける上述
の如き問題に鑑み、使用済の鋳物砂を磁選により!iる
砂と非llお砂とに分離し、11着砂及び非磁着砂の成
分及び性質を詳細に検81する実験的研究を行った結果
、H1M砂及び非磁着砂はでれぞれ生型砂及びシェル砂
としC使用されるに適した成分及び性質を有しており、
また磁選に先立ら使用済の鋳物砂を所定寸法以下の単粒
又はそれに近い状態に処理することが好ましいことを見
出した。 発明の目的 本発明は、本願発明者等が行った実験的す1究の結果得
られた知見に基づき、使用済の鋳物砂より生型砂及びシ
ェル砂をそれぞれ高純度にて効率良く且低回に回収づる
ことのできる方法を提供づることを目的としている。 発明の@成 上述の如き目的は、本発明によれば、生型とシェル型と
より仕る使用済の鋳型より所定寸法以下の鋳物砂を回収
し、これを磁選により磁着砂と非fi1着砂とに分P1
11.、前記磁着砂を生型砂回収系へ回収し、前記非磁
着砂をシェル砂回収系へ回収づる使用済鋳物砂の分離回
収方法によって達成される。 発明の作用及び効果 本発明によれば、生型砂とシェル砂とを含む使用済の鋳
物砂が磁選により磁着砂と非磁着砂とに分離され、磁着
砂及び非磁着砂がそれぞれ生型砂及びシェル砂として使
用されるに適した成分及び性質を有していることに着目
し、磁着分を不純物として廃棄するのではなく、!i磁
着砂び非磁着砂がそれぞれ生型砂回収系及びシェル砂川
元砂として回収されるので、使用済の鋳物砂より生型砂
及びシェル砂の両方をそれぞね高純度且高回収率にて回
収することができる。 まlζ本発明によれば、特公昭+) 5 4510 号
及び特開昭58−128246号明細書に開示された方
法の場合の如く、@1選に先立ち砂粒の表面に付着しC
いる粘結剤等の不純物を除去りることは不要であり、ま
たシ1.ル砂に1−型砂が混入しないよう細心の6意を
払う必要はないので、鋳物砂の回収を能率良く低回に実
施することができ、特に生型砂の砂粒に付着しているペ
ン1〜ナイ1〜の如き無機粘結剤をも有効に再利用する
ことができ、またシェル砂中に含J、れる無機粘結剤等
の吊が大幅に低減されるので、回収されたり:型砂及び
シェル砂の再利用に際しぞれぞれに添加される照v!l
粘結剤及び有機粘結剤の添加量を低減することができ、
またシェル砂の焙焼再生工程に於て消費されるエネルギ
を低減することができ、これにより生型砂及びシェル砂
の再生]ストを大幅に低減づることができる。 本発明の方法の一つの詳細なlvi徴にJ、れば、使用
済の鋳型より所定寸法以下の鋳物砂を回収する工程に於
ては、解枠等により鋳型を崩壊させ、これを粉砕し、篩
INDUSTRIAL APPLICATION FIELD The present invention relates to casting, and more particularly to a method for separating and recovering used foundry sand. BACKGROUND OF THE INVENTION Molding sand used to form molds has conventionally been recycled and recycled repeatedly as recycled foundry sand from the viewpoint of economy and resource conservation. Generally, molds used to manufacture castings with hollow parts, such as cylinder blocks for internal combustion engines, consist of a main mold (green mold) that forms the main part of the casting, and a core (green mold) that forms the hollow part. −
The green mold is made of silica sand with the addition of an inorganic binder such as clay or bentonite, raw nail water, coal powder, etc., and the shell mold is made of silica sand. )
It is formed from shell sand to which an organic binder such as J-Nor resin is added. When recovering foundry sand from used molds made of such green molds and shell molds, the types of green mold sand and shell sand, as well as the type and suspension of binders added to them, differ from each other. Therefore, if green mold sand or shell sand contains iI9 of the other sand, problems such as an increase in the amount of binder added and an increase in the number of strokes required for recycling will occur, so green mold sand and shell sand should not be mixed with each other. It is desirable to separate them from each other and recover them as much as possible. However, some of the molds after spinner V1 lost their bonding strength and collapsed due to the thermal effect of melt-lifting, and also collapsed due to mechanical force during the transportation process (dismantling), resulting in Mold sand and shell sand come in various forms, from single grains to lumps, and are easy to mix with each other!: It is very difficult to reliably separate them from each other and collect them, and in that case, there is no possibility of mixing. Ratio t) Iti
The formation f[, varies greatly depending on the casting equipment, etc. As one way to deal with this problem, when a mixture of lumpy green sand and shell sand is sieved, the green mold sand to which an inorganic binder has been added as a binder tends to crumble; A method is known in which a mixed sand of green mold sand and shell sand is separated into green mold sand and shell sand by utilizing the property that shell sand to which an organic binder has been added is less susceptible to l'Ji1. However, depending on such a method, it is not possible to separate the mixed sand collected as a single grain or in a state close to it into green mold sand and shell sand at a height of l4ii. In addition, as other methods for dealing with the above-mentioned problems, methods disclosed in Japanese Patent Publication No. 55-4510, Japanese Patent Application Laid-open No. 58-128246, and No. 58-1282/18 Mei III are known. In each of these methods, used foundry sand is subjected to magnetic separation to remove magnetic particles as impurities, and non-magnetic particles are recycled. The aim is to reuse this as sill sand. However, in these methods, there is a problem that if the quality of the recovered sand is improved, the recovery rate of the recovered sand decreases due to breakage, and depending on these methods, used foundry sand Both the green mold sand and shell sand are tl, respectively.
There is a problem in that it cannot be separated and recovered using IA N11. In view of the above-mentioned problems in the conventional method of recovering foundry sand, the inventors of the present application have decided to collect used foundry sand by magnetic separation! As a result of conducting an experimental study to separate H1M sand and non-magnetic sand, and to examine in detail the components and properties of H1M sand and non-magnetic sand, it was found that H1M sand and non-magnetic sand were not found. It has components and properties suitable for use as green mold sand and shell sand,
It has also been found that, prior to magnetic separation, it is preferable to process used foundry sand into single grains of a predetermined size or less, or into a state close to it. Purpose of the Invention The present invention is based on the knowledge obtained as a result of experimental research carried out by the inventors of the present invention, and is based on the knowledge obtained as a result of experimental research carried out by the inventors of the present invention. The purpose is to provide a method that can be used to collect waste. According to the invention, the above-mentioned object is to collect molding sand of a predetermined size or less from a used mold consisting of a green mold and a shell mold, and separate it into magnetic sand and non-fi1 by magnetic separation. Sand arrival P1
11. This is achieved by a method for separating and recovering used foundry sand, in which the magnetic sand is recovered into a green mold sand recovery system, and the non-magnetic sand is recovered into a shell sand recovery system. Functions and Effects of the Invention According to the present invention, used foundry sand containing green sand and shell sand is separated into magnetic sand and non-magnetic sand by magnetic separation, and the magnetic sand and non-magnetic sand are separated from each other by magnetic separation. Focusing on the fact that it has components and properties suitable for use as green molding sand and shell sand, instead of discarding the magnetically attached material as impurities! i Magnetized sand and non-magnetic sand are recovered as green mold sand recovery system and shell Sunagawa source sand, respectively, so both green mold sand and shell sand have higher purity and higher recovery rate than used foundry sand. can be recovered. According to the present invention, as in the method disclosed in Japanese Patent Publication No. 54510 and Japanese Unexamined Patent Publication No. 58-128246, C.
It is not necessary to remove impurities such as binders contained in Si1. Since it is not necessary to pay close attention to prevent mold sand from getting mixed with mold sand, molding sand can be recovered efficiently and in a small number of times. Inorganic binders such as Nai 1~ can also be effectively reused, and since the amount of inorganic binders contained in shell sand is greatly reduced, they can be recovered: mold sand and The light added to each shell sand when reusing it! l
The amount of binder and organic binder added can be reduced,
In addition, the energy consumed in the process of roasting and regenerating shell sand can be reduced, and as a result, the regeneration costs of green mold sand and shell sand can be significantly reduced. One detailed feature of the method of the present invention is that in the process of recovering foundry sand of a size smaller than a predetermined size from a used mold, the mold is collapsed using a cracking frame or the like, and then crushed. , sieving

