JPS6024312A - Method for managing refining of molten steel - Google Patents

Method for managing refining of molten steel

Info

Publication number
JPS6024312A
JPS6024312A JP58131355A JP13135583A JPS6024312A JP S6024312 A JPS6024312 A JP S6024312A JP 58131355 A JP58131355 A JP 58131355A JP 13135583 A JP13135583 A JP 13135583A JP S6024312 A JPS6024312 A JP S6024312A
Authority
JP
Japan
Prior art keywords
molten steel
oxygen
arc furnace
blowing
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58131355A
Other languages
Japanese (ja)
Inventor
Kenji Fuda
賢治 附田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP58131355A priority Critical patent/JPS6024312A/en
Publication of JPS6024312A publication Critical patent/JPS6024312A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C5/5211Manufacture of steel in electric furnaces in an alternating current [AC] electric arc furnace
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To estimate easily, quickly and exactly the content of C in a molten steel and to refine efficiently said steel by blowing oxygen and C material into the molten steel in an arc furnace then continuing blowing of the C material alone and detecting the change in the quantity of the heat generated within the furnace. CONSTITUTION:Oxygen and C material are blown into the molten steel in an arc furnace 1 and after the temp. of the molten steel is quickly increased, the blowing of oxygen is stopped and the blowing of the C material is continued to reduce the FeO in the peroxidized state formed by blowing of oxygen. The end point of the reduction is detected by measuring the temp. of the furnace wall to know the change in the quantity of the heat generated in the arc furnace and the concn. of C in the molten steel is estimated as 0.10% C at the point of the time when the change shows a min. value. The content of C in the molten steel is estimated in accordance with the amt. of the C material blown thereafter. The above-mentioned measurement of the temp. of the furnace wall is preferably accomplished by measuring the change thereof with the temp. difference of the cooling water flowing into and from a water cooling box 2 provided in the upper part of the slag discharging port of the furnace 1.

Description

【発明の詳細な説明】 本発明は、アーク炉を用いて行なう溶鋼精錬の管理方法
に関し、溶鋼中のC含有量を簡易迅速か゛つ的確に推定
することにより、原料および電力の原単位を向上さゼ、
操業時間のロスをなくす技術を提供Jる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for managing molten steel refining using an arc furnace, and improves the consumption of raw materials and electric power by simply and quickly accurately estimating the C content in molten steel. Saze,
We provide technology that eliminates loss of operating time.

アーク炉による鋼の精錬に関して、コストの中で大きな
比重を占める電力費を低減するとともに操業サイクルを
短縮づ゛ることを目的として、出願人は、溶鋼中に空気
または酸素および炭素質材料(以下、r CIJ Jと
記ず)を吹き込み、C−>0.0への燃焼に伴う発熱で
昇温を促づとともに、発生したCOガスでスラグを泡立
て、これでアークを包み込むことによって熱損失を低減
する技術を間発し、すでに提案したく特開昭55−89
414号)。
Regarding the refining of steel using an electric arc furnace, the applicant intends to reduce the electricity cost, which accounts for a large proportion of the cost, and to shorten the operating cycle. ,rCIJ We have developed and have already proposed a technology to reduce
No. 414).

こうした効果を一層高めるため、C材とともに吹き込む
酸素として純酸素ガスまたは酸素富化空気(以下、「酸
素」で代表ざUる)を用い、当量以上の酸素を供給して
FOの酸化による発熱をも溶鋼の昇温に利用する技術と
し、これも開示したく特開昭56−87617号)。 
l−eが酸化されFe’Oとなった、いわば過酸化状態
は、もちろん原料歩留りの点で不利益であり、スラグ量
が増大づることも好ましくない。 しかし、生成したF
eOは、後のC材の吹き込みによって、少なくとも一部
分、好適な操業を行なえば大部分が還元され、Feに戻
ることにより過酸化状態は解消する。
In order to further enhance these effects, pure oxygen gas or oxygen-enriched air (hereinafter referred to as "oxygen") is used as the oxygen injected together with the C material, and an equivalent amount or more of oxygen is supplied to reduce the heat generated by oxidation of FO. This technology is also used to raise the temperature of molten steel, and we would like to disclose this as well (Japanese Patent Application Laid-Open No. 56-87617).
The so-called overoxidized state in which le is oxidized to Fe'O is, of course, disadvantageous in terms of raw material yield, and it is also undesirable that the amount of slag increases. However, the generated F
The eO is at least partially reduced by the subsequent injection of C material, and most of it is reduced if proper operation is performed, and the overoxidized state is eliminated by returning to Fe.

