JPS60243172A - Self-fusible insulated wire and coil thereof - Google Patents

Self-fusible insulated wire and coil thereof

Info

Publication number
JPS60243172A
JPS60243172A JP59099926A JP9992684A JPS60243172A JP S60243172 A JPS60243172 A JP S60243172A JP 59099926 A JP59099926 A JP 59099926A JP 9992684 A JP9992684 A JP 9992684A JP S60243172 A JPS60243172 A JP S60243172A
Authority
JP
Japan
Prior art keywords
component
self
compound
insulated wire
chemical formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59099926A
Other languages
Japanese (ja)
Other versions
JPH0626164B2 (en
Inventor
Isao Kamioka
上岡 勇夫
Masayoshi Miyake
正芳 三宅
Masaaki Fukuhara
雅昭 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59099926A priority Critical patent/JPH0626164B2/en
Publication of JPS60243172A publication Critical patent/JPS60243172A/en
Publication of JPH0626164B2 publication Critical patent/JPH0626164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:The titled electric wires that are produced by coating electroconductive wires with a polyhydroxy ether which composed of specific structural units, thus being suitable for use in deflecting yoke coils for motors, because it has good fluidity, lowers costs and shows little deformation after processing. CONSTITUTION:(A) A compound having 2 epoxy groups in the molecule and (B) another compound having 2 phenolic hydroxyls in the molecule, of which at least one has a structural unit of formula I, are allowed to react to give a coating mainly consisting of (C) polyhydroxy ether. The resulting coating is coated directly or after primer coating, on electroconductive wires, the coating is heat- cured, preferably further, electric current is passed through the wires for fusing to give the objective coils. The compound containing the structure of formula I is preferably used more than 25wt% and the compound of component A is that of formula II and component B is that of formula III or IV.

Description

【発明の詳細な説明】 (技術分野) 本発明はモーター、変圧器、磁気コイルなどに利用され
るエナメル線に自己融着機能を付与した自−己融着性絶
縁電線とそれより製造されるコイルに関するものである
Detailed Description of the Invention (Technical Field) The present invention relates to a self-bonding insulated wire that has a self-bonding function to an enameled wire used in motors, transformers, magnetic coils, etc., and a product manufactured therefrom. It concerns the coil.

(従来技術とその問題点) 従来、電気機器、通信機器などのコイル成形体は絶縁電
線を所定の形状に捲線した後、ワニス処理を行ない電線
相互間を接着・固化したものが用いられていたが、最近
では加熱又は溶剤処理のみでも電線相互間を融着固化で
きる自己融着性絶縁電線が含浸ワニス処理にかわって使
用されつつある。
(Prior art and its problems) Conventionally, coil molded bodies for electrical equipment, communication equipment, etc. have been made by winding insulated wires into a predetermined shape and then applying varnish treatment to bond and solidify the wires. However, recently, self-bonding insulated wires, which can fuse and solidify wires by heating or solvent treatment alone, are being used instead of impregnated varnish treatment.

自己融着性絶縁電線はエナメル線の絶縁層の上に熱可塑
性材料を主体とする自己融着層を設けたもので、電線を
コイル状に捲いた後もしくはコイル状に捲きながら加熱
又は溶剤処理をすると電線相互が固着し、コイルが得ら
れるので含浸ワニス処理を省略する事が出来、ユーザー
に対し、次のような多くの利点をもたらす。
Self-bonding insulated wire has a self-bonding layer mainly made of thermoplastic material on the insulating layer of enamelled wire, and is heated or treated with a solvent after or while winding the wire into a coil. As a result, the wires are bonded to each other and a coil is obtained, so that the impregnating varnish treatment can be omitted, and the following advantages are brought to the user.

■含浸ワニス使用による公害、安全衛生の心配が無用と
なる。
■There is no need to worry about pollution or safety and health caused by using impregnated varnish.

■通電加熱で代表されるようにコイルの成形サイクルが
早くなり、含浸ワニスも使用しないため製造コストが下
がる。
■The coil molding cycle is faster, as exemplified by electrical heating, and manufacturing costs are reduced because no impregnating varnish is used.

■コイル形状の複雑なもの、含浸ワニスが浸透しないも
のも固化可能である。
■It is possible to solidify items with complex coil shapes and items that cannot be penetrated by impregnated varnish.

この為自己融着性絶縁電線の要求は大きくなるとともに
需要家の工程、使用条件に合う様、種々の特性を持った
材料の開発が望まれている。中でもテレビジョンなどに
使用されている偏向ヨークコイルはその特殊な形状とき
ひしい寸法精度のため需要家より巻線メーカーに対し多
くの要求がなされてきた。
For this reason, there is a growing demand for self-bonding insulated wires, and there is a desire to develop materials with various characteristics to suit the process and usage conditions of customers. In particular, the deflection yoke coils used in televisions and the like have a special shape and strict dimensional accuracy, so customers have placed many demands on winding manufacturers.

数年前は偏向角度の増大によりコイルの加熱変形の小さ
い事、高温(たとえば130℃程度)でも固着力を有す
る事、コイル製造時、通電による加熱処理の際の自己融
着性材料の流動性がよい事が要求され、巻線メーカーは
自己融着性材料をポリビニルブチラールより共重合ナイ
ロンに変えて対応してきた。
A few years ago, we focused on increasing the deflection angle so that the heating deformation of the coil is small, that it has adhesive strength even at high temperatures (for example, around 130 degrees Celsius), and that the fluidity of self-fusing materials during heat treatment by energization during coil manufacturing is improved. In response to demands for better performance, winding wire manufacturers have responded by changing the self-bonding material from polyvinyl butyral to copolymerized nylon.

最近ではコンピュータなどの発達にともない、より高精
度のCRTが要求され、偏向ヨークコイルは以前のもの
に増して変形のないものが必要となってきた。現在の共
重合ナイロン系自己融着性材料は高温での固着力も強く
。流動性のよい材料ではあるが、材料自体はやわらかい
。この為共重合ナイロン系自己融着性絶縁電線を用いて
偏向ヨークコイルを作製すると、偏向ヨークコイル製作
後コイルのスプリングパック力によりコイルが若干変形
してしまうといった欠点がある。現在の高精度のCRT
の要求に対しては上記の変形が問題となっている。
Recently, with the development of computers and the like, higher precision CRTs have been required, and deflection yoke coils that are less deformable than those of the past have become necessary. Current copolymerized nylon-based self-bonding materials have strong adhesion strength at high temperatures. Although it is a material with good fluidity, the material itself is soft. For this reason, when a deflection yoke coil is manufactured using a copolymerized nylon-based self-fusing insulated wire, there is a drawback that the coil is slightly deformed due to the spring pack force of the coil after the deflection yoke coil is manufactured. Current high precision CRT
The above-mentioned deformation poses a problem in response to this requirement.

