JPS60243211A - Method for blowing powder from single pipe nozzle at furnace bottom - Google Patents

Method for blowing powder from single pipe nozzle at furnace bottom

Info

Publication number
JPS60243211A
JPS60243211A JP9839584A JP9839584A JPS60243211A JP S60243211 A JPS60243211 A JP S60243211A JP 9839584 A JP9839584 A JP 9839584A JP 9839584 A JP9839584 A JP 9839584A JP S60243211 A JPS60243211 A JP S60243211A
Authority
JP
Japan
Prior art keywords
nozzle
carrier gas
powder
single pipe
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9839584A
Other languages
Japanese (ja)
Inventor
Nozomi Katagiri
望 片桐
Tetsuo Sato
哲郎 佐藤
Hisashi Yamana
寿 山名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9839584A priority Critical patent/JPS60243211A/en
Publication of JPS60243211A publication Critical patent/JPS60243211A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/34Blowing through the bath

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)

Abstract

PURPOSE:To blow safely powder into a refining vessel while averting penetration of a molten steel and formation of a mushroom in the stage of blowing the power into said vessel through a single pipe nozzle at the bottom thereof by controlling the flow rate of the carrier gas from the tip of a nozzle in a way as to satisfy the specific equation. CONSTITUTION:The result shown in the figure is obtd. when blowing experiment of exothermic powder is made while passing Ar as a carrier gas through the single pipe nozzle after attaching said nozzle to the bottom of the refining vessel for testing, for example, 0.5t (e.g.; converter). The blowing state of the pulverous powder stabilizes in the range where the relation of the equation holds between the flow rate V of the carrier gas and the inside diameter (d) of the single pipe nozzle as shown in the figure. The cooling effect by the carrier gass is so high that the mushroom sticks to the tip of the single pipe nozzle and blowing of the pulverous powder is not possible in the case of V<(0.1d+0.5). On the other hand, blowing of the carrier gas against the static pressure of the molten steel in the converter is not possible and the nozzle outlet is made liable to be clogged by penetration of the molten steel into the single pipe nozzle in the case of V<(0.07d+0.1).

Description

【発明の詳細な説明】 本発明は炉底に取付けた単管ノズルから精錬容器内へ発
熱性粉体(以下単に粉体という)を吹込んで精錬する方
法に関し、詳細に紘溶鋼の差込みやマツシュルームの生
成を回避しながら安全に安定して粉体な吹込む方法に関
するものである。
Detailed Description of the Invention The present invention relates to a method for refining by injecting exothermic powder (hereinafter simply referred to as powder) into a refining vessel from a single pipe nozzle attached to the bottom of the furnace, and details of the method for refining by injecting exothermic powder (hereinafter simply referred to as powder) into a refining vessel from a single pipe nozzle attached to the bottom of the furnace. The present invention relates to a method for safely and stably blowing powder while avoiding the formation of powder.

製鋼段階における副原料コストの低減やスラグ発生量の
低減によってコストダウンを図シ、更に品質向上をも図
る目的の下に、溶銑をまず脱珪処理し、引続き脱燐・蜆
硫処理を行なう技術の実用化が進んでいる。こうした状
況下における転炉の役割シは脱炭と昇温に絞られ、これ
によって一般鋼の経済的外生産が達成されている。
A technology in which hot metal is first subjected to desiliconization treatment, followed by dephosphorization and sulfurization treatment, with the aim of reducing costs by reducing the cost of auxiliary raw materials and reducing the amount of slag generated during the steelmaking stage, and also improving quality. is being put into practical use. Under these circumstances, the role of the converter has been narrowed down to decarburization and temperature increase, and through this, economical production of general steel has been achieved.

一方■製品の高級化が要求される分野では転炉操業後に
各種の炉外精錬が控えていること、■連鋳化比率が増大
していること等の状況がある為、これらに対応する必要
上転炉出鋼温度を高めたいという要請が強まっている。
On the other hand, in fields where higher quality products are required, there are situations such as various out-of-furnace refining being refrained after converter operation, and ■ the ratio of continuous casting is increasing, so it is necessary to respond to these situations. There is a growing demand to raise the upper converter tapping temperature.