この改良技術においては、溶鋼中に吹ぎ込むCと02の
割合を当量関係より02過剰にするため、溶鋼中のC含
有量は次第に減少する。 上記の開示において述べたよ
うに、溶鋼中のCの減少する速度は、おおよそ0.10
%を境として、それ以上では反応律速であり、以下では
拡散律速となる。
In this improved technique, the ratio of C and 02 injected into the molten steel is made to be in excess of 02 based on the equivalence relationship, so that the C content in the molten steel gradually decreases. As mentioned in the above disclosure, the rate of decrease of C in molten steel is approximately 0.10
%, above which the reaction rate is rate-limiting, and below it is diffusion rate-limiting.

精錬作業は、上記のようにいった/u過酸化状態にした
ものを引き戻すことであり、ついで所望のレベルまでC
含有量を増大させることである。 到達すべきC含有量
がどのようなレベルのものであるにせよ、作業に当って
溶鋼中のC含有量を迅速的確に把握することが、電力お
よび原料のロスを避け、操業時間のムダをなくす上で望
ましいことである。 ところが、C含有量の測定を、溶
鋼サンプルの採取と分析によって行なっていたのでは、
わずられしいばかりでなく、時間の短縮にも限界がある
。 そこで、もっと簡易に、C含有量を時々刻々把握で
きる手段があれば、溶鋼精錬の管理が好都合に行なえる
。 さきに出願人は、ベッセル内で溶鋼に酸素ガスを吹
き込んで脱炭を行なう精錬において、反応容器から出る
排ガスが単位時間に持ち去る熱量を測定し、その変化に
よって溶鋼中のC含有量を知り、精錬を管理する技術を
発明したく特願昭57−136532号)。 これは、
溶鋼中C含有量の変化が炉内の熱化学反応を左右し、発
熱量の変化をも1=らすので、他の条件を一定に保って
発熱量を追跡することにより、上記のC含有frlの変
化を見出せるという知見にもとづいている。 具体的に
は、合金元素添加用のシュータ−の冷却水の温度上昇の
変化を利用して、好成績をあげている。
The refining operation is to pull back the /u peroxidized material as described above, and then reduce C to the desired level.
The goal is to increase the content. Regardless of the level of C content to be achieved, it is important to quickly and accurately grasp the C content in molten steel during work to avoid loss of power and raw materials, and waste of operating time. This is desirable in order to eliminate it. However, the C content was measured by collecting and analyzing molten steel samples.
Not only is it a hassle, but there are limits to how much time can be saved. Therefore, if there were a means that could more easily grasp the C content from moment to moment, the management of molten steel refining could be carried out more conveniently. Previously, the applicant measured the amount of heat carried away per unit time by the exhaust gas exiting from the reaction vessel during refining in which oxygen gas is blown into molten steel in a vessel to decarburize it, and from the change in the amount of heat, the amount of C content in the molten steel was determined. (Japanese Patent Application No. 136532/1983) to invent a technology for managing refining. this is,
Changes in the C content in molten steel affect the thermochemical reactions in the furnace, and the change in the calorific value is also equal to 1. Therefore, by keeping other conditions constant and tracking the calorific value, it is possible to This is based on the knowledge that changes in frl can be detected. Specifically, good results have been achieved by utilizing changes in the temperature rise of the shooter cooling water used to add alloying elements.

今回、上記の知見を拡張してアーク炉精錬にも適用する
ことを着想して実験し、成功をおさめたので、ここに提
案する次第である。
This time, we conceived and experimented with the idea of extending the above knowledge and applying it to arc furnace refining, and as we were successful, we would like to propose it here.

すなわち本発明の溶鋼精錬の管理方法は、アーク炉を用
いて溶鋼を精錬するに当り、溶鋼中に酸素および0月を
吹き込んで速やかに溶鋼の4度を高め、ついで酸素の吹
き込みは停止づるがC材の吹き込みは継続し、酸素の吹
き込みにより生成した酸化鉄の少なくとも一部を還元す
るとともに溶鋼中のC含有量を所望のレベルまで増大さ
せる精錬方法において、アーク炉内で発生する熱量の変
化を把握し、それにもとづいて溶鋼中のC含有量を推定
することを特徴とす払。
That is, the method for controlling molten steel refining of the present invention, when refining molten steel using an arc furnace, quickly increases the temperature of the molten steel by blowing oxygen and oxygen into the molten steel, and then stopping the injection of oxygen. Changes in the amount of heat generated in the arc furnace in a refining method in which the injection of C material continues, reducing at least part of the iron oxide produced by the injection of oxygen and increasing the C content in the molten steel to a desired level. The method is characterized in that the carbon content in molten steel is estimated based on the information.