【ノすることにより、鋳物砂が所定1法以下の状態、
即ち単粒又は−でれに近い状態にされ、また篩分けられ
た塊状の鋳物砂は更に粉砕されることにより単粒又はこ
れに近い状態にされ、これにより実質的に全ての鋳物砂
が磁選処理に付され、これにより鋳物砂の高回収率化が
図られると共に、磁選による磁着砂と非磁着砂への分離
、即ら生型砂川元砂とシJ、ル砂用元砂への分離効率が
向上される。尚この場合、前記所定寸法はlQmn+、
特に5w1Illであることが好ましい。 本発明の方法の他の一つの詳細な特徴ににれば、回収さ
れた鋳物砂を磁選により1着砂と非磁着砂とに分離する
工程に先立ら又はこの工桿後に、回収された鋳物砂又は
回収された生型砂にり鉄片や湯だまの如き強磁性物が補
助的な磁選により除去され、これにより生型砂用元砂に
強磁性物が比較的多量に混入りることに起因する読者、
鋳肌不良、差込み、鋳型の崩壊性悪化などの問題の発生
が回避される。尚この場合、′#i記補助的、なF41
選は鋳物砂をvii着砂と非磁着砂とに分離するために
行われるV41選(本磁選)の能率を向1−さけるべく
、前記補助的゛な!i選は本磁選に先x’tって行4つ
れることが好ましい。また補助的な磁選に於て磁着砂が
強磁性不純物として除去されることを回;Wすべく、補
助的な磁選の磁場の強さは本磁選の磁場の強さよりも弱
く設定されることが好ましく、例えば補助的な磁選の磁
場の強さは1000〜4000ガウス、特に1500〜
3000ガウスに設定され、本磁選の磁場の強さは16
000−=27000ガウス、特に18000〜230
00ガウスに設定されることが好ましい。 実施例 以下に添イリの図を参照しつつ、本発明を実施例につい
て詳細に説明する。 第1図は本発明による方法の実施に使用されるに好適な
鋳物砂の分離回収システムを示す概略構成図である。図
に於て、1は生型とシェル型とJ:りなる使用済の鋳型
より回収された生型砂及びシェル砂を含む塊状の混合砂
2を粉砕するクラッシャーを示している。クラッシャー
1は図示の実施例に於てはロークリクラッシャースクリ
ーンであり、軸線3に対し同心に配置された所定メッシ
lの円筒状スクリーン4と円筒体5とを有し、図には示
されてい’Jいアクチ、1][−夕により軸線3の周り
に回転駆動されるようになっている。混合砂2はホッパ
6を経てスクリーン4内へその一端より導入され、該ス
クリーン内にて互に衝突することにより比較的大きい塊
状体が単粒又は比較的小さい塊状体に粉砕され、所定の
寸法以下に粉砕された混合砂7はスクリーンを通過して
円筒体5内へ移動し、該円筒体の一端よりベルトコンベ
ア8上へ落下する。スクリーン4内に残存する比較的大
きい塊状体はホッパ6ヘリサイクルされ、又は焙焼か(
39)へ直接投入される。ベルトコンベア8上へ落下し
1.:混合砂7は該ベルト・コンベア←こより図にて右
方へ搬送され、ホッパ9を軽て篩装置10へ導かれる。 篩装置10は図示の実施例に於てはバイブレーティング
スクリーンであり、ばね11を介してフレーム12によ
って支持され実質的に1コート状をな寸本体13ど、該
本体の上端に張設された所定メツシュのスクリーン14
と、図には示されてい’Xいが本体及びスクリーンを−
L −F Zj向及び図にて左右の方向へ加振するアク
チュエータとを有している。混合砂7内に含まれ篩装置
10により篩分けられた塊状の混合砂15はスクリーン
14の図にて右端よりベルトコンベア16上へ落下し、
該ベルトコンベアにより鋳物砂の分離回収システムより
排出され、又はホッパ6ヘリサイクルされる。 篩装置10の下方にはベルトコンベア17が設けられて
おり、スクリーン14を通過した所定1法以下の混合砂
18は本体13内を下方へ移動してベルトコンベア17
上へ落下し、該ベルトコンベアによって図にて右方へ搬
送される。ベルトコンベア17の下流側端部上方には補
助磁選機19が配置されている。 補助磁選機19は図示の実施例に於てはオーバーバンド
マグネットであり、等脚台形の四つの頂点に設けられた
四つのプーリ20と、それらのプーリに巻き掛けられた
ベルト21と、該ベル1−の5脚台形の底辺をなす部分
の内側に設けられた磁石22どを右しでJ5す、ベルト
21は図には示されていないアクヂlエータにより矢印
の方向へ駆動されるにうになっている。ベルトコンベア
17によりその下流側端部へ搬送されシュート23内へ
排出される混合砂18に含まれる鉄片の如き強磁性物は
、磁石22の吸引力にJこって吸引されベルト21の表
面に付着し、ベルt−21によって図にて右方へ搬送さ
れ、補助磁選機19の図にて右端に於て磁石22による
吸引力よりも強磁性物に作用する重力が上回ることによ
り、強磁性物はシューI・25を経てベルトコンベア2
6上へ落下する。ベルトコンベア26上へ落下した強磁
性物24は該ベルトにより鋳物砂の分離回収システムよ
り排出される。 ベルトコンベア18の下流側端部のT方には磁選機27
が配置されている。ベルトコンベア18より排出され補
助磁選機19によって強磁性物が除去された混合砂28
は、シュート23を経て磁選機27内へ導入される。磁
選機27は磁石22によりベルトコンベア18の下流側
端部近傍に創成される磁場の強さよりも強い磁場を内部
に創成し?6るようになっており、これによりそれに導
入された混合砂28をff1n砂29と非磁着砂30と
に連続的に分離するようになっている。磁選127によ
り分離された磁着砂29及び非磁着砂30はそれぞれベ
ルトコンベア31及び32上へ落下し、それぞれのベル
[・コンベアによってI1着砂貯容タンク33及び非磁
着砂貯容タンク34内へ導かれ、それぞれ生型砂川元砂
及びシェル砂川元砂として回収される。 タンク33内に回収されlc磁着砂29はモータ35に
より回転駆動されるスクリ」−フィーダ36により必要
に応じてタンク33より取出されて、生型形成に供され
る。またタンク34内に回収された非it!ル砂30は
モ〜り37により回転駆動されるスクリューフィーダ3
8により必要に応じてシュート39aを紅で焙焼炉39
へ導かれ、該焙焼炉により焙焼されることによって砂粒
の表面に付着していた変質した有機粘結材が除去され、
かくして処理された非1i1看砂40は非磁着砂貯容タ
ンク41内に導かれ、更にモータ42により回転駆動さ
れるスクリューフィーダ43により必要に応じてタンク
41より取出され、シェル砂用元砂として)Iノール樹
脂にて被覆された状態でシ、「ル型の形成に使用される
。 かくして構成された鋳物砂分離回収システムを用いて行
われる本発明の方法は以下の如〈実施される。 先ず生型とシェル型どよりなる使用済の鋳型より回収さ
れた混合砂2がホッパ6を軽てクラッシャー1内へ導か
れ、該クラッシャーによって粉砕された混合砂7がベル
トコンベア8及びホッパ9を経てfiJ装置10へ導か
れ、該篩装置によって塊状の混合砂15が除去され、所
定51法以下の混合砂18がベルトコンベア17によっ
てその下流側端部へ導かれ、補助磁選Ia19によって
混合砂18に含まれる鉄片の如き強磁性物24が除去さ
れる補助的なi選が行われ、かくして強磁性物が除去さ
れた混合砂28が磁選機27へ導かれ、該磁選機により
磁着砂29ど非la着砂30とに分離され、ベルトコン
ベア31及び32によりそれぞれタンク33及び34へ
力かれそれ′ぞれ生型砂川元砂及びシ】刀し砂用元砂と
して回収される。特に非I磁着砂30はタンク34より
焙焼炉39へ尋かれ、該焙焼炉にJ、って有機粘結剤を
除去する再生処理が行われ、タンク41内にシ「ル砂用
元砂として回収される。 尚本発明の方法に於ては、補助磁選機19による補助的
な磁選は、第1図に於て仮想線にて示されている如く、
補助磁選機19、シーL−1〜25、ベルトコンベア2
6がベルトコ1ンベア31の下流側端部の側に段()ら
れることにより、補助的な磁選が磁着砂29に対し行わ
れ(も良く、また補助的な磁選が省略されても良い。 次に第1図に示されたシステムを用いて行われた本発明
の分離回収方法の具体的実施例につい−(説明する。 先ず内燃機関用シリンダ10ツクのvJ造に使用された
生型とシェル−型とよりなる鋳型より回収された混合砂
2をクラツシt−1内へ導いて粉砕し、かくして粉砕さ
れた混合砂7をベルトコンベア8及びシュート9を軽で
篩装置10の開き目が直径5IlllIlに設定され1
=スクリーン14上へ導き、篩装置10により直径51
!1m以下の単粒又はてれに近い状態に篩分番ノられた
混合砂18をベルトコンベア17により補助磁選1j!
t19の下方へ導き、ベルトコンベア17の下流側端部
近傍のIt場の強さが1500〜3000ガウスに設定
された補助磁選機19によって鉄片の如き強磁性物24
を除去し、かくして強磁性物が除去された混合砂(1選
元砂)28を内部の磁場の強さが20000ガウスに設
定された回転マトリックス型乾式高勾配磁選[27によ
り1!1着砂29と非磁着砂30とに分離し、それぞれ