しかるに現在の転炉操業では前記の様に溶銑の予備処理
によって81等の被酸化性元素が除去されている為転炉
における溶鋼の自己発熱能力は低下しておシ、出鋼温度
を高めようとしても所望温度まで到達し得ないという事
態が発生している。
However, in the current converter operation, as mentioned above, oxidizable elements such as 81 are removed by pre-treatment of the hot metal, so the self-heating ability of the molten steel in the converter decreases, and the tapping temperature should be increased. However, there are situations where the desired temperature cannot be reached.

かかる事態に対魁する為転炉に何らかの熱源を補鼻する
必要に迫られておシ、との熱源としてはFe−8iyコ
ークス、石炭等の被酸化性物質が検討され一郁実施電れ
ている。即ち上記熱源の補充方法として拡(1)上記熱
源物質の塊状物を炉上のホッパから溶湯中へ投入する方
法及び(2)炉底に取付けた単管ノズルから熱源物質の
粉体をキャリアガスによって吹込む方法が例示されるが
、熱効率及び反応効率の良好な後者の方法が注目右れて
いる。ところが炉底ノズルからの粉体吹込みに当たって
単管ノズルを使用する場合には吹込まれたキャリアガス
によってノズル先端が冷却され、その回シに凝固鉄(マ
ツシュルーム)が付着するという不都合な現象があられ
れることがある。この様なマツシュルームはガスのみを
吹込む場合にはノズルを保護する役割りをするがキャリ
アガスと共に粉体を吹込む場合には粉体がノズル先端の
マツシュルーム部で詰まシ、粉体吹込みが不可能になる
場合がある。即ち単管ノズルの使用による不都合は粉体
を伴なったガスによるノズル先端の冷却効果が強力であ
る為にマツシュルームが付着するという点にあった。そ
こで例えば微粉炭を吹込む場合にはとれε避ける為に2
重管ノズルを用い、内側から02単独を吹込み外側から
は空気tArtN7等のキャリアガスと共に微粉炭を吹
込む方法がKrupp社等で開発されつつある。しかる
に上記方法においては(1)Ozを吹込む為にノズルが
溶損し易いだけでなく(2)内管と外管の隙間から微粉
炭を吹込むことの技術的困難さや(3) O! と微粉
炭が同時に吹込まれる為に逆火が発生する危険もあシ、
必ずしも望ましい方法とは言えなかった。
In order to cope with this situation, it became necessary to add some kind of heat source to the converter, and as a heat source, oxidizable substances such as Fe-8iy coke and coal were considered, and Ichika decided to implement it. There is. That is, the method for replenishing the heat source is as follows: (1) A method in which lumps of the heat source material are introduced into the molten metal from a hopper on the furnace; and (2) a method in which powder of the heat source material is introduced into the molten metal from a single tube nozzle attached to the bottom of the furnace as a carrier gas. The latter method is attracting attention because of its good thermal efficiency and reaction efficiency. However, when a single tube nozzle is used to inject powder from the furnace bottom nozzle, the tip of the nozzle is cooled by the injected carrier gas, causing an inconvenient phenomenon in which solidified iron (pine mushroom) adheres to the nozzle. It may happen. This type of pine mushroom serves to protect the nozzle when only gas is injected, but when powder is injected together with a carrier gas, the powder can clog the pine mushroom at the tip of the nozzle, preventing powder injection. It may become impossible. That is, the disadvantage of using a single tube nozzle is that the cooling effect of the nozzle tip by the gas accompanied by powder is strong, so that pine mushrooms adhere to the nozzle tip. Therefore, for example, when injecting pulverized coal, 2.
A method is being developed by Krupp and others that uses a heavy pipe nozzle to inject 02 alone from the inside and pulverized coal together with a carrier gas such as air tArtN7 from the outside. However, in the above method, not only (1) the nozzle is easily melted and damaged due to injecting Oz, but also (2) it is technically difficult to inject pulverized coal through the gap between the inner tube and the outer tube, and (3) O! There is also the risk of backfire occurring because pulverized coal and pulverized coal are injected at the same time.
This was not necessarily the preferred method.