アーク炉内で発生ずる熱量の変化を把握することは、種
々の手法により可能である。 そのひとつは、炉壁の渇
痘を測定することである。 いまひとつは炉壁の冷却用
水の熱負荷を測定Jることである。 これは特別の装置
を付加する必要がなく、しかも高精度の結果を与え、好
適である。
It is possible to understand changes in the amount of heat generated within an arc furnace using various methods. One of these is to measure thirst on the furnace walls. Another method is to measure the heat load of the cooling water on the furnace wall. This is preferable since it does not require the addition of special equipment and provides highly accurate results.

以下、本発明成立の過程を、後者の冷却用水の熱負荷測
定について述べ、本発明の詳細な説明する。
Hereinafter, the process of establishing the present invention will be described in detail with reference to the latter measurement of the heat load of cooling water.

いま、前記した溶鋼の過酸化状態を■、それが引き戻さ
れつつある段階を■、解消された状態を■、そして加炭
が進行した段階を■とするとぎ、炉内の反応による発生
熱A1アーク損失熱B1および溶鋼の輻射熱Cは、それ
ぞれ第1図の曲線A1B、Cで示1゛ような変化をたど
る。 炉内の発生熱は、Fe0−>F(! の還元に伴
う C−+CO→CO2の酸化による発熱から、還元に
よる吸熱を差し引いたもてあって、還元がほぼ完了する
と、実質上ゼロになる。 アーク損失熱は、スラグ中の
FeOの還元ににるスラグ量減少がもたらずアーク加熱
効率の低下が原因となって増大する。
Now, let us assume that the overoxidized state of the molten steel mentioned above is (■), the stage where it is being pulled back is (■), the state where it has been eliminated is (■), and the stage where carburization has progressed is (■), then the heat generated by the reaction in the furnace A1 The arc loss heat B1 and the radiant heat C of the molten steel follow changes as shown by curves A1B and C in FIG. 1, respectively. The heat generated in the furnace is calculated by subtracting the endotherm due to the reduction from the heat generated by the oxidation of C-+CO→CO2 due to the reduction of Fe0->F(!), and becomes virtually zero when the reduction is almost complete. Arc heat loss increases due to a decrease in arc heating efficiency without a reduction in the amount of slag due to the reduction of FeO in the slag.

溶鋼からの輻射熱も、溶鋼およびスラグの温度の上背や
スラグ量の減少により、増加の傾向をみせる。 結局、
アーク炉全体から冷却設備へ移行する熱(イ)は、第1
図の曲線Tで示した変化をたどると考えられる。 この
移行の熱量の変化は、直ちに水冷ボックスの冷却水出入
口温度差に反映すると本発明者らは予測しIC0 この予測は、実操業において裏づけられた。
Radiant heat from molten steel also shows an increasing trend due to rising temperatures of molten steel and slag and a decrease in the amount of slag. in the end,
The heat transferred from the entire arc furnace to the cooling equipment (a) is
It is thought that the change will follow the change shown by curve T in the figure. The inventors predicted that the change in the amount of heat generated during this transition would be immediately reflected in the temperature difference between the cooling water inlet and outlet of the water cooling box, and this prediction was confirmed in actual operation.

第2図はその一例を示すものであって、02およびC材
の吹き込みにより冷却水濃度差が次第に上昇し、02吹
き込みの停止により温度差が下降し、極小値を記録した
のち、再び上昇に転じる。 溶鋼中のC含有量をこの極
小値の前後で分析して得た値は第2図に併記したとおり
であって、前記したC:0.10%付近で温度差が最小
値となることがわかる。
Figure 2 shows an example of this, in which the difference in cooling water concentration gradually increases due to the injection of 02 and C materials, the temperature difference decreases when the 02 injection is stopped, reaches a minimum value, and then rises again. Turn. The values obtained by analyzing the C content in molten steel before and after this minimum value are shown in Fig. 2, and it can be seen that the temperature difference reaches its minimum value at around 0.10% C. Recognize.

