JPS60243539A - Magnetooptic effect measuring device - Google Patents

Magnetooptic effect measuring device

Info

Publication number
JPS60243539A
JPS60243539A JP9991084A JP9991084A JPS60243539A JP S60243539 A JPS60243539 A JP S60243539A JP 9991084 A JP9991084 A JP 9991084A JP 9991084 A JP9991084 A JP 9991084A JP S60243539 A JPS60243539 A JP S60243539A
Authority
JP
Japan
Prior art keywords
light
magneto
reflected
sample
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9991084A
Other languages
Japanese (ja)
Inventor
Mitsuya Okada
満哉 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9991084A priority Critical patent/JPS60243539A/en
Publication of JPS60243539A publication Critical patent/JPS60243539A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To suppress the interference property of laser light and to measure magnetooptic effect highly accurately, by providing a magnetic thin film at the position of the focal point of a condenser lens. CONSTITUTION:Laser light 14, which is emitted from a laser light source 13, is reflected by a mirror 15 and inputted to a polarizer 16. The light passes a Faraday cell 17, is converged by a condenser lens 18 and reaches a sample to be measured 20. In the sample 20, a magnetooptic recording layer 22 is formed on a substrate 21. The sample 20 is placed at the plane of the focal point of the condenser lens 18. When the converged laser light 14 is inputted on the sample 20, part of the light is reflected by the surface of the substrate 21 of the sample 20 and becomes reflected light 23'. The rest of the converged laser light 14 is reflected by the interface between the substrate 21 and the recording layer 22 and becomes reflected light 23. The reflected light 23 is converted into parallel light by a lens 24 and inputted to a light detector 26. Meanwhile, the reflected light 23' from the surface of the substrate 21 is not inputted to the light detector 26. Therefore the two reflected light beams are not interfered, and the sample to be measured 20 can be accurately measured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光磁気記録に用いる記録媒体の磁気光学効果
−カー効果、ノア2デー効果−の測定に使用される磁気
光学効果測定装置に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a magneto-optic effect measuring device used for measuring magneto-optic effects - Kerr effect, Noah 2-Day effect - of a recording medium used for magneto-optical recording. .

(従来技術とその問題点) 光記録、特に光デイスクメモリは高密度大容量記録が可
能でアシ、かつ非接触・高速アクセスもできるという点
かむ大容量ファイルメモリの一つとして近年注目を集め
ている。その中でも記録媒体としてMnB1.MnCu
B1.MnTiB1.Mn/JGeなどの結晶性磁性薄
膜あるいはTb%Gd、Dy%n。
(Prior art and its problems) Optical recording, especially optical disk memory, has attracted attention in recent years as a type of large-capacity file memory that enables high-density, large-capacity recording, as well as non-contact and high-speed access. There is. Among them, MnB1. MnCu
B1. MnTiB1. Crystalline magnetic thin film such as Mn/JGe or Tb%Gd, Dy%n.

などの希土類金属とFe、 Co、 Niなどの遷移金
属との組み合わせによって作成される非晶質磁性薄膜か
ら成る光磁気記録層を用いた光磁気ディスクメモリは記
録情報の書き替えが可能であるという利点を持っている
ことから、各所で盛んに研究されている。
Magneto-optical disk memory uses a magneto-optical recording layer consisting of an amorphous magnetic thin film created by combining rare earth metals such as Fe, Co, and transition metals such as Fe, Co, Ni, etc. It is said that it is possible to rewrite recorded information. Because of its advantages, it is being actively researched in various places.

