JPS6024413B2 - How to measure ground pressure in a borehole using AE - Google Patents

How to measure ground pressure in a borehole using AE

Info

Publication number
JPS6024413B2
JPS6024413B2 JP54136187A JP13618779A JPS6024413B2 JP S6024413 B2 JPS6024413 B2 JP S6024413B2 JP 54136187 A JP54136187 A JP 54136187A JP 13618779 A JP13618779 A JP 13618779A JP S6024413 B2 JPS6024413 B2 JP S6024413B2
Authority
JP
Japan
Prior art keywords
pressure
borehole
ground
stress
rock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54136187A
Other languages
Japanese (ja)
Other versions
JPS5660330A (en
Inventor
楯夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO CHISHITSU CHOSA JIMUSHO KK
Original Assignee
OYO CHISHITSU CHOSA JIMUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO CHISHITSU CHOSA JIMUSHO KK filed Critical OYO CHISHITSU CHOSA JIMUSHO KK
Priority to JP54136187A priority Critical patent/JPS6024413B2/en
Publication of JPS5660330A publication Critical patent/JPS5660330A/en
Publication of JPS6024413B2 publication Critical patent/JPS6024413B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 本発明は、AE(アコースティック・ェミッション、す
なわち音響放出)のカィザー効果を利用して、ボーリン
グ孔内における測定から測定位鷹周辺の地山の初期応力
状態を求める方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention utilizes the Kaiser effect of AE (acoustic emission) to determine the initial stress state of the ground around a measurement point from measurements in a borehole. It is related to.

カィザー効果とは、材料が過去に受けた最大応力までは
材料組織が安定していてAEの発生が少なく、それ以上
の応力を受けると微視的破壊が生じ易くなりAEの発生
頻度が高まる現象をいい、圧力容器や配管などの金属製
構造物において動作期間中の構造的品質低下の有無を試
験するのに利用されている。
The Kaiser effect is a phenomenon in which the material structure is stable and fewer AEs occur until the maximum stress the material has been subjected to in the past, but when the material is subjected to greater stress, microscopic fractures tend to occur and the frequency of AEs increases. It is used to test for structural quality deterioration during operation of metal structures such as pressure vessels and piping.

近年、岩石にもこのようなカイザー効果があり、またそ
のカィザー効果に方向性があることも見出され、これら
の現象に着目して、地山での位直および方向がわかるよ
うに岩石を採取し、AE試験法によって岩石供試体の残
留応力を測定して地圧を推定するという極めて暫新な方
法も提案され実施されている(特開昭53−39182
号参照)。
In recent years, it has been discovered that rocks also have such a Kaiser effect, and that the Kaiser effect has directionality. Focusing on these phenomena, researchers have been studying rocks in order to understand the orientation and orientation of rock formations. A very new method of estimating ground pressure by measuring the residual stress of rock specimens using the AE test method has also been proposed and implemented (Japanese Patent Laid-Open No. 53-39182).
(see issue).

ところが、この方法だと定方位の岩石供試体を採取しな
ければならないから、サンプリングのための特別な機器
が必要だし、掘削速度を遅くし、十分な注意を払う必要
があり、多数の試料を得るためには多くの時間と労力と
塾練とを必要とする。また、亀裂の多い、脆弱な、強度
の弱い地盤の場合には、岩石供試体を採取しようとして
も割れ目が入ったり、破砕されたりして満足なものがえ
られなかったり、あるいはサンプラーを引き上げる際に
試料が落下するなどして回取率が低下し、地盤の性状に
よっては試料を採取できない場合も多い。更には地山か
ら採取してきた試料は、乱れがあることも考えられ、ま
た、4・ごな試料で地山の現在状態における地圧状態を
常に十分な精度で推定できるか疑問な点もある。本発明
はこのような従釆技術の実情に鑑みなされたものであっ
て、その目的は、岩石を採取することなくボーリング孔
を利用してボーリング孔周辺の地山の初期応力状態を求
めることができ、それ故、労力、時間を節約でき、たと
え強度の弱い地盤であっても実施可能で、より一層地山
の現在状態に近い状態で地圧を測定できる方法を提供す
ることにある。
However, with this method, rock specimens must be collected in a fixed orientation, requiring special equipment for sampling, slow excavation speeds, and great care, making it difficult to collect large numbers of specimens. It takes a lot of time, effort, and training to get it. In addition, if the ground is cracked, brittle, or has low strength, even if you try to collect a rock specimen, it may crack or fracture and you may not be able to obtain a satisfactory specimen, or when you pull up the sampler. The collection rate decreases due to the sample falling, and depending on the nature of the ground, it is often impossible to collect the sample. Furthermore, the samples collected from the ground may be disturbed, and there are also questions about whether the ground pressure in the current state of the ground can always be estimated with sufficient accuracy using four-dimensional samples. . The present invention was made in view of the actual state of the related technology, and its purpose is to use a borehole to determine the initial stress state of the ground around the borehole without collecting rocks. Therefore, it is an object of the present invention to provide a method that can save labor and time, can be carried out even on weak ground, and can measure ground pressure in a state closer to the current state of the ground.