の砂をタンク33及び34内に回収した。 かくして回収された磁着砂、非11名砂及び磁選元砂に
ついて粒反指数、活性粘土分量、イグロス、固定炭素量
、揮発分量の測定を行った。その結果を表1に示1゜尚
表1に於て、イグロスとは磁還元砂等を1000℃に1
時間加熱した場合の灼熱減量であり、揮発分量とは磁還
元砂等を950℃に2分間加熱した場合に失われる炭素
量であり、固定炭素量は上述の処理後に残存J゛る炭素
量を意味する。 また上述の3秤類の砂について、砂100重量部に対し
コンパクタビリテイ値が40〜55%になるよう水を2
.5〜3.03tfi部加え、シンプソン型混練1(ジ
ョージフツシト一礼製)にて5分間混練を行い、生砂湿
態抗圧強度を測定した。 その結果を下記の表2及び第2図に示1゜表 2 LLL 抗圧力 水分 コンパクタ ±神乙シL 工514火ヱC−値」望)磁選元砂 1,
17 2.8 43 磁着砂 1.37 2.7 40 非磁着砂 0,72 2,4 50 また上述の3種類の砂をシェル砂として再使用する場合
の適性を確認すべく、4F述の3種類の砂を流動床IJ
!焙焼炉内にて800℃に30分間焙焼した後、流動床
型微粉抜き装置(歩留り96%)にて微粉を除去する焙
焼再生処理を行った。かかる焙焼再生処理が行われた3
種類について、砂100重量部に対しフェノール樹脂を
2.5壬が部、ベキ法メチレンテトラミンを0.375
ff1MtW。 ステアリン酸カルシウムを0.1重量部添加し、スピー
ドマラー型混線機にてシェル砂を形成し、それらのシェ
ル砂を用いてJISM格に6910に基づく抗折強疫を
測定した。その結果を下記の表3及び第2図に示す。 表 3 1L」 抗折1ffl(k(110?)磁選元砂 21
.1 磁着砂 17.7 非磁着砂 38.9 1掲の表1〜表3及び第2図より、Ii者砂は生型砂分
が多く、非磁着砂はシェル砂分が多く、それぞれ生型砂
及びシェル砂どして再利用されるに適していることが解
る。従って磁選処理によって分離されたWik8砂を生
型砂用元砂として使用し非磁着砂をシェル砂川元砂とし
て使用することにより、磁選による分離回収が行われな
い使用済の鋳物砂をそのまま生型砂川元砂又はシェル砂
川元砂として再生・混線系へ供給する場合に比して、生
型砂用元砂については無機粘結剤の如き添加剤の添加量
を低減することができ、シェル砂川元砂については焙焼
再生に必要な丁ネルギを低減し、また有機粘結剤の如き
添加剤の添加量を低減し得ることが解る。 第3図は上述の3種類の砂、即ち磁選元砂、磁着砂、及
び非磁着砂を焙焼再生処理して再生シェル砂として再使
用されるに適した状態にづるに必要とされる焙焼エネル
ギ消費量を磁選元砂の焙焼に必要とされる]−ネルギ消
費吊を100%として示すグラフである。この第3図よ
り、磁、着砂の■ルネギ消費量は磁選元砂に比しく多く
、非磁着砂のエネルギ消費量は磁選元砂に比しC少なく
、従ってこのことからも非磁着砂はシ[ル砂用元砂とし
て再使用されるに適していることが解る。尚−[述の如
き結果を得たのは磁着砂中には比較的多量の水分及びベ
ントナイト分が含まれていることによるものと推測され
る。 以上に於ては本発明を特定の実施例について詳細に説明
したが、本発明はかかる実施例に限定されるものではな
く、本発明の範囲内にて種々の実施例が可能Cあること
は当業者にと9て明らかであろう。
[By doing this, the molding sand is under the specified method 1,
In other words, the sieved lumpy foundry sand is made into a single grain or a nearly solid state, and the sieved lumpy foundry sand is further crushed to become a single grain or a state close to this. This process aims to increase the recovery rate of the foundry sand, and also separates it into magnetic sand and non-magnetic sand by magnetic separation, that is, green Sunagawa base sand and base sand for SIJ and RU sand. separation efficiency is improved. In this case, the predetermined dimensions are lQmn+,
In particular, 5w1Ill is preferable. According to another detailed feature of the method of the present invention, the recovered foundry sand is separated into magnetized sand and non-magnetized sand by magnetic separation prior to or after this step. Ferromagnetic substances such as iron pieces and molten metal in the recycled foundry sand or recovered green molding sand are removed by auxiliary magnetic separation, resulting in a relatively large amount of ferromagnetic substances mixed into the raw sand for green molding sand. Due to the reader,
Problems such as poor casting surface, insertion, and deterioration of mold disintegration are avoided. In this case, '#i auxiliary, F41
In order to improve the efficiency of the V41 selection (main magnetic selection), which is carried out to separate foundry sand into VII-attached sand and non-magnetic sand, the above-mentioned auxiliary selection is carried out. It is preferable that the i selection is preceded by the main selection by 4 x't lines. In addition, in order to prevent magnetic sand from being removed as ferromagnetic impurities in the auxiliary magnetic separation, the strength of the magnetic field for the auxiliary magnetic separation is set to be weaker than that of the main magnetic separation. For example, the strength of the magnetic field for auxiliary magnetic separation is preferably 1000 to 4000 Gauss, particularly 1500 to 4000 Gauss.
It is set at 3000 Gauss, and the strength of the magnetic field for this magnetic selection is 16
000-=27000 Gauss, especially 18000-230