従来、光磁気記録媒体の特性評価方法としては第1図に
示したような磁気光学効果測定装置が用いられる。光源
1から出射しだ光2はミラー口で反射し、偏光子3によ
って一方向の直線偏光となシ、ファラデーセル4を通過
後、電磁石5の中に置かれた記録媒体6に入射する。記
録媒体5は通常ガラスあるいはプラスチックなどの基板
7上に光磁気記録層8を形成したものである。記録媒体
6からの反射光9は検光子10を経て光検出器11に到
達する。記録媒体6に入射した光2は、光磁気記録層8
の磁化方向に応じた磁気光学効果によって偏光面が回転
する。そのため、反射光9は光磁気記録層8の磁化状態
によって偏光面が異なることになシ、検光子10を経た
反射光9は光磁気記録層8の磁化状態によシ強度が変化
する。その結果、光検出器11の出力を縦軸にとり、記
録媒体に印加する磁界を横軸にとると、第2図のような
ヒステリシスループが得られる。縦軸は記録媒体6の磁
気光学効果によって生じる偏光面の回転に相当している
。回転角(のけファラデーセル4によって校正し第2図
からめることができる。また、第2図のループの横方向
の幅から記録媒体6の保磁力をめることができる。記録
媒体6の良否を決める要因として前記回転角は重要でち
ゃ、磁気光学効果測定装置としては、回転角θを精度良
く測定することが不可欠である。
Conventionally, a magneto-optic effect measuring apparatus as shown in FIG. 1 has been used as a method for evaluating the characteristics of magneto-optical recording media. Light 2 emitted from a light source 1 is reflected by a mirror opening, converted into linearly polarized light in one direction by a polarizer 3, and after passing through a Faraday cell 4, enters a recording medium 6 placed in an electromagnet 5. The recording medium 5 usually has a magneto-optical recording layer 8 formed on a substrate 7 made of glass or plastic. Reflected light 9 from the recording medium 6 passes through an analyzer 10 and reaches a photodetector 11 . The light 2 incident on the recording medium 6 passes through the magneto-optical recording layer 8
The plane of polarization rotates due to the magneto-optic effect depending on the magnetization direction. Therefore, the plane of polarization of the reflected light 9 varies depending on the magnetization state of the magneto-optical recording layer 8, and the intensity of the reflected light 9 that has passed through the analyzer 10 changes depending on the magnetization state of the magneto-optical recording layer 8. As a result, if the output of the photodetector 11 is plotted on the vertical axis and the magnetic field applied to the recording medium is plotted on the horizontal axis, a hysteresis loop as shown in FIG. 2 is obtained. The vertical axis corresponds to the rotation of the plane of polarization caused by the magneto-optic effect of the recording medium 6. The rotation angle (can be calibrated using the Faraday cell 4 and can be determined from FIG. 2. Also, the coercive force of the recording medium 6 can be determined from the lateral width of the loop in FIG. 2. The quality of the recording medium 6 The rotation angle is an important factor in determining the rotation angle θ, and it is essential for a magneto-optic effect measuring device to accurately measure the rotation angle θ.

磁気光学効果測定装置の光源1には、モノクロメータと
ランプあるいはレーザーが用いられる。
A monochromator and a lamp or laser are used as the light source 1 of the magneto-optic effect measuring device.

光磁気記録において記録媒体が基板側入射によって使用
されることから、磁気光学効果の測定は主として記録媒
体60基板側から光を入射させて測定される。光源1と
してレーザーを用いる場合、レーザー光を平行光束のま
まで記録媒体6の基板側から入射させると、基板表面か
らの反射光と、基板−光磁気記録層界面からの反射光が
光検出器11において干渉し、磁気光学効果すなわち回
転角の測定精度を大幅に低下させる。第3図は、平行度
の異なるガラス基板(0,5m厚)の上にスパッタ法に
よシ作成したTbFe膜(1500^厚)の磁気光学効
果(カー回転角)をHe N eレーザー(波長632
8A)の平行光(ビーム径2WO)を用いて基板側入射
によって測定した結果である。平行度の良い基板を用い
たときほど、測定場所によるカー回転角の変動が大きく
、レーザー光の干渉が測定精度を極端に低下させている
ことがわかる。
In magneto-optical recording, since the recording medium is used with incidence on the substrate side, the magneto-optic effect is mainly measured by making light incident on the recording medium 60 from the substrate side. When a laser is used as the light source 1, when the laser beam enters the recording medium 6 as a parallel beam from the substrate side, the reflected light from the substrate surface and the reflected light from the substrate-magneto-optical recording layer interface are detected by the photodetector. 11, which significantly reduces the magneto-optic effect, that is, the measurement accuracy of the rotation angle. Figure 3 shows the magneto-optical effect (Kerr rotation angle) of a TbFe film (1500^ thick) fabricated by sputtering on glass substrates (0.5 m thick) with different degrees of parallelism using a HeNe laser (wavelength 632
This is the result of measurement using parallel light (beam diameter 2WO) of 8A) with incidence on the substrate side. It can be seen that when a substrate with good parallelism is used, the variation in the Kerr rotation angle depending on the measurement location is large, and the interference of laser light extremely reduces the measurement accuracy.

光源の可干渉性を逃れる一方法として光源1としてモノ
クロメータとランプを用いる方法がある。
One method of avoiding the coherence of the light source is to use a monochromator and a lamp as the light source 1.

しかしながらこの場合、光検出器11に到達する光量が
極度に少なくなるため、光検出器11として高圧電源を
要するフォトマルチプライヤ(光電子増倍管)が必要と
なシ、装置構成が複雑になる。
However, in this case, since the amount of light reaching the photodetector 11 is extremely small, a photomultiplier (photomultiplier tube) that requires a high-voltage power supply is required as the photodetector 11, and the device configuration becomes complicated.

(発明の目的) 本発明の目的は、このような従来の欠点を除去せしめて
、レーザー光を光源とし、レーザー光の干渉性を抑え、
精度良く磁気光学効果を測定することができる磁気光学
効果測定装置を提供することにある。
(Objective of the Invention) The object of the present invention is to eliminate such conventional drawbacks, use laser light as a light source, suppress the interference of the laser light,
An object of the present invention is to provide a magneto-optic effect measuring device that can measure magneto-optic effects with high precision.

(発明の構成) 本発明によれば、レーザー光を光源とし、垂直磁気異方
性を有する磁性薄膜からの反射光を用いて前記磁性薄膜
の磁気光学効果を測定する磁気光学効果測定装置におい
て、前記磁性薄膜の前にレンズが置かれ、該レンズの焦
点面に前記磁性簿膜が設置されていることを特徴とする
磁気光学効果測定装置が得られる。
(Structure of the Invention) According to the present invention, in a magneto-optic effect measurement device that uses a laser beam as a light source and measures the magneto-optic effect of a magnetic thin film using reflected light from a magnetic thin film having perpendicular magnetic anisotropy, A magneto-optical effect measuring device is obtained, characterized in that a lens is placed in front of the magnetic thin film, and the magnetic film is placed on the focal plane of the lens.

(構成の詳細な説明) 本発明は上述の構成をとることによシ、従来技術の問題
点を解決した。磁性薄膜への入射レーザー光をレーザー
光路中に置いた集光レンズによって集光し、その焦点位
置に磁性薄膜を置くことによシ、磁性薄膜を支持してい
る基板の表面からの反射光と、基板と磁性薄膜界面から
の反射光とを完全に分離することができる。これにより
、磁気光学効果測定装置の光検出器上での反射光による
干渉効果を打ち消すことができ、精度良い測定が可能と
なる。
(Detailed Description of Configuration) The present invention solves the problems of the prior art by adopting the above-described configuration. By condensing the laser beam incident on the magnetic thin film with a condenser lens placed in the laser beam path, and placing the magnetic thin film at the focused position, the reflected light from the surface of the substrate supporting the magnetic thin film and the reflected light can be separated. , it is possible to completely separate the light reflected from the substrate and the magnetic thin film interface. Thereby, it is possible to cancel the interference effect caused by the reflected light on the photodetector of the magneto-optic effect measuring device, and it is possible to perform accurate measurement.

(実施例) 以下、本発明の実施例について図面を参照して説明する
。第4図は本発明の適用された磁気光学効果測定装置の
構成図である。レーザー光源13から出射されたレーザ
ー光14はミラー15によって反射され、偏光子16に
入射する。さらにレーザー光14は7アラデーセル17
を通シ、集光レンズ18によって集光され、電磁石19
中に置かれた光磁気記録媒体20に到達する。光磁気記
録媒体20は基板21の上に光磁気記録層22を形成し
たものであシ、集光レンズ18の焦点面Kmかれる。光
磁気記録媒体20からの反射光23は、 −且、レンズ
24によって平行光に戻ったのち、偏光子16に対して
ほぼ消光状態に設定された検光子25によって光磁気記
録媒体での偏光面回転を光強度変化に変換され、光検出
器26に入射する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 4 is a configuration diagram of a magneto-optical effect measuring device to which the present invention is applied. Laser light 14 emitted from laser light source 13 is reflected by mirror 15 and enters polarizer 16 . Furthermore, the laser beam 14 is 7 Alade cell 17
The light is focused by the condensing lens 18, and the electromagnet 19
It reaches the magneto-optical recording medium 20 placed inside. The magneto-optical recording medium 20 has a magneto-optical recording layer 22 formed on a substrate 21, and the focal plane Km of the condenser lens 18 is set. The reflected light 23 from the magneto-optical recording medium 20 is returned to parallel light by the lens 24, and then the plane of polarization on the magneto-optical recording medium is determined by the analyzer 25, which is set to an almost extinction state with respect to the polarizer 16. The rotation is converted into a change in light intensity, which is incident on the photodetector 26.

ここで、レーザー光源13として、HeNeレーザー(
波長6328大)と半導体レーザー(波長8300A)
を使用したが、レーザー光源としてはこの2種に限定さ
れるものではなく、種々のレーザー光源たとえばArレ
ーザー、He−Cdレーザー、 色素レーザーなどの使
用が可能である。偏光子16、検光子25としては、ダ
ラムトムソンプリズムを使用したが、消光比が良好であ
れば他のプリズムの使用も可能である。ファラデーセル
17は、空心コイル中に置かれ、あらかじめ空心コイル
電流と偏光面回転角との対応を校正したものを用いてい
る。集光レンズ18としては、凸レンズ(焦点距離20
0m)を使用した。集光レンズ18の形状はこの実施例
に制約されるものではなく、磁気光学効果測定装置の設
計によって最適化すべきものであシ、集光レンズの焦点
面上に光磁気記録媒体20を置くことができるように選
定すればよい。
Here, as the laser light source 13, a HeNe laser (
Wavelength 6328 large) and semiconductor laser (wavelength 8300A)
However, the laser light source is not limited to these two types, and various laser light sources such as Ar laser, He-Cd laser, and dye laser can be used. Although Durham-Thomson prisms were used as the polarizer 16 and the analyzer 25, other prisms may be used as long as they have good extinction ratios. The Faraday cell 17 is placed in an air-core coil, and the correspondence between the air-core coil current and the polarization plane rotation angle is calibrated in advance. As the condensing lens 18, a convex lens (focal length 20
0m) was used. The shape of the condenser lens 18 is not limited to this embodiment, but should be optimized depending on the design of the magneto-optic effect measurement device. The selection should be made so that the

光磁気記録媒体20として0.5 wow厚のガラス基
板上に作成したTbPe膜を使用した。レンズ24とし
ては、ここでは集光レンズ18と同形状のものを用いて
いる。レンズ24は光磁気記録媒体2゜から発散した反
射光23を平行光に戻すために用いられているのであっ
て、レンズ形状はこの実施例によって制約されない。光
検出器26として、本実施例では、受光面積100−の
シリコンフォトディテクタを使用した。
As the magneto-optical recording medium 20, a TbPe film formed on a glass substrate with a thickness of 0.5 wow was used. As the lens 24, a lens having the same shape as the condenser lens 18 is used here. The lens 24 is used to return the reflected light 23 diverged from the magneto-optical recording medium 2° into parallel light, and the shape of the lens is not limited by this embodiment. As the photodetector 26, in this embodiment, a silicon photodetector with a light receiving area of 100 - is used.

第5図および第6図は、本発明におけるレーザー光干渉
除去効果の原理を示した図である。
FIG. 5 and FIG. 6 are diagrams showing the principle of the laser beam interference removal effect in the present invention.

第5図は従来のレーザー光平行ビームを用いた磁気光学
効果測定装置の被測定試料(光磁気記録媒体)6とレー
ザー光平行ビーム2.9.9′光検出器11の配置を示
した図である。第5図において被測定試料6に入射する
レーザー光平行ビーム2はその一部が被測定試料6の基
板7の表面で反射され、反射光9′となる。次に他のレ
ーザー光平行ビームは被測定試料の基板7と光磁気記録
層8との界面で反射され、反射光9となる。反射光9と
反射光9′は反射方向が同一であるため、光検出器11
上で干渉し、被測定試料6の磁気光学効果測定精度を落
とす。
FIG. 5 is a diagram showing the arrangement of a sample to be measured (magneto-optical recording medium) 6 and a parallel laser beam 2.9.9' photodetector 11 in a conventional magneto-optic effect measuring device using a parallel laser beam. It is. In FIG. 5, a part of the parallel laser beam 2 incident on the sample to be measured 6 is reflected by the surface of the substrate 7 of the sample to be measured 6, and becomes reflected light 9'. Next, the other parallel laser beam is reflected at the interface between the substrate 7 and the magneto-optical recording layer 8 of the sample to be measured, and becomes reflected light 9. Since the reflected light 9 and the reflected light 9' have the same reflection direction, the photodetector 11
The magneto-optical effect measurement accuracy of the sample 6 to be measured is degraded.

次に、第6図は本発明の適用された磁気光学効果測定装
置の集光レンズ18とレーザー光14.23、被測定試
料(光磁気記録媒体)20、レンズ24、光検出器26
の配置を示した図である。第6図においてレーザー光1
4はまず集光レンズ18により収束光に変換されたのち
、被測定試料20に入射する。収束レーザー光はその一
部が被測定試料20の基板21の表面で反射され、反射
光23′となる。
Next, FIG. 6 shows the condenser lens 18, laser beam 14, 23, sample to be measured (magneto-optical recording medium) 20, lens 24, and photodetector 26 of the magneto-optic effect measuring device to which the present invention is applied.
FIG. In Figure 6, laser beam 1
4 is first converted into convergent light by the condenser lens 18, and then enters the sample to be measured 20. A portion of the convergent laser beam is reflected by the surface of the substrate 21 of the sample to be measured 20, and becomes reflected light 23'.

次に他の収束レーザー光は被測定試料の基板21と光磁
気記録層22との界面で反射され反射光23となる。反
射光23はレンズ24によって平行光に変換されて光検
出器26に導かれる。ここで基板表面からの反射光23
′は光検出器へは入射しないので、2つの反射光による
干渉は々く、精度良く被測定試料の磁気光学効果を測定
することができる。
Next, the other focused laser beam is reflected at the interface between the substrate 21 and the magneto-optical recording layer 22 of the sample to be measured, and becomes reflected light 23. The reflected light 23 is converted into parallel light by a lens 24 and guided to a photodetector 26 . Here, reflected light 23 from the substrate surface
Since the light beam ' does not enter the photodetector, there is strong interference between the two reflected lights, and the magneto-optical effect of the sample to be measured can be measured with high accuracy.

(発明の効果) 第7図は本発明の適用された磁気光学効果測定装置の実
施例によって測定された磁気光学効果(カー回転角)の
測定結果を示した図である。測定試料はガラス基板(0
,5mm厚)の上にスパッタ法によシ作成したTbFe
膜(1500^厚)である。光源としてHeNe v−
ザー(波長6328A)を用い、ガラス基板側から測定
した。平行度の異なるガラス基板上に作成した試料であ
るが、カー回転角は基板の平行度に関係なくほぼ一定値
を示している。
(Effects of the Invention) FIG. 7 is a diagram showing the measurement results of the magneto-optic effect (Kerr rotation angle) measured by the embodiment of the magneto-optic effect measuring device to which the present invention is applied. The measurement sample was a glass substrate (0
, 5 mm thick) by sputtering method.
It is a film (1500^ thick). HeNe v- as a light source
The measurement was performed from the glass substrate side using a laser (wavelength: 6328A). Although the samples were prepared on glass substrates with different degrees of parallelism, the Kerr rotation angle shows a nearly constant value regardless of the degree of parallelism of the substrates.

集光レンズによシ集光されたレーザー光を用いることに
よシ、測定試料から生じる干渉効果を除去でき、精度よ
い測定が可能となった。
By using a laser beam focused by a condensing lens, interference effects caused by the measurement sample can be removed, making it possible to perform accurate measurements.

なお、本発明が適用された磁気光学効果測定装置によっ
て測定可能な試料は、本発明の実施例で示した仕様のも
の以外に種々の形状、構成、組成のものでアシ、ガラス
基板以外にプラスチック基板上に作成された試料、ある
いは多層構成の試料、他の希土類遷移金属磁性薄膜、結
晶性磁性簿膜の測定に適用できる。
In addition, samples that can be measured by the magneto-optical effect measuring device to which the present invention is applied have various shapes, configurations, and compositions other than those with specifications shown in the examples of the present invention, and include plastic substrates in addition to reeds and glass substrates. It can be applied to measurements of samples created on substrates, samples with multilayer structures, other rare earth transition metal magnetic thin films, and crystalline magnetic thin films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の磁気光学効果測定装置の構成図、第2図
は通常の磁気光学効果測定装置から得られるヒステリシ
スループの一例を示す図、第3図は、従来の磁気光学効
果測定装置によって得られたカー回転角の測定結果の一
例を示す図、第4図は本発明の一実施例を示す構成図、
第5図、第6図は本発明におけるレーザー光干渉除去効
果の原理図、第7図は本発明の一実施例によシ得られた
カー回転角の測定結果の一例を示す図である。 図中、1・・・光源、2,14・・・出射光、3.16
・・・偏光子、4.17・・・ファラデーセル、5.1
9・・・電磁石、6.20・・・光磁気記録媒体、7.
21・・・基板、8.22・・・光磁気記録層、9.2
5・・・検光子、11.26・・・光検出器、9.9’
、23.23’・・・反射光、z2;’ts・・・ミラ
ー、13・・・レーザー光源、18・・・集光レンズ、
24・・・レンズ、である。 71−1 図 2 オ 2 図 オ 3 図 基板平行度(1m) 71−4 図 75 図 オ 6 図
Fig. 1 is a block diagram of a conventional magneto-optical effect measurement device, Fig. 2 is a diagram showing an example of a hysteresis loop obtained from a conventional magneto-optic effect measurement device, and Fig. 3 is a diagram showing an example of a hysteresis loop obtained by a conventional magneto-optic effect measurement device. A diagram showing an example of the measurement result of the obtained Kerr rotation angle, FIG. 4 is a configuration diagram showing an embodiment of the present invention,
5 and 6 are diagrams showing the principle of the laser beam interference removal effect according to the present invention, and FIG. 7 is a diagram showing an example of the measurement results of the Kerr rotation angle obtained according to an embodiment of the present invention. In the figure, 1... light source, 2, 14... output light, 3.16
...Polarizer, 4.17...Faraday cell, 5.1
9... Electromagnet, 6.20... Magneto-optical recording medium, 7.
21... Substrate, 8.22... Magneto-optical recording layer, 9.2
5...Analyzer, 11.26...Photodetector, 9.9'
, 23.23'... Reflected light, z2;'ts... Mirror, 13... Laser light source, 18... Condenser lens,
24...Lens. 71-1 Fig. 2 O 2 Fig. O 3 Fig. Substrate parallelism (1 m) 71-4 Fig. 75 Fig. O 6 Fig.

Claims (1)

【特許請求の範囲】[Claims] レーザー光を光源とし、垂直磁気異方性を有する磁性薄
膜からの反射光を用いて前記磁性薄膜の磁気光学効果を
測定する磁気光学効果測定装置において、前記磁性薄膜
の前にレンズが置かれ、該しXズの焦点面に前記磁性薄
膜が設置されていることを特徴とする磁気光学効果測定
装置。
In a magneto-optical effect measuring device that uses a laser beam as a light source and measures the magneto-optic effect of the magnetic thin film using reflected light from a magnetic thin film having perpendicular magnetic anisotropy, a lens is placed in front of the magnetic thin film, A magneto-optical effect measuring device, characterized in that the magnetic thin film is placed on the focal plane of the X point.
JP9991084A 1984-05-18 1984-05-18 Magnetooptic effect measuring device Pending JPS60243539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9991084A JPS60243539A (en) 1984-05-18 1984-05-18 Magnetooptic effect measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9991084A JPS60243539A (en) 1984-05-18 1984-05-18 Magnetooptic effect measuring device

Publications (1)

Publication Number Publication Date
JPS60243539A true JPS60243539A (en) 1985-12-03

Family

ID=14259931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9991084A Pending JPS60243539A (en) 1984-05-18 1984-05-18 Magnetooptic effect measuring device

Country Status (1)

Country Link
JP (1) JPS60243539A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122930A (en) * 1986-11-13 1988-05-26 Matsushita Electric Ind Co Ltd Apparatus for measuring kerr angle of rotation of magneto optical memory medium
JPH03109157U (en) * 1990-02-26 1991-11-08
JP6368880B1 (en) * 2018-03-02 2018-08-01 秋田県 Optical rotation measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122930A (en) * 1986-11-13 1988-05-26 Matsushita Electric Ind Co Ltd Apparatus for measuring kerr angle of rotation of magneto optical memory medium
JPH03109157U (en) * 1990-02-26 1991-11-08
JP6368880B1 (en) * 2018-03-02 2018-08-01 秋田県 Optical rotation measuring device
JP2019152523A (en) * 2018-03-02 2019-09-12 秋田県 Optical rotation measuring device

Similar Documents

Publication Publication Date Title
KR930001619B1 (en) Multi-layer amorphous magneto-optical recording medium
JP4223769B2 (en) measuring device
KR930001616B1 (en) Amorphous magneto-optical recording medium
CN101271059A (en) Large field longitudinal surface magnetooptical Kerr effect measuring apparatus
US6205092B1 (en) Magneto-optical recording and reproducing apparatus and method
IT8322986A1 (en) Thermo-magnetic-optical recording device and recording element for the same
US4409631A (en) Optical apparatus and method for reproducing information recorded in a magnetic recording medium
Kapitulnik et al. High‐resolution magneto‐optic measurements with a Sagnac interferometer
US5187703A (en) Magneto-optical multilayer recording disk and method of reproducing the same
US4833043A (en) Amorphous magneto optical recording medium
US5108185A (en) Apparatus for measuring reflectivity
Kryder et al. Kerr effect imaging of dynamic processes in magnetic recording heads
JPS60243539A (en) Magnetooptic effect measuring device
KR920006361B1 (en) Magnetic optical memory device
JPH10227764A (en) Device and method for evaluating wide-range magnetizm of in-plane direction magnetized substance
JPS6134749A (en) Generator for reading signal for magnetooptic recording medium
EP0240046B1 (en) Magneto-optical recording element and a magneto-optical recording device
JPS60119649A (en) Photo-magnetic recording medium
JPS63122930A (en) Apparatus for measuring kerr angle of rotation of magneto optical memory medium
JPH0756709B2 (en) Magneto-optical storage device
JPH0280948A (en) Magnetic flaw inspection apparatus
Cheng et al. Static tests of TbFe films for magneto-optical recordings
JP2716988B2 (en) Magnetic field modulation overwrite type magneto-optical disk drive
CN113176527A (en) Space optomagnetic instrument and manufacturing method thereof
JPH02120646A (en) Method for measuring heating hysteresis