本発明は。こうした事情に着目し検討を重ねた結果なさ
れたものであって、不活性ガスをキャリアガスとして粉
体吹込みを行なう場合単管ノズルを使用してもノズル先
端にマツシュルームが発生せず、継続して粉体吹込を行
なうことができる様な方法i提供しようとするものであ
る。
The present invention is. This was made after repeated studies focusing on these circumstances. Even if a single pipe nozzle is used when injecting powder using an inert gas as a carrier gas, pine mushrooms will not occur at the nozzle tip and will continue. The purpose of the present invention is to provide a method that enables powder injection.

しかして上記目的を達成した本発明方法−とは、精錬容
器の炉底に取付けた単管ノズル−よルキャリアガスによ
って粉体を吹込むにあた少、ノズル先端からのキャリア
ガス流速を下記(1)式を満足する様に制御する点に要
旨を有するものである。
The method of the present invention, which has achieved the above object, consists of a single tube nozzle attached to the bottom of the refining vessel, in which the powder is injected by a carrier gas, and the carrier gas flow rate from the nozzle tip is set as follows. The gist of this is that it is controlled to satisfy equation (1).

(0,07d+0.1”、≦■≦(0,1d+0.5)
・・・・・・(1)■=キャリアガス流速(マツハ) d:ノズル内径(M) 以下実験の経緯に従って本発明を説明する。
(0,07d+0.1”, ≦■≦(0,1d+0.5)
(1) ■=Carrier gas flow rate (Matsuha) d: Nozzle inner diameter (M) The present invention will be explained below according to the experimental history.

まず始めに本発明者等は0.5を試験用精錬容器(実験
では転炉)の炉底に単管ノズルを取付け、キャリアガス
としてArを流しながら発熱性゛粉体(実験では微粉炭
)の吹込実験を行なったところ第1図に示す結果が得ら
れた。尚実験に当たってはキャリアガス流速M及び単管
ノズル内径(d)をパラメータとし、吹込の安定度によ
って評価を行なった。又吹込まれた微粉炭の精度は30
メツシュ以下=100%、200メツシュ以下二80チ
であシ、微粉炭流の固気比は7〜20kg微粉炭AgA
rとした。
First of all, the inventors attached a single tube nozzle to the bottom of a test refining vessel (a converter in the experiment), and while flowing Ar as a carrier gas, exothermic powder (pulverized coal in the experiment) was extracted. When a blowing experiment was conducted, the results shown in FIG. 1 were obtained. In the experiment, the carrier gas flow rate M and the inner diameter (d) of the single tube nozzle were used as parameters, and the stability of the blowing was evaluated. Also, the accuracy of the injected pulverized coal is 30
Below mesh = 100%, below 200 mesh is 280%, solid air ratio of pulverized coal flow is 7 to 20 kg pulverized coal AgA
It was set as r.

第1図に示される様に微粉体の吹込状態が安定するのは
、キャリアガス流連関と単管ノズル内径(d)の間に前
記(1)式の関係が成立つ範囲である。即ちV>(0,
1d+0.5 )の場合には、゛キャリアガスによる冷
却効果が強力すぎて単管ノズル先端にマツシュルームが
付着し微粉炭の吹込みができなく橙ル。一方v〈(0゜
o7d+o、x)である場合には転炉内の溶鋼静圧に抗
してキャリアガスを吹込むことができず、単管ノズル内
への溶鋼の差込みによってノズル出口が詰tbやすくな
る。尚本発明の実施に当たつぞキャリアガス流速(7)
の調節は下記(2)式に示される各因子を制御して行な
えばよい。
As shown in FIG. 1, the state of fine powder injection is stable within the range where the relationship expressed by equation (1) is established between the carrier gas flow relationship and the inner diameter (d) of the single tube nozzle. That is, V>(0,
In the case of 1d+0.5), the cooling effect by the carrier gas is so strong that pine mushrooms adhere to the tip of the single tube nozzle, making it impossible to inject pulverized coal, resulting in an orange color. On the other hand, if v〈(0゜o7d+o, tb becomes easier. In carrying out the present invention, carrier gas flow rate (7)
may be adjusted by controlling each factor shown in equation (2) below.