Preferably, it is set to 0.00 Gauss. EXAMPLES The present invention will now be described in detail with reference to examples with reference to the accompanying drawings. FIG. 1 is a schematic diagram showing a foundry sand separation and recovery system suitable for use in carrying out the method according to the present invention. In the figure, 1 indicates a green mold, a shell mold, and J: a crusher for crushing a lumpy mixed sand 2 containing green mold sand and shell sand collected from different used molds. The crusher 1 is a rotary crusher screen in the illustrated embodiment, and has a cylindrical screen 4 of a predetermined mesh l and a cylindrical body 5, which are arranged concentrically with respect to the axis 3, and which are not shown in the figures. It is designed to be rotated around axis 3 by the actuator. The mixed sand 2 is introduced from one end into the screen 4 through the hopper 6, and by colliding with each other in the screen, relatively large aggregates are crushed into single grains or relatively small aggregates, and are crushed to a predetermined size. The pulverized mixed sand 7 passes through the screen and moves into the cylindrical body 5, and falls onto the belt conveyor 8 from one end of the cylindrical body. Relatively large lumps remaining in the screen 4 are recycled to the hopper 6 or roasted (
39). Fall onto the belt conveyor 8 and 1. : The mixed sand 7 is conveyed to the right in the figure by the belt conveyor, and guided through the hopper 9 to the sieving device 10. The sieving device 10 is a vibrating screen in the illustrated embodiment, and is supported by a frame 12 via a spring 11 and has a substantially coat-shaped body 13 stretched over the upper end of the body. Predetermined mesh screen 14
Although it is not shown in the figure, the main body and screen are
It has an actuator that vibrates in the L-FZj direction and in the left and right directions in the figure. The lumpy mixed sand 15 contained in the mixed sand 7 and sieved by the sieving device 10 falls onto the belt conveyor 16 from the right end of the screen 14 in the figure.
The foundry sand is discharged from the separation and recovery system by the belt conveyor or recycled to the hopper 6. A belt conveyor 17 is provided below the sieving device 10, and the mixed sand 18 of a predetermined method or less that has passed through the screen 14 moves downward within the main body 13 and is transferred to the belt conveyor 17.
It falls upward and is conveyed to the right in the figure by the belt conveyor. An auxiliary magnetic separator 19 is arranged above the downstream end of the belt conveyor 17. In the illustrated embodiment, the auxiliary magnetic separator 19 is an overband magnet, and includes four pulleys 20 provided at the four vertices of an isosceles trapezoid, a belt 21 wound around these pulleys, and a belt 21 wound around the pulleys. The belt 21 is driven in the direction of the arrow by an actuator not shown in the figure. It has become. Ferromagnetic substances such as iron pieces contained in the mixed sand 18 conveyed to the downstream end of the belt conveyor 17 and discharged into the chute 23 are attracted by the attractive force of the magnet 22 and adhere to the surface of the belt 21. The ferromagnetic material is conveyed to the right side in the figure by the belt T-21, and at the right end of the auxiliary magnetic separator 19 in the figure, the gravitational force acting on the ferromagnetic material exceeds the attraction force by the magnet 22. passes through shoe I.25 and reaches belt conveyor 2.
6. Fall upwards. The ferromagnetic material 24 that has fallen onto the belt conveyor 26 is discharged from the foundry sand separation and recovery system by the belt. A magnetic separator 27 is installed on the T side of the downstream end of the belt conveyor 18.
is located. Mixed sand 28 discharged from the belt conveyor 18 and from which ferromagnetic substances have been removed by the auxiliary magnetic separator 19