一方、自己融着性材料としてフェノキシを用いた自己融
着性絶縁電線が知られているが、これを用い偏向ヨーク
コイルを作成すると変形の少ないコイルが得られる。し
かしフェノキシは加熱処理の際材料の流動性が乏しいた
め共重合ナイロン系のものに比べ通電融着時に大電流を
必要としたり、通電時間を長くしなければ線間相互が充
分に固着したコイルは得られない。従がって、従来の共
重合ナイロン系を使用した時に比べ多量の熱エネルギー
を必要とし、コイルの製造コストが増加する。
On the other hand, self-bonding insulated wires using phenoxy as a self-bonding material are known, and if a deflection yoke coil is made using this, a coil with little deformation can be obtained. However, phenoxy has poor fluidity as a material during heat treatment, so compared to copolymerized nylon-based materials, it requires a larger current to fuse when energized, and unless the energization time is lengthened, the coils cannot fully adhere to each other between the wires. I can't get it. Therefore, a larger amount of thermal energy is required than when conventional copolymerized nylon is used, increasing the manufacturing cost of the coil.

又、大電流を長時間流す事によって絶縁層の熱劣化や電
線間の短絡が起こるという欠点も有った。
Furthermore, there were also disadvantages in that passing a large current for a long period of time caused thermal deterioration of the insulating layer and short circuits between the wires.

本発明者らは、これらの欠点を解消すべく鋭意検討の結
果、流動性については従来の共重合ナイロン系と同様に
良好であり、かつ、成形加工後の変形の小さい偏向ヨー
クコイルを製造可能な自己融着性絶縁電線を見い出し、
本発明に到達したものである。
As a result of intensive studies to eliminate these drawbacks, the inventors of the present invention have found that it is possible to manufacture a deflection yoke coil that has good fluidity similar to conventional copolymerized nylon systems and that has minimal deformation after molding. discovered a self-bonding insulated wire,
This has led to the present invention.

最近電気機器がますます小型化し、高信頼性が要求され
るようKなるとともに製造コストの低下も合せて望まれ
ている。
BACKGROUND OF THE INVENTION Recently, electrical equipment has become smaller and smaller, requiring higher reliability and lower manufacturing costs.

本発明の自己融着性絶縁電線は、材料が融着しやすく、
融着後の耐変形性、硬さに優れたもので単に偏向ヨーク
コイルのみではなく、他のコイルに対しても十分応用可
能なものである。
The self-fusing insulated wire of the present invention has materials that are easy to fuse together,
It has excellent deformation resistance and hardness after fusion bonding, and is fully applicable not only to deflection yoke coils but also to other coils.

(発明の構成) 本発明は分子中に2個のエポキシ基を有する化合物(A
成分)と分子中に2個のフェノール性OH基を有する化
合物(B成分)を反応せしめて得られるポリヒドロキシ
エーテル類において、A成分とB成分の少なくともいず
れかに下記の化学式で示される構造単位を含む事を特徴
とするポリヒドロキシエーテル類を主成分とする塗料を
導体上に直接あるいは他の絶縁物を介して塗布・焼付け
てなる自己融着性絶縁電線及びこれを用いて得られるコ
イルに関するものである。
(Structure of the Invention) The present invention relates to a compound having two epoxy groups in the molecule (A
In polyhydroxyethers obtained by reacting a compound having two phenolic OH groups in the molecule (component B), a structural unit represented by the following chemical formula in at least one of component A and component B. A self-fusing insulated wire obtained by applying and baking a paint containing polyhydroxyethers as a main component onto a conductor directly or through another insulator, and a coil obtained using the same. It is something.

本発明においては、分子中に2個のエポキシ基を有する
化合物(A成分)と分子中に2個のフェノール性OH基
を有する化合物(B成分)を反応せしめて得られるポリ
ヒドロキシエーテル類の分子構造中に化学式−■−CH
2−■−を含む事が重要である。現在ポリヒドロキシエ
ーテル類で自己融着性材料として使用されているフェノ
キシは以で示されるくり返し構造単位を有する。
In the present invention, polyhydroxyether molecules obtained by reacting a compound having two epoxy groups in the molecule (component A) and a compound having two phenolic OH groups in the molecule (component B) are used. Chemical formula -■-CH in the structure
It is important to include 2-■-. Phenoxy, which is currently used as a self-fusing material in polyhydroxyethers, has the repeating structural unit shown below.

これに対して本発明のように分子構造中に化学式−■−
CH2−■−を導入し例えば以下の化学式で示されるく
り返し構造単位を有するポリヒドロキシエーテルとする
とCH3基の減少した分だけ材料の流動性が向上し融着
しやすくなる。(CH3基があると立体障害のため主鎖
骨格の回転が悪くなり流動性が悪くなる。) しかし芳香族の密度は変わりないためフェノキシの優れ
た特性である材料の硬さ、融着後の耐変形性はフェノキ
シと大差なく、優れた自己融着材料となり、特に偏向ヨ
ークコイルに用いると最適である。
On the other hand, in the present invention, the chemical formula -■- is included in the molecular structure.
When CH2-■- is introduced to produce a polyhydroxyether having a repeating structural unit represented by the following chemical formula, for example, the fluidity of the material improves by the amount of the reduced CH3 group, making it easier to fuse. (If there is a CH3 group, the rotation of the main chain skeleton will be impaired due to steric hindrance, resulting in poor fluidity.) However, since the aromatic density remains unchanged, the hardness of the material, which is an excellent property of phenoxy, and the Its deformation resistance is not much different from that of phenoxy, and it is an excellent self-bonding material, making it particularly suitable for use in deflection yoke coils.

本発明において化学式−■−CH2−〇−で示される構
造単位をポリヒドロキシエーテル中に導入する方法は 
■分子中に2個のエポキシ基を有する化合物(A成分)
中に少なくとも一成分として導入 ■分子中に2個のフ
ェノール基OH基を有する化合物(B成分)中に少なく
とも一成分として導入、のいずれでもよく、もちろん両
方に導入してもよい。
In the present invention, the method for introducing the structural unit represented by the chemical formula -■-CH2-〇- into polyhydroxyether is
■Compound with two epoxy groups in the molecule (component A)
(1) Introducing it as at least one component into a compound having two phenol groups and OH groups in its molecule (component B); or, of course, introducing it into both.

分子中に2個のエポキシ基を有する化合物(A成分)で
化学式−〇−CH2−■−で示される構造単位を含む代
表的なものとしては下記の一般式(nは0〜lOまでの
整数→ で示されるもので例えば大日本インキ化学工業社商品名
エビクロン830化成化成社商品名エポトー) YDF
−170,190等がある。
A typical compound having two epoxy groups in the molecule (component A) containing a structural unit represented by the chemical formula -〇-CH2-■- has the following general formula (n is an integer from 0 to 1O). → For example, Dainippon Ink & Chemicals Co., Ltd. (trade name: Ebicuron 830, Kasei Kasei Co., Ltd. (trade name: Epoto)), YDF
There are -170, 190, etc.

一方分子中に2個のフェノール性OH基を有すメタンが
ある。
On the other hand, there is methane which has two phenolic OH groups in its molecule.

ここで本発明においては化学式−■−CH2−■−で示
される構造単位を含む化合物は得られるポリヒドロキシ
エーテλしに対し25重量%以上用いる事が好ましい。
In the present invention, the compound containing the structural unit represented by the chemical formula -CH2-■- is preferably used in an amount of 25% by weight or more based on the obtained polyhydroxyether λ.