以下、図面に基づき本発明について詳しく説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

岩盤内で任意の面を想定したとき、第1図Aに示すよう
に、その面には互いに逆向さで大きさが等しい応力が作
用し合い、それによって釣合し、が保たれている。
Assuming an arbitrary surface within a rock mass, as shown in Figure 1A, stresses of equal magnitude and opposite directions act on that surface, thereby maintaining balance.

しかし、第亀図Bに示すように、岩盤1内にボーリング
を実施すると、ボーリング孔2の孔肇3では岩盤の応力
が解放されて孔壁に垂直な応力成分は0となる。このよ
うな状態において、ボーリング孔2内にゾンデ4を挿入
する。ゾンデ4は、主としてゴムチユーブ5からなり、
向きの異なる複数個(第3図では同一平面内に向きを異
にして3個)のAE受振器6a,6b,6c及び圧力セ
ンサ7を備えている。ゾンデ4を所定の深度まで降下し
たら、高圧源8から高圧ガスあるいは高圧水などの高圧
流体をゴムチューブ5内に供給してゴムチューブ5を膨
張させ、ボーリング孔壁3に一様な垂直方向圧力を加え
る。
However, as shown in Figure B, when boring is carried out in the rock 1, the stress in the rock is released at the hole end 3 of the borehole 2, and the stress component perpendicular to the hole wall becomes 0. In this state, the sonde 4 is inserted into the borehole 2. The sonde 4 mainly consists of a rubber tube 5,
A plurality of AE geophones 6a, 6b, 6c with different orientations (in FIG. 3, three with different orientations on the same plane) and a pressure sensor 7 are provided. When the sonde 4 is lowered to a predetermined depth, a high-pressure fluid such as high-pressure gas or high-pressure water is supplied from the high-pressure source 8 into the rubber tube 5 to inflate the rubber tube 5 and create a uniform vertical pressure on the borehole wall 3. Add.

この圧力を徐々に増加させていくと、孔壁3の岩盤にか
つて加えられていた初期地圧の大きさに応じてその地圧
の大きさを超える流体圧を加えた時点で岩盤内から発生
するAEの発生頻度が急増する。そこで、コントローラ
ノレコーダ9で、圧力センサ7からの圧力値を示す信号
とAE受振器6a,6b,6cからの信号とを記録し、
AEの発生頻度の急増点を検出するのである。ところで
、岩盤に加えられている初期地圧には一般に方向性があ
り、ボーリングの方向と垂直な面内に関してみると、第
4図に示すように、最も大きな応力。
As this pressure is gradually increased, fluid pressure that exceeds the initial ground pressure that was previously applied to the rock in the hole wall 3 is applied, and fluid pressure is generated from within the rock. The frequency of occurrence of AEs increases rapidly. Therefore, the controller recorder 9 records the signal indicating the pressure value from the pressure sensor 7 and the signals from the AE geophones 6a, 6b, and 6c.
It detects the point where the frequency of AE occurrence increases sharply. By the way, the initial ground pressure applied to the rock mass generally has a directionality, and when viewed in a plane perpendicular to the direction of boring, the stress is the largest, as shown in Figure 4.