is introduced into the magnetic separator 27 via the chute 23. Does the magnetic separator 27 create an internal magnetic field stronger than the magnetic field created near the downstream end of the belt conveyor 18 by the magnets 22? 6, so that the mixed sand 28 introduced therein is continuously separated into ff1n sand 29 and non-magnetic sand 30. The magnetic sand 29 and non-magnetic sand 30 separated by the magnetic separation 127 fall onto the belt conveyors 31 and 32, respectively, and are transported into the I1 sand storage tank 33 and the non-magnetic sand storage tank 34 by the respective bell conveyors. and recovered as raw Sunagawa sand and shell Sunagawa sand, respectively. The LC magnetic sand 29 collected in the tank 33 is taken out from the tank 33 as needed by a screen feeder 36 which is rotationally driven by a motor 35, and is used for green mold formation. In addition, non-IT! was recovered in the tank 34! The screw feeder 3 is rotated by a mortar 37.
8, the chute 39a is roasted in the roasting furnace 39 as necessary.
The denatured organic caking material adhering to the surface of the sand grains is removed by being roasted in the roasting furnace.
The non-1i1 sand 40 treated in this way is guided into a non-magnetic sand storage tank 41, and is further taken out from the tank 41 as necessary by a screw feeder 43 which is rotationally driven by a motor 42, and is used as base sand for shell sand. ) The molding sand is coated with I-Nol resin and used to form a mold. The method of the present invention, which is carried out using the molding sand separation and recovery system thus constructed, is carried out as follows. First, mixed sand 2 recovered from a used mold consisting of a green mold and a shell mold is guided through a hopper 6 into a crusher 1, and the mixed sand 7 crushed by the crusher is passed through a belt conveyor 8 and a hopper 9. The sieving device removes the lumpy mixed sand 15, and the mixed sand 18 of a predetermined 51 method or less is led to the downstream end by the belt conveyor 17, and the mixed sand 18 is removed by the auxiliary magnetic separator Ia 19. An auxiliary i-selection is performed to remove ferromagnetic materials 24 such as iron pieces contained in the sand, and the mixed sand 28 from which the ferromagnetic materials have been removed is led to a magnetic separator 27, where the magnetic sand 29 is removed. The sand 30 is separated from the non-la deposited sand 30, and is transferred to tanks 33 and 34 by belt conveyors 31 and 32, respectively, where it is recovered as green Sunagawa original sand and raw sand for sanding sand. The magnetic sand 30 is transferred from a tank 34 to a roasting furnace 39, where it undergoes a regeneration process to remove the organic binder. In the method of the present invention, the auxiliary magnetic separator 19 performs the auxiliary magnetic separation as shown by the phantom line in FIG.
Auxiliary magnetic separator 19, sea L-1 to 25, belt conveyor 2
6 is placed on the downstream end side of the belt conveyor 31, auxiliary magnetic separation is performed on the magnetic sand 29 (or the auxiliary magnetic separation may be omitted). Next, a concrete example of the separation and recovery method of the present invention carried out using the system shown in Fig. 1 will be explained. The mixed sand 2 recovered from the mold consisting of a shell mold is guided into the crusher t-1 and pulverized, and the thus pulverized mixed sand 7 is passed through the belt conveyor 8 and the chute 9 through the openings of the sieving device 10. Diameter set to 5IllllIl 1
= Guided onto the screen 14 and passed through the sieving device 10 to a diameter of 51
! The mixed sand 18, which has been sieved into single grains of 1 m or less or close to grain size, is subjected to auxiliary magnetic separation 1j by a belt conveyor 17!