五 但し、Q:キャリアガス流量(Nml/m)a:fI鋼
靜静圧 kg/cm”ゲージ圧) 5T:絶対温度(0
K) A:単管ノズル断面積(Cが) ω:20℃のキャリアガス中における音速(m/減) 本発明の基本構成は上記の通シであるが、粉体とじては
微粉炭の他、Fe、−81粉やコークス粉等を挙げるこ
とができる。又精錬容器としてはLD転炉、LF炉、W
AD炉、AOD炉、ASEA−8KF炉、RH炉、DI
(炉の他、取鍋、混銑炉。
However, Q: Carrier gas flow rate (Nml/m) a: fI steel static pressure kg/cm" gauge pressure) 5T: Absolute temperature (0
K) A: Single tube nozzle cross-sectional area (C) ω: Sound velocity in carrier gas at 20°C (m/decrease) The basic structure of the present invention is as described above, but the powder is made of pulverized coal. Other examples include Fe, -81 powder, and coke powder. Also, as refining vessels, LD converter, LF furnace, W
AD furnace, AOD furnace, ASEA-8KF furnace, RH furnace, DI
(In addition to furnaces, ladle and mixed pig iron furnaces.

混銑車等が例示される。更に本発明方法は基本的には発
熱性粉体の吹込みに適用されるものであるが、その他の
用途にも適用することができる。例えば転炉等に微粉炭
を吹込みながら操業すると微粉炭中の8分が溶鋼中に蓄
積しS濃度が上昇するどとがあるが、その時は酸化精錬
終了後排滓して脱酸を行なった後、炉底の単管ノズルよ
〕微粉状のCaO+ CaF、、CaC,等の吹込みを
行なうことがあるが、本発明はこの様な場合にも適用で
きる。
An example is a pig iron truck. Furthermore, although the method of the present invention is basically applied to blowing exothermic powder, it can also be applied to other uses. For example, if a converter is operated while injecting pulverized coal, 80% of the pulverized coal may accumulate in the molten steel, increasing the S concentration. After that, finely powdered CaO+ CaF, CaC, etc. may be injected through a single tube nozzle at the bottom of the furnace, and the present invention can also be applied to such cases.

尚本発明において、単管ノズル径によってキャリアガス
流速の適正範囲が変化する理由は明確にし得た訳ではな
いが、同じガス流速においても単管ノズル径の大小によ
シノズル出口部でのガスジェットの差動が変化しそのた
めマツシュルームの付着状況に違いが生じる為であると
考えている。
In the present invention, the reason why the appropriate range of carrier gas flow rate changes depending on the diameter of the single tube nozzle has not been clarified, but even at the same gas flow rate, the gas jet at the outlet of the single tube nozzle changes depending on the diameter of the single tube nozzle. We believe that this is because the differential of the pine mushrooms changes, which causes a difference in the adhesion of pine mushrooms.