25重量%に満たない場合には得うレルポリヒドロキシ
エーテルの流動性改善の効果が少ない為、通電による加
熱融着の場合には、その効果が充分発揮されない為であ
る。
This is because if the amount is less than 25% by weight, the effect of improving the fluidity of the polyhydroxyether obtained will be small, and the effect will not be sufficiently exhibited in the case of heat fusing by electricity.

分子中に2個のエポキシ基を有する化合物(A成分)の
うち化学式−〇−CH2−(E)−で示される構造単位
を含まないものとしては次の一般式(1)(nは0〜1
0までの整数) で示されるエポキシ化合物を用いるのが、原料価格、入
手の容易さの点で好ましい。
Among compounds having two epoxy groups in the molecule (component A), those that do not contain a structural unit represented by the chemical formula -〇-CH2-(E)- have the following general formula (1) (n is 0 to 0). 1
It is preferable to use an epoxy compound represented by (an integer up to 0) from the viewpoint of raw material cost and ease of acquisition.

具体的には、シェル化学社商品名エピコート#828.
834,1001,1004,100?ダウケミカル社
商品名aERaao 、331.382 、ssq 、
557.660.661.662.664チバガイギ一
社商品名アラルダイト6004.6005゜6010.
6020,6030,6040,6060.6071.
6075.6084大日本インキ化学工業社商品名エビ
クロン840゜850.860,1050,3050,
4.050束都化成社商品名エボトートYD−128,
134,011,018,014等がある。
Specifically, Shell Chemical Co., Ltd. trade name Epicote #828.
834, 1001, 1004, 100? Dow Chemical Company product name aERaao, 331.382, ssq,
557.660.661.662.664 Ciba Geigi Co., Ltd. Product name Araldite 6004.6005゜6010.
6020, 6030, 6040, 6060.6071.
6075.6084 Dainippon Ink Chemical Industry Co., Ltd. Product name Ebikuron 840° 850.860, 1050, 3050,
4.050 Tsukuto Kaseisha product name Evotote YD-128,
There are 134,011,018,014, etc.

本発明におり)て用いるA成分のうち化学式−σCH2
−0−で示される構造単位を含まないものとしては、ほ
かに上記一般式0)で示されるエポキシ化合物のベンゼ
ン核の一部の水素を臭素置換した化合物例えば大日本イ
ンキ化学工業社商品名エビクロン152.1120.東
部化成社商品名YDB−340,400,500,70
0等や上記一般式(1)で示されるエポキシ化合物のベ
ンゼン核を水素化しシクロヘキサン環とした化合物1例
えば大兵日本インキ化学工業社商品名エビクロン750
.東部化成社商品名サントート1000.3000等や
、ポリプロピレングリコ−ルのジエボキサイ、ドである
ダウケミカル社商品名DER732,リノールダイマー
酸のジエボキサイドであるシェル化学社商品名エピコー
ト#871ウレタン結合を有するジエポキサイドである
旭電化社商品名Epu 6.10.15などの化合物を
使用する事ももちろん可能である。
Of the A components used in the present invention), the chemical formula -σCH2
Examples of compounds that do not contain the structural unit represented by -0- include compounds in which part of the hydrogen in the benzene nucleus of the epoxy compound represented by the above general formula 0) is replaced with bromine, such as Dainippon Ink Chemical Co., Ltd.'s trade name Eviclon. 152.1120. Tobu Kasei Co., Ltd. Product name: YDB-340, 400, 500, 70
Compound 1, which is a cyclohexane ring obtained by hydrogenating the benzene nucleus of an epoxy compound represented by 0 or the above general formula (1), for example, Taihei Nippon Ink Chemical Industry Co., Ltd. trade name Evicron 750
.. Santoto 1000.3000 (trade name, manufactured by Tobu Kasei Co., Ltd.), DER732 (trade name, Dow Chemical Co., Ltd., which is dieboxide of polypropylene glycol), and Diepoxide (trade name, Epicote #871, manufactured by Shell Chemical Co., Ltd., which is dieboxide of linole dimer acid) having a urethane bond. Of course, it is also possible to use a compound such as Epu 6.10.15 manufactured by Asahi Denka Co., Ltd.

分子中シて2個のフェノール性OH基を有する化される
構造単位を含まないものとしては化学式エニル)プロパ
ンを用いるのが原料価格、人手の容易さの点で好ましい
As a compound which does not contain a structural unit having two phenolic OH groups in its molecule, it is preferable to use chemical formula (enyl)propane from the viewpoint of raw material cost and ease of labor.

構造単位を含まないものとしては例えば一般式で示され
るもので、更に具体的には、1.2−ビス(4−ヒドロ
キシフェニル)エタン、4.4’−ジヒドロキシジフェ
ニルスルホン、4.4’−ジヒドロキシジフェニルエー
テル、2.2−ビス(4−ヒ、トロキシー3.5−ジブ
ロモフェニル)フロパン、2.2−ビス(4−ヒドロキ
シ−3−ブロモフェニル)プロパ7.4.4−(α−メ
チルベンジリデン)ジフェノール等がある。
Examples of those containing no structural unit include those represented by the general formula, and more specifically, 1.2-bis(4-hydroxyphenyl)ethane, 4.4'-dihydroxydiphenylsulfone, 4.4'- Dihydroxydiphenyl ether, 2.2-bis(4-hy,troxy-3.5-dibromophenyl)furopane, 2.2-bis(4-hydroxy-3-bromophenyl)propa7.4.4-(α-methylbenzylidene) ) Diphenols, etc.

又一般式HO−(E)−0Hで示されるものでOH基が
パラの位置にあるハイドロキノン、メタの位置にあるレ
ゾルシン、オルソの位置にあるカテコールもある。もち
ろんこれらの化合物にアルキル基、アルケニル基、ハロ
ゲンなどを置換した化合物であってもよい。
There are also hydroquinone, which has the general formula HO-(E)-OH, in which the OH group is in the para position, resorcinol in the meta position, and catechol in which the OH group is in the ortho position. Of course, these compounds may be substituted with an alkyl group, an alkenyl group, a halogen, or the like.

さらに他の分子中に2個のフェノール性OH基を有する
化合物としてジヒドロキシナフタレン、なども使用でき
る。
Furthermore, dihydroxynaphthalene and the like can also be used as other compounds having two phenolic OH groups in the molecule.

本発明において一■−CH2−■−で示される構造単位
ヲ含ムホリヒドロキシエーテルとフェノキシ樹脂をブレ
ンドし一■−cH2−■−の構造単位を含む化合物が全
体のポリマーの25重量%になるようにして使用する事
ももちろん可能である。
In the present invention, a mpholyhydroxy ether containing a structural unit represented by 1-CH2-■- is blended with a phenoxy resin, and the compound containing a structural unit represented by 1-CH2-■- accounts for 25% by weight of the entire polymer. Of course, it is also possible to use it in this way.

本発明でいうポリヒドロキシエーテル類とは分子中に2
個のフェノール性OH基を有する化合物(B成分)と分
子中に2個のフェノール性OH基を有する化合物より得
られるジエポキサイド(A成分)とを溶媒中又は無溶媒
で塩基性触媒の存在下反応させて得られるものである。
The polyhydroxy ethers referred to in the present invention are 2 in the molecule.
A compound having two phenolic OH groups (component B) and a diepoxide obtained from a compound having two phenolic OH groups in the molecule (component A) are mixed in a solvent or without a solvent in the presence of a basic catalyst. It is obtained by reaction.