maxとその方向、最も小さな応力。minとその方向
があり、その他の方向ではその方向に応じて。maxと
。minの間の応力を示す。この様な岩盤の応力状態の
もとにボーリング孔壁3に全ての方向に等圧を加え、圧
力を次第に増加していくと最初。minの方向の岩盤か
らカィザー効果によるA8が発生し、更に圧力の増加と
ともにAEの発生する方向は変化し、最後に最大の応力
。maxを示す方向に達する。第3図に示すようにa,
b,cの方向から発生するAEのみを測定するAE受振
器6a,6b,6cを設けておけば、例えばそれぞれ第
5図a,b,cに示すように、各方向についてAEの発
生頻度と応力の関係を示すグラフを作成することができ
、その変曲点(矢印で示す)からそれぞれの方向の初期
応力を求めることができる。
max and its direction, the smallest stress. There is min and its direction, and in other directions depending on that direction. With max. Indicates the stress between min. Under this stress state of the rock mass, equal pressure is applied to the borehole wall 3 in all directions, and the pressure is gradually increased. A8 is generated from the rock in the min direction due to the Kaiser effect, and as the pressure increases, the direction in which AE is generated changes, and finally the maximum stress is reached. The direction indicating max is reached. As shown in Figure 3, a,
If AE geophones 6a, 6b, and 6c that measure only AE generated from directions b and c are provided, the frequency of AE occurrence and the frequency of AE generated in each direction can be determined, for example, as shown in Fig. 5 a, b, and c, respectively. A graph showing the stress relationship can be created, and the initial stress in each direction can be determined from the inflection points (indicated by arrows).

またこのニつの方向の初期応力から平面内の地圧状態を
知ることができる。更に、ボーリングの方向をかえ、そ
れぞれのボーリング孔に予め方向を決めたAEを測定す
る受振器を取付け測定することにより岩盤内の三次元的
な応力分布を求めることもできる。 本発明は上記のよ
うに、試料を採取することなくボーリング孔を直接利用
するようにしたから、試料採取に伴う様々な欠点を解消
でき、すなわち、時間や労力を節約でき、高度の熟練を
必要とせず、たとえ亀裂の多い脆弱な地盤であろうと測
定可能であり、また地山の現在状態における地圧をより
正確に求めることができるといった数々のすぐれた効果
がある。図面の簡単な説頚 第1図Aは掘削前、第1図Bは掘削後の岩盤内の地圧状
態を示す説明図、第2図は本発明の一実施例を示す説明
図、第3図はそのm−m断面図、第4図はボーリング孔
壁での初期地圧の説明図、第5図a,b,cはそれぞれ
方向を異にしたAE受振器からのAE発生頻度と圧力と
の関係を示すグラフである。
In addition, the ground pressure state within the plane can be determined from the initial stress in these two directions. Furthermore, the three-dimensional stress distribution within the rock mass can be obtained by changing the direction of boring and attaching and measuring a geophone for measuring AE in a predetermined direction to each borehole. As described above, the present invention uses the borehole directly without collecting a sample, so it can eliminate various disadvantages associated with sample collection, that is, it can save time and labor, and it does not require a high level of skill. It has a number of excellent effects, such as being able to measure even fragile ground with many cracks, and being able to more accurately determine the ground pressure in the current state of the ground. Brief description of the drawings Figure 1A is an explanatory diagram showing the ground pressure state in the rock before excavation, Figure 1B is an explanatory diagram showing the ground pressure state in the rock after excavation, Figure 2 is an explanatory diagram showing one embodiment of the present invention, and Figure 3 Figure 4 is an explanatory diagram of the initial ground pressure at the borehole wall. Figure 5 a, b, and c are AE generation frequency and pressure from AE geophones in different directions. It is a graph showing the relationship between

1……岩盤、2……ボーリング孔、3・・・・・・孔壁
、4……ゾンデ、5……ゴムチュ−ブ、6a,6b,6
c・・・・・・AE受振器、7・・・・・・圧力センサ
1... Bedrock, 2... Borehole, 3... Hole wall, 4... Sonde, 5... Rubber tube, 6a, 6b, 6
c...AE geophone, 7...Pressure sensor.