一方、02の吹き込みを停止し、lの吹き込みを継続し
ているとき、溶鋼中のC含有量、は、当然に吹き込みC
材量によって決定され、たとえば第3図にあられずにう
な関係があることが実測された。すなわち、過酸化状態
が解消きれるまでは、CはFeOの還元や鋼中の0との
結合に消費されるために溶鋼中にあまり残らないが、完
全に解消された点から吹き込み量に比例してC含有量が
増加して行く。 第3図は、上記の冷却水温度差が極小
値を示したとき以後のC材吹込邑に応じて、溶鋼中C含
有量が直線的に増加して行く状況を示している。 両者
の関係は、合金組成、浴温度、溶鋼量、0月吹き込み速
度その他の条件で異なるが、それぞれの場合に応じてい
ったん実測して把握しておけば、以後はザンプルの分析
をしなくても、かなり正確に推定することができる。
On the other hand, when the blowing of 02 is stopped and the blowing of l is continued, the C content in the molten steel is naturally
It is determined by the amount of material, and it has been actually measured that there is a relationship similar to that shown in FIG. 3, for example. In other words, until the overoxidation state is completely eliminated, not much C remains in the molten steel because it is consumed by reduction of FeO and bonding with 0 in the steel, but from the point where the overoxidation state is completely eliminated, the amount of C injected increases. As a result, the C content increases. FIG. 3 shows a situation in which the C content in molten steel increases linearly depending on the amount of C material injected after the cooling water temperature difference has reached its minimum value. The relationship between the two differs depending on the alloy composition, bath temperature, amount of molten steel, injection speed, and other conditions, but once you understand it by actually measuring it in each case, there is no need to analyze samples from now on. can also be estimated quite accurately.

冷却用水の熱負荷の測定は、第4図に斜線で示Jアーク
炉1の冷却設備(水冷ボックス)のうちでも、出滓口の
上部に設()た、二重斜線の水冷ボックス2.5業技術
者が「ジャムクーラー」とよんでいるものの冷却水の入
口と出口の温度差の測定により行なうのが、最も適切で
あることがわかった。 炉壁にとりつけた若干側の水冷
ボックスは、水量が多いためか、炉からの熱の移行に対
して鈍感であり、副原料投入口の周囲の水冷ボックスは
、投入時に撹乱があり好ましくない。 要は、炉全体の
熱の発生に敏感かつ忠実な水冷ボックスをえらぶことで
あって、この条件がみたされれば、ジャムクーラーでな
くてもよい。
The heat load of the cooling water was measured using the double diagonal lined water cooling box 2, which is installed above the slag outlet, among the cooling equipment (water cooling box) of the J arc furnace 1, which is shown by diagonal lines in Fig. 4. It has been found that the most appropriate method is to measure the temperature difference between the inlet and outlet of the cooling water in what industrial engineers call a "jam cooler." The water-cooled box attached to the furnace wall slightly on the side is insensitive to the transfer of heat from the furnace, probably due to the large amount of water, and the water-cooled box around the auxiliary raw material input port is undesirable because it causes disturbance during input. The key is to choose a water-cooled box that is sensitive to and faithful to the heat generation of the entire furnace, and if this condition is met, a jam cooler is not necessary.

同様に、炉壁の温度を測定して発生熱量の変化を把握す
る場合も、温度が炉壁の場所によって異なり、その変化
もまた種々の外乱を受けるから、複数点を測定して、最
も好適な点の温If卵化を利用ずべきことになる。
Similarly, when measuring the temperature of the furnace wall to understand changes in the amount of heat generated, the temperature varies depending on the location of the furnace wall, and the changes are also subject to various disturbances, so it is best to measure at multiple points. It is important to take advantage of the warm temperature of the eggs.