本発明は以上の様に構成されておシ、前記(1)式に示
される範囲を満足する様にキャリアガス流速を制御する
ことによシ単管ノズルからの粉体吹込みを安定的に行な
うことができる。
The present invention is constructed as described above, and stably injects powder from a single tube nozzle by controlling the carrier gas flow rate so as to satisfy the range shown in equation (1) above. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は粉体吹込みに際して安定的な吹込みを行なうこ
とができる範囲を示すグラフであって、ノズル内径とキ
ャリアガス流速の関係を示すグラフである。 出願人 株式会社神戸製鋼所
FIG. 1 is a graph showing the range in which stable powder injection can be performed, and is a graph showing the relationship between the nozzle inner diameter and the carrier gas flow rate. Applicant Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】 精錬容器の炉底に取付けた単管ノズルよ)キャリアガス
竺よって溶融金属中に発熱性粉体を吹込むにあたシ、ノ
ズル先端からのキャリアガス流速を下記(1)式を満足
する様に制御することを特徴とする炉底単管ノズルから
の粉体吹込法。 (0,07d+ O:υ≦V≦(o、1d+0゜5 )
−・−<s)V:キャリアガス流速(マツハ) d:ノズル内径(IIIm)
[Claims] In order to inject exothermic powder into the molten metal through a carrier gas (through a single pipe nozzle attached to the bottom of the furnace of a refining vessel), the flow rate of the carrier gas from the nozzle tip is determined as follows (1). ) is a powder injection method from a single tube nozzle at the bottom of the furnace, which is controlled to satisfy the following equation. (0,07d+ O: υ≦V≦(o,1d+0゜5)
-・-<s) V: Carrier gas flow rate (Matsuha) d: Nozzle inner diameter (IIIm)
JP9839584A 1984-05-15 1984-05-15 Method for blowing powder from single pipe nozzle at furnace bottom Pending JPS60243211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9839584A JPS60243211A (en) 1984-05-15 1984-05-15 Method for blowing powder from single pipe nozzle at furnace bottom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9839584A JPS60243211A (en) 1984-05-15 1984-05-15 Method for blowing powder from single pipe nozzle at furnace bottom

Publications (1)

Publication Number Publication Date
JPS60243211A true JPS60243211A (en) 1985-12-03

Family

ID=14218645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9839584A Pending JPS60243211A (en) 1984-05-15 1984-05-15 Method for blowing powder from single pipe nozzle at furnace bottom

Country Status (1)

Country Link
JP (1) JPS60243211A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091461A1 (en) * 2002-04-24 2003-11-06 The Boc Group Plc Injection of solids into liquids by means of a shrouded supersonic gas jet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003091461A1 (en) * 2002-04-24 2003-11-06 The Boc Group Plc Injection of solids into liquids by means of a shrouded supersonic gas jet

Similar Documents

Publication Publication Date Title
AU2009236006B2 (en) Refining ferroalloys
US3323907A (en) Production of chromium steels
JPS5935407B2 (en) Carbon supply method to iron melt in converter
JPS60243211A (en) Method for blowing powder from single pipe nozzle at furnace bottom
SU544388A3 (en) The method of decarburizing ferroalloys
JP2020125541A (en) Converter refining method
JPH11209813A (en) Lance for injecting powdery material and method of its use
US4328031A (en) Method of mixed blowing for refining metals in a converter
RU1319561C (en) Method for blasting low-manganese iron in converter
JPS5833290B2 (en) Oxygen bottom blowing converter
RU2031961C1 (en) Method for treatment of metal charge
JPS6169944A (en) Manufacture by melting and reducing of ferrochrome
JPH0159327B2 (en)
JPH0277514A (en) Method for heating iron scrap in converter
JPH0438812B2 (en)
JPS62112712A (en) Operating method for blast furnace
JPH01132706A (en) Method for stirring slag and molten metal
JPS60177114A (en) Dephosphorizing method of molten iron
JPH0453922B2 (en)
Sarychev et al. Variation in the Practice of Deoxidizing and Alloying Sv 08 G 2 S Welding Quality Steel
Chater et al. Dephosphorization of Molten Iron With Maintenance of the Carbon Content
JPS58197208A (en) Melt reduction method of metallic oxide ore
JPH09157725A (en) Method for melting ferrous scrap
JPS59215412A (en) Refining method of steel by oxide additive
JPH03232919A (en) Production of molten ferrous alloy