反応は、A成分のエポキシ基とB成分のフェノール性O
H基との当量比が0.95から1.05の範囲でより好
ましくは0.98から1.02の範囲で無溶媒又は次に
示すような溶剤中で行なう。
The reaction is between the epoxy group of component A and the phenolic O of component B.
The reaction is carried out in the absence of a solvent or in the following solvent at an equivalent ratio with respect to H group in the range of 0.95 to 1.05, more preferably in the range of 0.98 to 1.02.

反応溶剤としては、酢酸七四ソルプ、フェニルセロソル
ブ、七ロソルブ、カルピトール、メチルカルピトール、
ブチルカルピトールなどで代表さレルグリコールエーテ
ル類、メチルイソブチルケトン、シクロヘキサノン、ア
セトフェノン、ベンゾフェノン等のケトン類、フルフラ
ール等のアルデヒド類、アセトニトリル、フェニルアセ
トニトリル、プロパンジニトリル、ベンゾニトリル等の
二トリルヤ、ニトロベンゼン、1−クロロ−2−二トロ
ベンゼン1.1−クロロ−3−二斗ロベンゼン等のニト
ロ化合物ジメチルスルホキシド等のスルホキシド、シフ
田テトラメチレンスルホン等のスルホン類・が挙げられ
る。
As reaction solvents, acetic acid 74solp, phenylcellosolve, 7losolve, calpitol, methylcarpitol,
Real glycol ethers represented by butyl carpitol, ketones such as methyl isobutyl ketone, cyclohexanone, acetophenone, benzophenone, aldehydes such as furfural, nitrites such as acetonitrile, phenylacetonitrile, propane dinitrile, benzonitrile, nitrobenzene, Examples include nitro compounds such as 1-chloro-2-nitrobenzene, 1-chloro-3-nitrobenzene, sulfoxides such as dimethyl sulfoxide, and sulfones such as Schifta tetramethylene sulfone.

ただし、エポキシ基又はフェノール性OH基と反応する
ものや、副反応を起すものは、適当でないことはいうま
でもない。
However, it goes without saying that those that react with epoxy groups or phenolic OH groups or those that cause side reactions are not suitable.

反応触媒としては、ナトリウムフェノキシド、2.2−
 ビス(4−ヒドロキシフェニル)フロパンのモノナト
リウム塩、帰′−ジヒドロキシジフェニルスルホンのモ
ノナトリウム塩等のアルカリ金属フェノキシト、ナトリ
ウムメトキシド、ナトリウムエトキシド、等のアルカリ
金属アルコキシド、ナトリウムハイドライド、ナトリウ
ムポロハイドライド等の金属水素化物、トリエチルアミ
ン、n−プロピルアミン、1so−プロピルアミン、−
n−ブチルアミン、tert−ブチルアミン、n−ヘキ
シルアミン、n−オクチルアミン、シクロヘキシルアミ
ン、グアニジン、グアニジン誘導体、メチルアミン、メ
チルアミン誘導体、エチルアミン、エチルアミン誘導体
、ピペリジン、ピペリジン誘導体ピロリドン、N−メチ
ルピロリドン、モルホリン、 トリエチレンジアミン、
ヘキサメチレンジアミン、ピリジン、イミダゾール類、
1.8−ジアザビシクロ(5,4,0) ウンデセン−
7等の有機塩基、或いは1.8−ジアザビシクロ(5,
4,0)ウンデ七ンー7のフェノール塩、2−エチルヘ
キサン酸塩、オレイン酸塩等を挙げることかできる。触
媒は、ビスフェノール類に対して、0.01ないし10
0モル百率の範囲で使用□され、0.02ないし5モル
百分率が好ましい。
As a reaction catalyst, sodium phenoxide, 2.2-
Alkali metal phenoxides such as monosodium salt of bis(4-hydroxyphenyl)furopane and monosodium salt of di'-dihydroxydiphenylsulfone, alkali metal alkoxides such as sodium methoxide and sodium ethoxide, sodium hydride, and sodium polyhydride. metal hydrides such as triethylamine, n-propylamine, 1so-propylamine, -
n-butylamine, tert-butylamine, n-hexylamine, n-octylamine, cyclohexylamine, guanidine, guanidine derivative, methylamine, methylamine derivative, ethylamine, ethylamine derivative, piperidine, piperidine derivative pyrrolidone, N-methylpyrrolidone, morpholine , triethylenediamine,
hexamethylenediamine, pyridine, imidazoles,
1.8-diazabicyclo(5,4,0) undecene-
7, or 1,8-diazabicyclo(5,
4,0) Undecane-7 phenol salt, 2-ethylhexanoate, oleate, etc. can be mentioned. The catalyst is 0.01 to 10% relative to bisphenols.
It is used in a range of 0 molar percentage, preferably 0.02 to 5 molar percentage.

反応温度は、80℃から200℃の間が好ましいが、こ
の範囲外でも良く、必要ならば加圧下、溶゛媒の沸点以
上の温度で溶液反応を進行させることもできる。
The reaction temperature is preferably between 80° C. and 200° C., but may be outside this range, and if necessary, the solution reaction can be carried out under pressure at a temperature higher than the boiling point of the solvent.

ポリマーの重合度は、m・クレゾール中0.5g/d6
の濃度で測定した還元比粘度〔ηsp/c)が0.2〜
1.0′d 17gである事が望ましい。還元比粘度が
0,2以下であると電線とした時、可とう性に乏しく1
.0以上であると融着時に流動性が乏しくなり融着性が
悪くなる。
The degree of polymerization of the polymer is 0.5 g/d6 in m-cresol.
The reduced specific viscosity [ηsp/c) measured at a concentration of 0.2 to
It is desirable that it be 1.0'd 17g. If the reduced specific viscosity is less than 0.2, it will have poor flexibility when used as an electric wire.
.. If it is 0 or more, fluidity will be poor during fusion, resulting in poor fusion properties.

環境保護の為の排出有機溶剤規制や経済的理由等により
、高濃度塗料を得たい場合は、比較的低重合度としてお
き、エポキシ基とフェノール性OH基が当量存在する時
は、そのまま又いずれか一方が過剰の時は、過少分をエ
ポキシ基とフェノール性OH基が当量となる様に、上記
化学式で示される化合物と分子中に2個のフェノール性
OH基を有す、る化合物を塗料中に追加し、電線製造の
際の塗布、焼付時に更に反応を続け、高重合度とするこ
とも可能であろう。
If you want to obtain a highly concentrated paint due to regulations on discharged organic solvents for environmental protection or for economic reasons, the degree of polymerization should be kept relatively low, and when equivalent amounts of epoxy groups and phenolic OH groups are present, it can be used as is or at any time. If one of them is in excess, add the compound represented by the above chemical formula and a compound having two phenolic OH groups in the molecule as a paint so that the epoxy group and the phenolic OH group are equivalent. It would also be possible to achieve a high degree of polymerization by adding it to the inside and continuing the reaction during coating and baking during the manufacture of electric wires.