本発明によるときは、アーク炉を用いた溶鋼の精錬を、
02富化−Cインジェクション法で実施づる場合に、過
酸化状態の解消を、溶鋼ザンプルの分析を行なわずに、
冷却水の温度差の測定といったような連続的で簡易かつ
迅速な手段で直ちに知ることができ、その後のC材の吹
き込みにより増加したC含有量を、これもザンプルの分
析によらず的確に推定できるから、操業が著しく容易に
なる。 その結果、操業時間のムダがなくなり、電力お
よび資材の原単位が向上し、かつ製品鋼材のC含有量の
バラツキも小さくできる。
According to the present invention, refining of molten steel using an arc furnace,
When using the 02 enrichment-C injection method, the overoxidation state can be eliminated without analyzing the molten steel sample.
It can be immediately determined by continuous, simple and quick means such as measuring the temperature difference of cooling water, and the increased C content due to subsequent injection of C material can be accurately estimated without relying on sample analysis. This makes operations much easier. As a result, there is no wasted operating time, the unit consumption of electricity and materials is improved, and the variation in C content of product steel can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、アーク炉による溶鋼の精錬に02富化−Cイ
ンジェクション法を採用したときの精錬の進行に伴って
炉から外部へ去る熱の原因別の傾向を示1−1概念的な
グラフである。 第2図は、精錬の進行に伴うアーク炉の冷却水の出入口
の温度差の変化をある実施例について示したグラフであ
る。 第3図は、冷却水温度差が極小値を示した後のC材吹き
込み吊と溶鋼中C含有量との関係を、ある実施例につい
て示したグラフである。 第4図は、アーク炉の冷却設備を説明するだめのもので
あって、Aは横断面図、Bは側面図である。 1・・・・・・アーク炉 2・・・・・・ジャムクーラー 特許出願人 大同特殊鋼株式会社 代理人 弁理士 須 賀 総 夫 矛1図 ■ ■ ■ ■ 牙8図 01234 C秤吹き量 (kg/l) 牙 411
Figure 1 shows the trend of heat leaving the furnace to the outside as the refining progresses by cause when the 02 enrichment-C injection method is adopted for refining molten steel in an arc furnace. 1-1 Conceptual graph It is. FIG. 2 is a graph showing a change in the temperature difference between the inlet and outlet of the cooling water of the arc furnace as the refining progresses for a certain example. FIG. 3 is a graph showing, for a certain example, the relationship between C material blowing and C content in molten steel after the cooling water temperature difference has reached a minimum value. FIG. 4 is for explaining the cooling equipment of the arc furnace, and A is a cross-sectional view and B is a side view. 1... Arc Furnace 2... Jam Cooler Patent Applicant Daido Steel Co., Ltd. Agent Patent Attorney Suga Sofuyori 1 Diagram ■ ■ ■ ■ Fang 8 Diagram 01234 C scale blow amount ( kg/l) Fang 411

Claims (6)

【特許請求の範囲】[Claims] (1) アーク炉を用いて溶鋼を精錬するに当り、溶鋼
中に酸素ガスまたは酸素富化空気(以下、「酸素」で代
表させる)および炭素質月利(以下、「C材」と記J)
を吹き込んで速やかに溶鋼の湿度を高め、ついで酸素の
吹き込みは停止づるがC材の吹き込み番よ継続し、酸素
の吹き込iiにより生成した酸化鉄の少なくとも一部を
還元するとともに溶鋼中のC含有量を所望のレベルまで
増大させる精錬方法において、アーク炉内で発生する熱
量の変化を把握し、それにもとづいて溶鋼中のC含有量
を推定することを特徴とりる溶鋼精錬の管理方法。
(1) When refining molten steel using an arc furnace, oxygen gas or oxygen-enriched air (hereinafter referred to as "oxygen") and carbonaceous material (hereinafter referred to as "C material") are added to the molten steel. )
The humidity of the molten steel is quickly increased by blowing oxygen into the molten steel, and then the blowing of oxygen is stopped, but the blowing of C material is continued to reduce at least a part of the iron oxide produced by the oxygen blowing ii, and reduce the amount of carbon in the molten steel. A method for managing molten steel refining, which is characterized in that, in a refining method for increasing the content to a desired level, changes in the amount of heat generated in an arc furnace are ascertained, and the C content in the molten steel is estimated based on this.
(2) アーク炉内で発生する熱量の変化の把握を炉壁
温度の測定により行なう特許請求の範囲第1項の管理方
法。
(2) The management method according to claim 1, wherein changes in the amount of heat generated in the arc furnace are ascertained by measuring the furnace wall temperature.
(3) アーク炉内で発生する熱量の変化の把握を、炉
壁の冷却用水の熱負荷の測定により行なう特許請求の範
囲第1項の管理方法。
(3) The management method according to claim 1, wherein changes in the amount of heat generated in the arc furnace are ascertained by measuring the heat load of cooling water on the furnace wall.
(4) アーク炉の冷却用水の熱負荷の測定を、アーク
炉出滓口上部の水冷ボックスに出入する冷却水の湿度上
昇の度合を追跡1−ることによって行なう特許請求の範
囲第3項の管理方法。
(4) The heat load of the cooling water of the arc furnace is measured by tracking the degree of humidity increase of the cooling water flowing in and out of the water cooling box above the arc furnace slag outlet. Management method.
(5) アーク炉内で発生する熱(6)が極小値を示し
たときに、溶鋼中のC含有量を約0.10%と推定する
特許請求の範囲第1項ないし第3項のいずれかの管理方
法。
(5) Any one of claims 1 to 3, which estimates the C content in molten steel to be about 0.10% when the heat (6) generated in the arc furnace shows a minimum value. How to manage it.
(6) 酸素の吹き込みを停止した時点、または溶鋼中
C含有量が0.10%と推定された時点から後に溶鋼に
吹き込まれたC材の量にもとづいて溶鋼中C含有量を推
定する特許請求の範囲第1項ないし第3項のいずれかの
管理方法。
(6) A patent for estimating the C content in molten steel based on the amount of C material injected into molten steel after the time when oxygen injection is stopped or the C content in molten steel is estimated to be 0.10%. A management method according to any one of claims 1 to 3.
JP58131355A 1983-07-19 1983-07-19 Method for managing refining of molten steel Pending JPS6024312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58131355A JPS6024312A (en) 1983-07-19 1983-07-19 Method for managing refining of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58131355A JPS6024312A (en) 1983-07-19 1983-07-19 Method for managing refining of molten steel