t19, and the ferromagnetic material 24 such as a piece of iron is guided downward by the auxiliary magnetic separator 19 in which the strength of the It field near the downstream end of the belt conveyor 17 is set to 1500 to 3000 Gauss.
The mixed sand (first selection sand) 28 from which ferromagnetic substances were removed was subjected to a rotating matrix type dry high gradient magnetic separation process with an internal magnetic field strength set to 20,000 gauss [27 for 1!1 selection sand]. The sand was separated into sand 29 and non-magnetic sand 30, and each sand was collected into tanks 33 and 34. Grain anti-index, active clay content, egross, fixed carbon content, and volatile content were measured for the thus recovered magnetic sand, non-magnetic sand, and magnetic separation source sand. The results are shown in Table 1. In Table 1, Igros refers to magnetic reduction sand, etc., heated to 1000℃ for 1 hour.
The amount of volatile matter is the amount of carbon lost when magnetic reduction sand is heated to 950℃ for 2 minutes, and the amount of fixed carbon is the amount of carbon remaining after the above treatment. means. In addition, for the three types of sand mentioned above, add 2 parts of water to 100 parts by weight of sand so that the compactability value becomes 40 to 55%.
.. 5 to 3.03 tfi parts were added and kneaded for 5 minutes using a Simpson type kneader 1 (manufactured by George Futushito Ichirei), and the wet compressive strength of the green sand was measured. The results are shown in Table 2 and Figure 2 below.
17 2.8 43 Magnetic sand 1.37 2.7 40 Non-magnetic sand 0,72 2,4 50 In addition, in order to confirm the suitability of the three types of sand mentioned above when reusing them as shell sand, Three types of sand were placed in a fluidized bed IJ.
! After roasting at 800° C. for 30 minutes in a roasting furnace, a roasting regeneration process was performed to remove fine powder using a fluidized bed type fine powder removal device (yield: 96%). 3 where such roasting and regeneration treatment was performed
Regarding the types, 2.5 parts of phenol resin and 0.375 parts of power law methylenetetramine per 100 parts by weight of sand.
ff1MtW. 0.1 part by weight of calcium stearate was added, shell sand was formed using a Speed Muller mixer, and the shell sand was used to measure bending strength based on JISM rating 6910. The results are shown in Table 3 and FIG. 2 below. Table 3 1L” transverse bending 1ffl (k (110?) magnetic separation source sand 21
.. 1 Magnetized sand 17.7 Non-magnetic sand 38.9 From Tables 1 to 3 and Figure 2 listed in 1, it can be seen that the Ii type sand has a large proportion of green sand, and the non-magnetic sand has a large proportion of shell sand, respectively. It is found that it is suitable for reuse as green mold sand and shell sand. Therefore, by using the Wik8 sand separated by magnetic separation as the base sand for green molding sand and the non-magnetic sand as the shell Sunagawa base sand, the used foundry sand that is not separated and recovered by magnetic separation can be used as it is for green molding. Compared to supplying Sunagawa base sand or Shell Sunagawa base sand to the regeneration/mixing system, the amount of additives such as inorganic binders can be reduced for green mold sand, and Shell Sunagawa base sand It can be seen that for sand, the energy required for torrefaction can be reduced, and the amount of additives such as organic binders can be reduced. Figure 3 shows the three types of sands mentioned above, namely, magnetically separable sand, magnetic sand, and non-magnetic sand, which are required to be roasted and recycled to a state suitable for reuse as recycled shell sand. It is a graph showing the torrefaction energy consumption required for torrefaction of the magnetic separation source sand with the energy consumption ratio being 100%. From this Figure 3, it can be seen that the energy consumption