第1図第2図 第3図 第4図 第5図Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 1 地中に掘削したボーリング孔内に、主としてゴムチ
ユーブからなり、向きの異なる複数のAE受振器を備え
たゾンデを挿入し、該ゴムチユーブ内に加圧流体を供給
して膨張させ、ボーリング孔壁に加わる圧力を徐々に増
加せしめ、その圧力の変化に対するAE発生頻度の関係
線図を作成し、その変曲点から各AE受振器の取付方向
の初期応力を測定することによつて、測定位置周辺の地
山の初期応力状態を求めるようにしたAEによる孔内地
圧測定方法。
1. A sonde, which is mainly made up of a rubber tube and equipped with multiple AE geophones in different directions, is inserted into a borehole drilled underground, and pressurized fluid is supplied into the rubber tube to cause it to expand, causing it to flow against the borehole wall. By gradually increasing the applied pressure, creating a relationship diagram of the AE occurrence frequency with respect to the change in pressure, and measuring the initial stress in the mounting direction of each AE geophone from the inflection point, A method for measuring ground pressure in a borehole using AE, which determines the initial stress state of the ground.
JP54136187A 1979-10-22 1979-10-22 How to measure ground pressure in a borehole using AE Expired JPS6024413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54136187A JPS6024413B2 (en) 1979-10-22 1979-10-22 How to measure ground pressure in a borehole using AE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54136187A JPS6024413B2 (en) 1979-10-22 1979-10-22 How to measure ground pressure in a borehole using AE

Publications (2)

Publication Number Publication Date
JPS5660330A JPS5660330A (en) 1981-05-25
JPS6024413B2 true JPS6024413B2 (en) 1985-06-12

Family

ID=15169373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54136187A Expired JPS6024413B2 (en) 1979-10-22 1979-10-22 How to measure ground pressure in a borehole using AE

Country Status (1)

Country Link
JP (1) JPS6024413B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577553A (en) * 1980-06-17 1982-01-14 Toda Constr Co Ltd Measuring method for excessive stress generated in rock bed
JPS57174520A (en) * 1981-04-18 1982-10-27 Hanshin Consultant:Kk Method and apparatus for measuring strength of ground
JPS6145917A (en) * 1984-08-09 1986-03-06 Penta Ocean Constr Co Ltd Measuring device for subsidence of ground
US4733567A (en) * 1986-06-23 1988-03-29 Shosei Serata Method and apparatus for measuring in situ earthen stresses and properties using a borehole probe
JP7254427B2 (en) * 2019-10-08 2023-04-10 株式会社安藤・間 Principal stress calculation program and principal stress calculation method

Also Published As

Publication number Publication date
JPS5660330A (en) 1981-05-25

Similar Documents

Publication Publication Date Title
US4107981A (en) Method of estimating ground pressure
Pennington et al. Horizontally mounted bender elements for measuring anisotropic shear moduli in triaxial clay specimens
Ljunggren et al. An overview of rock stress measurement methods
US6510389B1 (en) Acoustic detection of stress-induced mechanical damage in a borehole wall
Lei et al. Quasi‐static fault growth and cracking in homogeneous brittle rock under triaxial compression using acoustic emission monitoring
Gladwin Ultrasonic stess monitoring in underground mining
CN110108551B (en) Rock mechanical property testing device and method based on acoustic emission detection technology
CN111879858A (en) Rock damage prediction method based on acoustic emission seismic source dominant frequency uniqueness
Cox et al. A Direct-Push Crosshole (DPCH) test method for the in situ evaluation of high-resolution P-and S-wave velocities
CN104374827A (en) Measuring method of anisotropy coefficient of transverse isotropic rock in-situ dynamic elasticity modulus
Maxwell et al. A micro-velocity tool to assess the excavation damaged zone
CN113640119A (en) Method for determining stress-related rock dynamic Biot coefficient
CN105804731B (en) Rock ground stress detection method and system
CN107506556A (en) A kind of short-cut method for determining fresh intact rock sound wave velocity of longitudinal wave value
CN208350200U (en) A kind of experimental rig and system measuring coarse-grained soil shear wave velocity
CN105738215A (en) Novel method for testing geostress jointly by acoustic emission and differential strain
CN112100842B (en) Novel method for identifying abnormal region of crustal stress and measuring crustal stress in large range
JPS6024413B2 (en) How to measure ground pressure in a borehole using AE
Goble et al. Pile load test by impact driving
JPS6336131A (en) Method and instrument for measuring s wave speed using large-sized three-axial cell
Shuck et al. Monitoring acoustic emission from propagating fractures in petroleum reservoir rocks
Cooling et al. Methods of rock mass structure assessment and in-situ stress measurement carried out in Cornish granite
JP2004138447A (en) Physical property evaluating method for base rock
JPH09218182A (en) Method for examining damage of structure support pile
CN216247809U (en) Transmitting device of rock integrity test sensor in horizontal drilling