Publications (1)

Publication Number Publication Date
JPS6024312A true JPS6024312A (en) 1985-02-07

Family

ID=15055985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58131355A Pending JPS6024312A (en) 1983-07-19 1983-07-19 Method for managing refining of molten steel

Country Status (1)

Country Link
JP (1) JPS6024312A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111964467A (en) * 2020-08-04 2020-11-20 鞍钢股份有限公司 Oxygen-enriched combustion system and method for combining premixed oxygen enrichment and oxygen injection of steel rolling heating furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111964467A (en) * 2020-08-04 2020-11-20 鞍钢股份有限公司 Oxygen-enriched combustion system and method for combining premixed oxygen enrichment and oxygen injection of steel rolling heating furnace
CN111964467B (en) * 2020-08-04 2022-05-13 鞍钢股份有限公司 Oxygen-enriched combustion system and method for combining premixed oxygen enrichment and oxygen injection of steel rolling heating furnace

Similar Documents

Publication Publication Date Title
CA2894813C (en) Method and device for predicting, controlling and/or regulating steelworks processes
JP2012136767A (en) Method for estimating phosphorus concentration in converter
JPS6024312A (en) Method for managing refining of molten steel
Vidhyasagar et al. A Static Model for Energy‐Optimizing Furnace
EP1403387A1 (en) METHOD FOR DECARBONIZATION REFINING OF CHROMIUM−CONTAINING MOLTEN STEEL
JP2001181727A (en) Method for monitoring condition in electric furnace
CN115341069A (en) Molten steel carbon content prediction control method of converter blowing end point based on online dynamic detection model
Kyllo et al. A mathematical model of the nickel converter: Part II. Application and analysis of converter operation
JPS60181216A (en) Method for controlling refining of molten steel
JPH04346611A (en) Method for refining stainless steel
Agapitov et al. Mathematical Modelling of the Thermal State of a Ladle During Arc Heating of the Melt
US3540879A (en) Method for controlling phosphorus removal in a basic oxygen furnace
WO2002070760A1 (en) A furnace and a method of controlling a furnace
JP4357082B2 (en) Method for decarburizing and refining chromium-containing molten steel
KR20220154826A (en) A method for detecting fluctuations in the solidified layer and a method for operating a blast furnace
TAKAWA et al. Mathematical model of end point control for the top and bottom blowing process in BOF
SU1678847A1 (en) Method of controlling metal temperature in converter
JPH0219416A (en) Converter blow-refining method
JP2002013881A (en) Slag level detecting method and method for controlling lance based on it
JPS6155565B2 (en)
JPH03197612A (en) Method for refining molten metal
Wunnenberg et al. Cost-saving operation and optimization on metallurgical reactions in BOF practice
CN115935606A (en) Method for predicting converter end point temperature based on flue gas analysis
JPH036312A (en) Method for controlling blowing in converter
JPS61174312A (en) Control method of melting and refining