of magnetic and coated sand is higher than that of magnetically selected sand, and the energy consumption of non-magnetized sand is less than that of magnetically selected sand. It can be seen that the sand is suitable for reuse as base sand for sealing sand. It is presumed that the above results were obtained because the magnetic sand contained relatively large amounts of water and bentonite. Although the present invention has been described in detail with respect to specific embodiments above, the present invention is not limited to such embodiments, and it is understood that various embodiments are possible within the scope of the present invention. It will be clear to those skilled in the art.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による方法の実施に使用されるに好適な
鋳物砂の分離回収システムを示す概略構成図、第2図は
磁還元砂、磁着砂、及び非Ii着砂についての生砂湿態
抗圧強度及びシェル砂抗折強疫を示タグラフ、第3図は
磁選元砂、磁着砂、及び非磁着砂をシェル砂川元砂とし
て再使用されるに適した状態に焙焼再生処理を行うに必
要とされる1ネルギ消費早を磁選元砂のエネルギ消費量
を100%とし−C示す解図的グラフである。 1・・・クラッレv−,2・・・混合砂、3・・・軸線
、4・・・スクリーン、5・・・円筒体、6・・・ホッ
パ、7・・・混合砂、8・・・ベルトコンベア、9・・
・ホッパ、10・・・飾装ば、11・・・ばね、12・
・・フレーム、13・・・本体、14・・・スクリーン
、15・・・塊状の混合砂、16.17・・・ベルトコ
ンベア、18・・・混合砂、19・・・補助磁選機、2
0・・・プーリ、21・・・ベルト、22・・・磁石、
23・・・ホッパ、24・・・強磁性物、25・・・ホ
ッパ、26・・・ベル1〜:コンベア、27・・・磁選
舎幾。 28・・・li’l砂、29・・・磁着砂、;30・・
・非I!若砂。 31.32・・・ベルト:]ンベア、C33・・・Ni
l砂貯容タンク、34・・・非磁着砂貯容タンク、35
・・・七−夕、、:’<a・・・スクリューフィーダ、
37・・・モータ。 38・・・スクリューフィーダ、39・・・焙焼路、3
9a・・・シー1−ト、7IO・・・焙焼後の非磁着砂
、41・・・非!11着砂貯容タンク、42・・・L−
タ、43・・・スラリー1−フイーグ 特許出願人 トヨ1タ自動車株式会ネ1代 理 人 弁
理士 明石 昌毅 (方 式) 手続補正書 昭和59年9月27日 特許庁長官 志 賀 学 殿 1、事件の表示 昭和59年特許願第099561号2
、発明の名称 使用済鋳物砂の分離回収方法 3、補正をする者 事件との関係 特許出願人 住 所 愛知県豊田市トヨタ町1番地 名 称 (320) トヨタ自動車株式会社4、代理人 居 所 @104東京都中央区新川1丁目5番19号昭
和59年8月8日(昭和59年8月28日発送)6、補
正の対象 図面
Fig. 1 is a schematic configuration diagram showing a foundry sand separation and recovery system suitable for use in carrying out the method according to the present invention, and Fig. 2 shows green sand for magnetic reduction sand, magnetic sand, and non-Ii sand. A tag graph showing the wet compressive strength and shell sand resistance strength. Figure 3 shows the roasting of magnetically selected original sand, magnetic sand, and non-magnetic sand to a state suitable for reuse as shell Sunagawa original sand. It is an illustrative graph showing the energy consumption rate of 1 energy required to carry out the regeneration treatment, assuming that the energy consumption of the magnetic separation source sand is 100%. 1... Kurare v-, 2... Mixed sand, 3... Axis, 4... Screen, 5... Cylindrical body, 6... Hopper, 7... Mixed sand, 8...・Belt conveyor, 9...
・Hopper, 10... Decoration, 11... Spring, 12.
...Frame, 13...Main body, 14...Screen, 15...Lumpy mixed sand, 16.17...Belt conveyor, 18...Mixed sand, 19...Auxiliary magnetic separator, 2
0...Pulley, 21...Belt, 22...Magnet,
23...Hopper, 24...Ferromagnetic material, 25...Hopper, 26...Bell 1~: Conveyor, 27...Magnetic sorting machine. 28...li'l sand, 29...magnetic sand,;30...
・Non-I! Wakasuna. 31.32...Belt:]Nbare, C33...Ni
l Sand storage tank, 34...Non-magnetic sand storage tank, 35
...Tanabata,, :'<a...Screw feeder,
37...Motor. 38...Screw feeder, 39...Roasting path, 3
9a... Sheet 1-sheet, 7IO... Non-magnetic sand after roasting, 41... Non! 11 Sand storage tank, 42...L-
TA, 43...Slurry 1 - Fieg Patent Applicant: Toyota Automobile Co., Ltd., 1st Representative, Patent Attorney: Masatake Akashi (Method) Procedural Amendment September 27, 1980 Commissioner of the Patent Office Manabu Shiga 1 , Incident Display 1982 Patent Application No. 099561 2
, Name of the invention Method for separation and recovery of used foundry sand 3 Relationship with the case of the person making the amendment Patent applicant address 1 Toyota-cho, Toyota City, Aichi Prefecture Name (320) Toyota Motor Corporation 4 Address of agent @104 1-5-19 Shinkawa, Chuo-ku, Tokyo August 8, 1982 (Shipped on August 28, 1980) 6. Subject of amendment Drawings