次に本発明のポリヒドロキシエーテル類を主成分とする
塗料にはポリエーテルサルホン樹脂、ポリサルホン樹脂
、フェノキシ樹脂、ポリカーボネート樹脂、ポリフェニ
レンオキサイド樹脂、ポリスチレン樹脂、ポリウレタン
樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリビニル
ホルマール樹脂、シリコン樹脂、フェノール樹脂、メラ
ミン樹脂、尿素樹脂等を材料の流動性に悪い影響を与え
ない程度添加する事も可能であり、さらをで可塑剤。
Next, paints containing polyhydroxyethers as a main component of the present invention include polyether sulfone resin, polysulfone resin, phenoxy resin, polycarbonate resin, polyphenylene oxide resin, polystyrene resin, polyurethane resin, polyamide resin, polyester resin, and polyvinyl formal. It is also possible to add resins, silicone resins, phenolic resins, melamine resins, urea resins, etc. to the extent that they do not adversely affect the fluidity of the material, and are used as plasticizers.

シリコーン、低分子量ポリエチレン、界面活性剤、顔料
、染料、有機無機フィラー等の1つ又はそれ以上を適量
添加することにより、電線特性の多少の改善は可能であ
り、これも本発明の範囲に含まれるものである。
It is possible to improve the wire characteristics to some extent by adding appropriate amounts of one or more of silicone, low molecular weight polyethylene, surfactants, pigments, dyes, organic and inorganic fillers, etc., and this is also within the scope of the present invention. It is something that can be done.

本発明のポリヒドロキシエーテル類を主成分とする塗料
を製造するさい、塗料成分の溶剤、分散剤としては前述
の反応溶剤が使用でき、他にm−クレゾール、N、N−
ジメチルホルムアミド、N−メチルピロリドン、メチル
エチルケトン、キシレン、ナフサ等も場合により溶解性
、粘度を調整するために使用できる。
When producing the paint containing polyhydroxyethers as the main component of the present invention, the above-mentioned reaction solvents can be used as the solvent and dispersant for the paint components, and in addition, m-cresol, N, N-
Dimethylformamide, N-methylpyrrolidone, methylethylketone, xylene, naphtha, etc. can also be used to adjust solubility and viscosity.

本塗料は、いかなる濃度でも使用し得るが、5%ないし
95%の範囲が好ましく205%2eいし8096の範
囲が、より効果的に使用される。
The paint can be used at any concentration, but a range of 5% to 95% is preferred, and a range of 205% 2e to 8096 is more effectively used.

本塗料は、導体上に直接或いは、他の絶縁物を介して皮
膜に形成され、本発明の自己融着性絶縁電線が製造され
る。
The present paint is formed into a film directly on the conductor or via another insulator to produce the self-bonding insulated wire of the present invention.

皮膜の形成方法は、溶液或いは溶融状態の塗料を素線上
に塗布し、ダイ、フェルト等で膜厚を調節1、焼付炉、
又は凝固洛中で皮膜を形成乾燥させるか、又は溶媒を含
まない場合は、単に溶融塗料を塗布後冷却することによ
り行なわれるものである。
The method for forming the film is to apply a solution or molten paint onto the wire, adjust the film thickness with a die, felt, etc.1, bake in a baking oven,
Alternatively, a film may be formed and dried in a coagulation system, or, if a solvent is not included, simply coated with a molten paint and then cooled.

本発明の自己融着性絶縁電線の融着方法は加熱による融
着が好ましく、特−ζ通電をでよる加熱で融着され、融
着後の硬さの要求されるコイル、具体的には偏向ヨーク
コイルに使用すると効果が大きい。
The method for fusing the self-fusing insulated wire of the present invention is preferably fusing by heating, and is fusing by heating by applying a special current to a coil that requires hardness after fusing. Great effect when used with deflection yoke coils.

次に実施例により更に詳細に本発明を説明するが、本発
明は以下の実施例に限定されるものではない。伺、以下
の実施例中の還元比粘度(ηsp/c)は得られた本発
明のポリヒト町キシエーテル溶液をm−クレゾールで0
.5g樹脂/100m1溶媒濃度に希釈し、80℃で測
定されたものである。
EXAMPLES Next, the present invention will be explained in more detail with reference to examples, but the present invention is not limited to the following examples. The reduced specific viscosity (ηsp/c) in the following examples is calculated by adding m-cresol to the obtained polyhydric ether solution of the present invention.
.. It was diluted to a concentration of 5g resin/100ml solvent and measured at 80°C.

〔実施例1〕 大日本インキ化学工業社商品名エビクロン880(以下
エビクロン880と略す。呈ポキシ当量173)178
.0g、ビスフェノールA(2,2−ビス(4−ヒドロ
キシジフェニル)プロパン、試薬−級分子量228.3
) 1141g、 )ソーn−ブチルアミン(試薬−管
を付けた丸底フラスコ中で混合・溶解後温度を150℃
に上昇させ10時間反応させた。反応終了後加熱を止め
DMを400gを加え樹脂分8096の黄カッ色透明溶
液を得た。本樹脂の還元比粘度(ηsp/c)は0.4
2であった。続いてエナメル線焼付炉にて0.5m径の
銅線上にH種ポリエステルイミド(口触スケネクタディ
社製商品名イソミツドLV)を7回本樹脂溶液を3回ポ
リエステルイミド絶縁塗料の焼付条件で塗布焼付し、自
己融着性絶縁型 線を得た。
[Example 1] Dainippon Ink & Chemicals Co., Ltd. trade name Ebicuron 880 (hereinafter abbreviated as Ebicuron 880. Poxy equivalent: 173) 178
.. 0g, bisphenol A (2,2-bis(4-hydroxydiphenyl)propane, reagent-grade molecular weight 228.3
) 1141 g, ) So n-butylamine (mix and dissolve in a round bottom flask with a reagent tube, then adjust the temperature to 150°C
The temperature was raised to 100 mL and reacted for 10 hours. After the reaction was completed, heating was stopped and 400 g of DM was added to obtain a yellowish-brown transparent solution with a resin content of 8,096. The reduced specific viscosity (ηsp/c) of this resin is 0.4
It was 2. Next, in an enameled wire baking furnace, apply H-type polyesterimide (trade name: Isomitsu LV, manufactured by Schenectady Co., Ltd.) 7 times to the copper wire with a diameter of 0.5 m, and apply this resin solution 3 times under the baking conditions of polyesterimide insulating paint. A self-bonding insulated wire was obtained.

本実施例の自己融着性絶縁電線の電線特性を表IK示し
た。
The wire characteristics of the self-bonding insulated wire of this example are shown in Table IK.

〔実施例2〕 エビクロン880 173.0g、ビスフェノールF(
ビス(4−ヒドロキシフェニル)メタン、分子量200
.2) 100.1g、 )ソーn−ブチルアミン46
gDM273gとを実施例1と同じ方法で反応させた後
、DM364gを加え、樹脂分3096の黄カッ色透明
溶液を得た。本樹脂の還元比粘度(ηsp/c)は0.
39であった。続いて実施例1と同様にして自己融着性
絶縁電線を得た。
[Example 2] Evicron 880 173.0g, bisphenol F (
Bis(4-hydroxyphenyl)methane, molecular weight 200
.. 2) 100.1g, )so n-butylamine 46
After reacting with 273 g of gDM in the same manner as in Example 1, 364 g of DM was added to obtain a yellow-brown transparent solution with a resin content of 3096. The reduced specific viscosity (ηsp/c) of this resin is 0.
It was 39. Subsequently, a self-bonding insulated wire was obtained in the same manner as in Example 1.

本実施例の自己融着性絶縁電線の電線特性を表−1に示
した。
Table 1 shows the wire characteristics of the self-bonding insulated wire of this example.

〔実施例3〕 シェル化学社製エポキシ樹脂商品名エピコート#828
(エポキシ当量、 8%、讐腎ノールF 100.1g
、 トリーn−ブチルアミ74.6g 、DM286 
gとを実施例1と同じ方法で反応させた後、DM381
gを加え樹脂分3096の黄カッ色透明溶液を得た。本
樹脂の還元比粘度(ηsp/c)は086てあった。続
いて実施例1と同様にして自己融着性絶縁電線を得た。
[Example 3] Epoxy resin trade name Epicote #828 manufactured by Shell Chemical Co., Ltd.
(Epoxy equivalent, 8%, 100.1 g of nephrol F
, tri-n-butylamide 74.6g, DM286
After reacting with g in the same manner as in Example 1, DM381
g was added to obtain a yellow-brown transparent solution with a resin content of 3096. The reduced specific viscosity (ηsp/c) of this resin was 086. Subsequently, a self-bonding insulated wire was obtained in the same manner as in Example 1.

本実施例の自己融着性絶縁電線の電線特性を表1に示し
た。
Table 1 shows the wire characteristics of the self-bonding insulated wire of this example.

〔実施例4〕 エビクロン83086.5g、エピコート#82893
.0g。
[Example 4] Evicron 83086.5g, Epicote #82893
.. 0g.

ビスフェノールA 114.1g、 )クーn−ブチル
アミ ン46g、DM294gとを実施例1と同じ方法
で反応させた後pM390 gを加え、樹脂分3096
の黒色透明溶液を得た。本樹脂の還元比粘度(ηsp/
c)は0.44であった。続いて実施例1と同様にして
自己融着性絶縁電線を得た。
After reacting 114.1 g of bisphenol A, 46 g of n-butylamine, and 294 g of DM in the same manner as in Example 1, 390 g of pM was added, and the resin content was 3096 g.
A black transparent solution was obtained. Reduced specific viscosity of this resin (ηsp/
c) was 0.44. Subsequently, a self-bonding insulated wire was obtained in the same manner as in Example 1.

本実施例の自己融着性絶縁電線の電線特性を表1に示し
た。
Table 1 shows the wire characteristics of the self-bonding insulated wire of this example.

〔比較例1〕 フェノキシ樹脂(ユニオンカーバイド社商品名フェノキ
シDKHH平均分子量約4万) 300gをDM700
gに溶解させ樹脂分80%の淡黄色透明溶液を得た。
[Comparative Example 1] 300 g of phenoxy resin (Union Carbide Co., Ltd. trade name: Phenoxy DKHH average molecular weight of approximately 40,000) was added to DM700.
A pale yellow transparent solution with a resin content of 80% was obtained.

続いて実施例1と同様にして自己融着性絶縁電線を得た
Subsequently, a self-bonding insulated wire was obtained in the same manner as in Example 1.

本比較例の自己融着性絶縁電線の電線特性を表1に示し
た。
Table 1 shows the wire characteristics of the self-bonding insulated wire of this comparative example.

〔比較例2〕 還元比粘度(ηsp/c)が1.71である12−6の
共重合ポリアミド(1)(該共重合ポリアミドを構成す
る12−ナイロン成分と6−ナイロン成分の重量組成比
が8=2、以下同じ) 240grと還元比粘度が1.
24である12−6−6・6(重量組成比1:1:1)
の共重合ポリアミド(n)160grとを、フェノール
とm−クレゾールの混合溶剤(重量比で2 : 8 )
1200gr中で170”CX5時間加熱反応させて得
られる重合体溶液ヲ、キジロール750grで希釈し濃
度1796、粘度(B型粘度計で測定、at80℃、以
下同じ)1640cpsの均一透明な塗料を得た。
[Comparative Example 2] 12-6 copolyamide (1) having a reduced specific viscosity (ηsp/c) of 1.71 (weight composition ratio of 12-nylon component and 6-nylon component constituting the copolyamide) (8=2, the same applies hereafter) 240gr and the reduced specific viscosity is 1.
24, 12-6-6.6 (weight composition ratio 1:1:1)
160g of copolymerized polyamide (n) was mixed with a mixed solvent of phenol and m-cresol (2:8 by weight).
The polymer solution obtained by heating at 170"CX for 5 hours in 1200gr was diluted with 750gr Kijirol to obtain a uniform transparent paint with a concentration of 1796 and a viscosity (measured with a B-type viscometer, at 80°C, hereinafter the same) of 1640cps. .

続いて実施例1と同様にして自己融着性絶縁電線を得た
。本比較例の自己融着性絶縁電線の電線特性を表1に示
した。
Subsequently, a self-bonding insulated wire was obtained in the same manner as in Example 1. Table 1 shows the wire characteristics of the self-bonding insulated wire of this comparative example.

〔実施例5〕 実施例1〜4・、比較例1〜2で得た自己融着性絶縁電
線を直径5.0 mm〆のマンドレルに緊密に巻き付け
125grの荷重下で所定の温度の恒温槽中に20分間
放置したものを試料とし、固着力をASTM−D 25
19に基づき測定した。
[Example 5] The self-bonding insulated wires obtained in Examples 1 to 4 and Comparative Examples 1 to 2 were tightly wound around a mandrel with a diameter of 5.0 mm and placed in a constant temperature oven at a predetermined temperature under a load of 125 gr. The sample was left for 20 minutes in
Measured based on 19.

各実施例、比較例の自己融着性絶縁電線の融着温度と固
着力の関係を表2に示した。
Table 2 shows the relationship between the fusing temperature and the adhesion strength of the self-fusing insulated wires of each Example and Comparative Example.

表2 自己融着性絶縁電線の融着温度と固着力の関係〔
実施例6〕 実施例1〜4、比較例1〜2で得た自己融着性絶縁電線
を直径5.0 mm lのマンドレルに緊密に175タ
ーン巻き付は荷重125grの荷重下でIOAの定電流
を所定の時間通電加熱した。
Table 2 Relationship between fusing temperature and adhesion strength of self-fusing insulated wire [
Example 6] The self-bonding insulated wires obtained in Examples 1 to 4 and Comparative Examples 1 to 2 were wound tightly around a mandrel with a diameter of 5.0 mm for 175 turns to obtain a constant IOA under a load of 125 gr. A current was applied for a predetermined period of time to heat the sample.

加熱により得たコイルを試料とし、固着力をASTM−
D2519に基づき測定した。各実施例、比較例の自己
融着性絶縁電線の通電時間と固着力の関係を表3に示し
た。
The coil obtained by heating was used as a sample, and the adhesion force was measured according to ASTM-
Measured based on D2519. Table 3 shows the relationship between the current application time and the adhesion strength of the self-bonding insulated wires of each Example and Comparative Example.

表3 自己融着性絶縁電線の通電秒数と融着力の関係〔
実施例7〕 実施例1〜4、比較例1〜2で得た自己融着性塗料のフ
ィルムを200℃の恒温槽で2時間焼付ける事により作
製した。
Table 3 Relationship between energizing seconds and fusing strength of self-fusing insulated wires [
Example 7] Films of the self-adhesive paints obtained in Examples 1 to 4 and Comparative Examples 1 to 2 were produced by baking them in a constant temperature bath at 200°C for 2 hours.

各実施例、比較例のフィルムの弾性率温度特性を東洋ボ
ールドウィン社製動的粘弾性測定装置(パイブロン)に
より振動数11Hzで測定した。得られた弾性率温度特
性を表4に示した。
The elastic modulus and temperature characteristics of the films of each Example and Comparative Example were measured at a frequency of 11 Hz using a dynamic viscoelasticity measuring device (Pyblon) manufactured by Toyo Baldwin. Table 4 shows the obtained elastic modulus temperature characteristics.

表4 自己融着性絶縁電線の弾性率温度特性(弾性率の
単位d Y n/cmす 〔実施例8〕 実施例1〜4、比較例1〜2で作製した自己融着性絶縁
電線を偏向ヨークコイル捲機でコイル捲し、偏向ヨーク
コイルを作製した。得た偏向ヨークコイルを平滑な板の
上に静置し、第2図に示すような偏向ヨークコイルと板
との間隙(△h:取り出し変形)を測定した。結果を表
5に示した。
Table 4 Elastic modulus temperature characteristics of self-fusing insulated wires (unit of elastic modulus d Y n/cm [Example 8] Self-fusing insulated wires produced in Examples 1 to 4 and Comparative Examples 1 to 2) A deflection yoke coil was manufactured by winding a coil using a deflection yoke coil winding machine.The resulting deflection yoke coil was placed on a smooth plate, and the gap (△ h: removal deformation) was measured.The results are shown in Table 5.

冑、作製した偏向ヨークコイルを第1図に示した。a、
 b、cはそれぞれ40mm、 90mm、60mm 
の大きさであった。
Figure 1 shows the fabricated deflection yoke coil. a,
b, c are 40mm, 90mm, 60mm respectively
It was the size of

表5.偏向ヨークコイルの取り川し変形(発明の効果) 表2.3より本発明の自己融着絶縁電線はフェノキシ、
共重合ナイロン系より低温で融着可能であり、共重合ナ
イロン系とほぼ同程度の時間で通電融着可能である事が
判る。又表4に示される如く室温より90℃まで共重合
ナイロン系のものより硬く、室温より70℃までフェノ
キシのものとほぼ同等の硬さである。実際に偏向ヨーク
コイルを製作した時1表5に示されているようにコイル
の変形量が現行共重合ナイロン系のものより少ない。従
って本発明の自己融着性絶縁電線は高精度のCRTに使
用する変形の少ない偏向ヨークコイル用に好適である。
Table 5. Deformation of the deflection yoke coil (effects of the invention) From Table 2.3, the self-bonding insulated wire of the present invention is phenoxy,
It can be seen that it can be fused at a lower temperature than the copolymerized nylon type, and can be electrically fused in approximately the same amount of time as the copolymerized nylon type. Also, as shown in Table 4, it is harder than copolymerized nylon from room temperature to 90°C, and is almost as hard as phenoxy from room temperature to 70°C. When a deflection yoke coil is actually manufactured, as shown in Table 1, the amount of deformation of the coil is smaller than that of the current copolymerized nylon-based coil. Therefore, the self-fusing insulated wire of the present invention is suitable for use in deflection yoke coils with little deformation used in high-precision CRTs.

当然他の加熱融着により製作されるコイルに対しても応
用可能であり、新規な自己融着性絶縁電線として、その
工業的価値は大きい。
Naturally, it can be applied to other coils manufactured by heat fusion, and its industrial value as a new self-bonding insulated wire is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明にかかわる偏向ヨークコイル
である。 第1図は偏向ヨークコイルの概略を示したもので本コイ
ルは図中のa、 b、 cがそれぞれ40mm、90m
m、60a+mの大きさのものである。 第2図は取り出し変形量(△h)を図示したものである
。 1、偏向ヨークコイル、2.平滑な板 代理人弁理士 上 代 哲 司 り 「
1 and 2 show a deflection yoke coil according to the present invention. Figure 1 shows an outline of the deflection yoke coil. In this coil, a, b, and c in the figure are 40 mm and 90 m, respectively.
The size is 60a+m. FIG. 2 illustrates the amount of deformation (Δh) taken out. 1. Deflection yoke coil, 2. Smooth Board Patent Attorney Satoshi Tsukasa

Claims (9)

【特許請求の範囲】[Claims] (1)分子中に2個のエポキシ基を有すや化合物(A成
分)と分子中に2個のフェノール性OH基を有する化合
物(B成分)を反応せしめて得られるポリヒドロキシエ
ーテル類においてA成分とB成分の少なくともいずれか
に下記の化学式%式% で赤される構造単位を有する化合物を用いる事を特徴と
するポリヒドロキシエーテル類を主成分とする塗料を導
体上に直接あるいは他の絶縁物を介し上塗布・焼付けて
なる自己融着性絶縁電線。
(1) In polyhydroxyethers obtained by reacting a compound having two epoxy groups in the molecule (component A) and a compound having two phenolic OH groups in the molecule (component B), A A paint containing polyhydroxyethers as a main component, characterized by using a compound having a structural unit represented by the following chemical formula % in at least one of the component and B component, is applied directly onto the conductor or other insulating material. Self-bonding insulated wire made by coating and baking a material.
(2)A成分、B成分中の化学式−〇−CH2−(E)
−で示される構造単位を含むfヒ金物を、得られるポリ
ヒドロキシエーテルに対し25重量%以上用いる特許請
求範囲第1項記載の自己融着性絶縁電線。
(2) Chemical formula in A component and B component -〇-CH2-(E)
2. The self-bonding insulated wire according to claim 1, wherein the f-arsenic metal containing the structural unit represented by - is used in an amount of 25% by weight or more based on the obtained polyhydroxyether.
(3)A成分中に化学式−■−CH2−■−で示される
構造単位を有する化合物を含む特許請求範囲第1項記載
の自己融着性絶縁電線。
(3) The self-fusing insulated wire according to claim 1, wherein the component A contains a compound having a structural unit represented by the chemical formula -CH2-■-.
(4)A成分中の化学式−〇= CH2=O−で示され
る構造幣位を有する化合物が次の化学式(nは0〜IO
までの整数) で示される化合物である特許請求範囲第3項記載の自己
融着性絶縁電線。
(4) The compound having the structural position represented by the chemical formula −〇= CH2=O− in component A has the following chemical formula (n is 0 to IO
The self-bonding insulated wire according to claim 3, which is a compound represented by the following integers up to .
(5)B成分が下記の化学式 で示される化合物である特許請求範囲第4項記載の自己
融着性絶縁電線。
(5) The self-fusing insulated wire according to claim 4, wherein component B is a compound represented by the following chemical formula.
(6)B成分が下記の化学式 %式%) で示される化合物である特許請求範囲第4・項記載の自
己融着性絶縁電線。
(6) The self-fusing insulated wire according to claim 4, wherein component B is a compound represented by the following chemical formula (% formula %).
(7)B成分中に化学式−()−CIi2−0−で示さ
れる構造単位を有する化合物を含む特許請求範囲第1項
記載の自己融着性絶縁電線。
(7) The self-fusing insulated wire according to claim 1, wherein component B contains a compound having a structural unit represented by the chemical formula -()-CIi2-0-.
(8)B成分中の化学式−(E)−CH2−■−で示さ
れる構造単位を有する化合物が次の化学式 HO−(E)−CH2−(E)−OHで示される化合物
である特許請求範囲第7項記載の自己融着性絶縁電線。
(8) A patent claim in which the compound having a structural unit represented by the chemical formula -(E)-CH2-■- in component B is a compound represented by the following chemical formula HO-(E)-CH2-(E)-OH. Self-bonding insulated wire according to scope 7.
(9)A成分が下記の化学式 (nは0〜10まての整数) で示される化合物である特許請求範囲第8項記載の自己
融着性絶縁電線。 Q(IIA成分のエポキシ基とB成分のフェノール性O
H基との当量比が0,95から1.05の範囲であり反
応せしめて得られるポリヒドロキシエーテルの重合度が
還元比粘度で0.2〜l、o dff/gである特許請
求範囲第1項記載の自己融着性絶縁電線。 (lυ分子中に2個のエポキシ基を有する化合物(A成
分)と分子中に2個のフェノール性OH基を有する化合
物(B成分)を反応せしめて得られるポリヒドロキシエ
ーテル類においてA成分とB成分の少なくともいずれか
に下記の化学式%式% で示される構造単位を有する化合物を用いる事を特徴と
するポリヒドロキシエーテル類を主成分とする塗料を導
体上に直接あるいは他の絶縁物を介して塗布・焼付けて
なる自己融着性絶縁電線を用い加熱融着により製造され
るコイル。 (14通電をでよる加熱融着により製造される特許請求
範囲第11項記載のコイル。 θJコイルが偏向ヨークコイルである特許請求範囲第1
2項記載のコイル。
(9) The self-bonding insulated wire according to claim 8, wherein component A is a compound represented by the following chemical formula (n is an integer from 0 to 10). Q (the epoxy group of the IIA component and the phenolic O of the B component)
The equivalent ratio with H group is in the range of 0.95 to 1.05, and the degree of polymerization of the polyhydroxyether obtained by the reaction is 0.2 to 1, odff/g in reduced specific viscosity. The self-bonding insulated wire according to item 1. (In polyhydroxyethers obtained by reacting a compound having two epoxy groups in the molecule (component A) and a compound having two phenolic OH groups in the molecule (component B), component A and B A paint mainly composed of polyhydroxyethers, characterized by using a compound having a structural unit represented by the chemical formula % below as at least one of its components, is applied directly onto the conductor or through another insulator. A coil manufactured by heat fusion using a self-fusing insulated wire that is coated and baked. (Coil according to claim 11 manufactured by heat fusion by applying 14 current.) Claim 1 which is a coil
The coil described in item 2.
JP59099926A 1984-05-17 1984-05-17 Self-bonding insulated electric wire and its coil Expired - Lifetime JPH0626164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59099926A JPH0626164B2 (en) 1984-05-17 1984-05-17 Self-bonding insulated electric wire and its coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099926A JPH0626164B2 (en) 1984-05-17 1984-05-17 Self-bonding insulated electric wire and its coil

Publications (2)

Publication Number Publication Date
JPS60243172A true JPS60243172A (en) 1985-12-03
JPH0626164B2 JPH0626164B2 (en) 1994-04-06

Family

ID=14260360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099926A Expired - Lifetime JPH0626164B2 (en) 1984-05-17 1984-05-17 Self-bonding insulated electric wire and its coil

Country Status (1)

Country Link
JP (1) JPH0626164B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302823A2 (en) * 1987-08-03 1989-02-08 Ciba-Geigy Ag Powder-coating composition
WO2006008827A1 (en) * 2004-07-16 2006-01-26 Fujikura Ltd. Self-adhesive insulated wire

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106732A (en) * 1977-02-28 1978-09-18 Furukawa Electric Co Ltd:The Insulating coating for refrigerant-resistant wire
JPS5653130A (en) * 1979-07-20 1981-05-12 Ciba Geigy Ag Hardenable epoxy resin mixture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106732A (en) * 1977-02-28 1978-09-18 Furukawa Electric Co Ltd:The Insulating coating for refrigerant-resistant wire
JPS5653130A (en) * 1979-07-20 1981-05-12 Ciba Geigy Ag Hardenable epoxy resin mixture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0302823A2 (en) * 1987-08-03 1989-02-08 Ciba-Geigy Ag Powder-coating composition
EP0302823A3 (en) * 1987-08-03 1990-05-09 Ciba-Geigy Ag Powder-coating composition
WO2006008827A1 (en) * 2004-07-16 2006-01-26 Fujikura Ltd. Self-adhesive insulated wire

Also Published As

Publication number Publication date
JPH0626164B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
TWI289590B (en) Polyamide resin containing varnish and their use
JPS6178824A (en) Chemically curable resin comprising compound having 1-oxa-3-aza-tetralin group and alicyclic epoxide resin, manufacture, curable process and use of said resin
US4401777A (en) Curable resin composition comprising N-(alkenylphenyl)maleimide and epoxy composition
JPWO2007097231A1 (en) Method for producing low molecular weight polyphenylene ether
KR101716634B1 (en) Epoxy resin, epoxy resin composition, and cured object
JP6602016B2 (en) Cyanate ester compound, curable resin composition containing the compound, and cured product thereof
KR20130118319A (en) High-molecular-weight epoxy resin and resin film, resin composition, and cured article using high-molecular-weight epoxy resin
WO2017124668A1 (en) Resin composition, and prepreg and laminated board using same
JP6850432B2 (en) Cyanic acid ester compounds, resin compositions, cured products, prepregs for structural materials, sealing materials, fiber-reinforced composite materials and adhesives
WO2005035617A1 (en) Latent curing agent and composition
CN103068941A (en) Powder coatings compositions
EP2938652B1 (en) Polymerizable composition including a benzoxazine and an acid-forming peroxide catalyst, article, and method
JP2015209381A (en) Cyanic acid ester compound, curable resin composition containing the compound and cured article thereof
JPS60243172A (en) Self-fusible insulated wire and coil thereof
WO2018123806A1 (en) Alkenyl-group-containing resin, curable resin composition, and cured article thereof
CN109715728B (en) Adducts and uses thereof
JP2001031784A (en) Prepreg and manufacture of printed wiring board
JPH021865B2 (en)
WO1999067233A1 (en) Polyhydric phenols, epoxy resins, epoxy resin composition, and cured products thereof
JP2000103941A (en) Epoxy resin composition and semiconductor sealing material
JPS61250072A (en) Insulation wire of autohesion ability and coil thereof
US4916203A (en) Curable resin composition from epoxy compound and propargyl aromatic ether
JPS5812898B2 (en) epoxy resin composition
JP2001302761A (en) Thermosetting resin composition, cured item, prepreg for laminate, and printed circuit substrate
JP2719793B2 (en) Thermosetting composition and method for producing the thermosetting composition