Claims (1)

【特許請求の範囲】[Claims] 生型とシエル型とよりなる使用済の鋳型より所定寸法以
下の鋳物砂を回収し、これを磁選によりIiる砂ど非I
f着砂とに分離し、前記磁名砂を生型砂回収系へ回収し
、前記非liiIM砂をシェル砂回収系へ回収する使用
済鋳物砂の分at回収り法。
Foundry sand of a specified size or less is recovered from a used mold consisting of a green mold and a shell mold, and then it is processed by magnetic separation.
A method for recovering used foundry sand by separating it into sand and sand, recovering the magnetic sand to a green mold sand recovery system, and recovering the non-liiIM sand to a shell sand recovery system.
JP9956184A 1984-05-17 1984-05-17 Separating and recovering method of used molding sand Granted JPS60244445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9956184A JPS60244445A (en) 1984-05-17 1984-05-17 Separating and recovering method of used molding sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9956184A JPS60244445A (en) 1984-05-17 1984-05-17 Separating and recovering method of used molding sand

Publications (2)

Publication Number Publication Date
JPS60244445A true JPS60244445A (en) 1985-12-04
JPS6253255B2 JPS6253255B2 (en) 1987-11-10

Family

ID=14250557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9956184A Granted JPS60244445A (en) 1984-05-17 1984-05-17 Separating and recovering method of used molding sand

Country Status (1)

Country Link
JP (1) JPS60244445A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335720A (en) * 2011-10-28 2012-02-01 宁夏华源机械制造有限公司 Process and device for reusing waste foundry sand
CN103317084A (en) * 2013-06-28 2013-09-25 常州午阳柴油机水箱制造有限公司 Waste sand recycling equipment and use method thereof
CN111531123A (en) * 2020-04-30 2020-08-14 共享智能铸造产业创新中心有限公司 Sand supply system and 3D printing equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105499486A (en) * 2015-12-15 2016-04-20 含山县大力精密机械有限公司 Sand treatment device for clay sand

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102335720A (en) * 2011-10-28 2012-02-01 宁夏华源机械制造有限公司 Process and device for reusing waste foundry sand
CN103317084A (en) * 2013-06-28 2013-09-25 常州午阳柴油机水箱制造有限公司 Waste sand recycling equipment and use method thereof
CN103317084B (en) * 2013-06-28 2015-08-26 常州市维益科技有限公司 A kind of method using antiquated sand recycling equipment to manufacture precoated sand
CN111531123A (en) * 2020-04-30 2020-08-14 共享智能铸造产业创新中心有限公司 Sand supply system and 3D printing equipment

Also Published As

Publication number Publication date
JPS6253255B2 (en) 1987-11-10

Similar Documents

Publication Publication Date Title
EP3500379B1 (en) Processes for recovering sand and active clay from foundry waste
JPS62294140A (en) Treatment of slag produced in iron making plant
CN102909315A (en) Full-automatic reprocessing line of casting-purpose resin sand
CN203003053U (en) Automatic sand screening system
KR100442191B1 (en) Recycling Equipment for Waste Casting Sand and Its recycling process
US6554049B2 (en) Process for recovering sand and bentonite clay used in a foundry
CN106623770A (en) Casting resin sand regeneration production line
TW388727B (en) Method and apparatus for cold reclamation of foundry sand
JPS60244445A (en) Separating and recovering method of used molding sand
AU632897B2 (en) Method for the treatment of foundry sand and/or core sand
NL193685C (en) Method for regenerating old foundry sand with contents of weakly magnetic substances.
CN102756073B (en) Water glass old sand refurbishing equipment and process thereof for refurbishing old sand
JP2001038449A (en) Casting sand regeneration treatment device and casting sand regeneration method
JP5420475B2 (en) How to recycle foundry sand
JPH0413438A (en) Method and system for regenerating used sand at foundry
JPS61273238A (en) Method for separating and recovering
KR20110110623A (en) Slag dust manufacturing process and slag dust manufacturing system
JPS6341667B2 (en)
CN202752535U (en) Renovating device for used water glass sand
KR20040009290A (en) separation system of moulding sand
JP3649400B2 (en) Pre-regeneration processing method and equipment for self-hardening foundry sand
JPH0455038A (en) Method for recycling regenerated sand of casting mold
KR200218201Y1 (en) Reproduction processing apparatus for ascon and cement block and interlocking block and remicon
KR101159913B1 (en) Apparatus and method for producing concrete aggregate using electricfurnace oxidized slag
KR200353464Y1 (en) Reclamating apparatus of used sand

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees