JPS60242860A - Molding of blood pump - Google Patents

Molding of blood pump

Info

Publication number
JPS60242860A
JPS60242860A JP59099825A JP9982584A JPS60242860A JP S60242860 A JPS60242860 A JP S60242860A JP 59099825 A JP59099825 A JP 59099825A JP 9982584 A JP9982584 A JP 9982584A JP S60242860 A JPS60242860 A JP S60242860A
Authority
JP
Japan
Prior art keywords
blood
mold
blood chamber
chamber
upper lid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59099825A
Other languages
Japanese (ja)
Other versions
JPH0414586B2 (en
Inventor
敏夫 永瀬
靖 城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP59099825A priority Critical patent/JPS60242860A/en
Priority to US06/734,367 priority patent/US4707315A/en
Priority to DE3517888A priority patent/DE3517888C2/en
Priority to GB08512694A priority patent/GB2160812B/en
Publication of JPS60242860A publication Critical patent/JPS60242860A/en
Publication of JPH0414586B2 publication Critical patent/JPH0414586B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/18Slush casting, i.e. pouring moulding material into a hollow mould with excess material being poured off
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/427Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being hydraulic or pneumatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/845Constructional details other than related to driving of extracorporeal blood pumps
    • A61M60/851Valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/02Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles
    • B29C41/20Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. moulding inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • B29C70/74Moulding material on a relatively small portion of the preformed part, e.g. outsert moulding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/748Machines or parts thereof not otherwise provided for
    • B29L2031/7496Pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • B29L2031/7532Artificial members, protheses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/60Processes of molding plastisols
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/901Method of manufacturing prosthetic device

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Cardiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • External Artificial Organs (AREA)
  • Materials For Medical Uses (AREA)
  • Reciprocating Pumps (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は人工心臓用血液ポンプに関し、更に詳しくは流
体圧によって駆動されるサック型血液ポンプの改良に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a blood pump for an artificial heart, and more particularly to an improvement in a sac-type blood pump driven by fluid pressure.

従来の技術 近年、関心手術やその他の手術の際に、体外において補
助的かつ一時的に心臓の機能を代替するための人工心臓
の開発が進められている。
BACKGROUND OF THE INVENTION In recent years, progress has been made in the development of artificial hearts to supplement and temporarily replace the functions of the heart outside the body during targeted surgeries and other surgeries.

流体圧によって駆動されるサック型の人工心臓の研究は
、我国でも世界に先がけて研究されており、山羊を使っ
た長期生存記録では世界で初めて300日を越え極めて
良い結果が得られ、補助心臓として実際に患者に対して
の臨床応用への道が開かれようとしている。人工心臓の
臨床応用で殊に問題となるのは、人工心臓内部での血栓
生成問題でおる。抗血栓性を如何に付与すΔかは、きわ
めて困難な問題とされ、材質、ポンプのデザイン、表面
の平滑性、駆動時の血液ポンプ等の間粗、更には血液チ
ャンバー内の血流パターンの問題などが複雑に関与して
いると考えられる。
Research on a sac-type artificial heart driven by fluid pressure is being conducted in Japan ahead of the rest of the world, and the world's first long-term survival record using goats has shown extremely good results exceeding 300 days. As a result, the path to actual clinical application for patients is about to be opened. A particular problem in the clinical application of artificial hearts is the problem of thrombus formation inside the artificial heart. How to impart antithrombotic properties is an extremely difficult problem, and depends on the material, pump design, surface smoothness, roughness of the blood pump during operation, and even the blood flow pattern inside the blood chamber. It is thought that the problems are involved in a complex manner.

本発明は、殊にサック型の血液ポンプの血液チャンバー
の変形する挙動と血液チャンバー内の血の流れに留意し
て、発明がなされたものである。
The present invention was developed with particular attention to the deforming behavior of the blood chamber of a sac-type blood pump and the flow of blood within the blood chamber.

第1図から第4図は公知のサック型血液ボ/グ及び血液
チャンバーの基本的形態を示すものであり、また第5図
及び第6図は流体圧の加減に伴う血液チャンバーの変形
状態を示すものである。
Figures 1 to 4 show the basic form of a known sac-type blood vessel and blood chamber, and Figures 5 and 6 show the deformation state of the blood chamber as the fluid pressure is adjusted. It shows.

サック型血液ポンプは、耐圧性(たとえばポリカーボネ
ートあるいはポリウレタン製)のハウジングアウターケ
ース1と、このハウジングアウターケース内に機密に収
納される偏平袋状の血液チャンバー2とから成り、この
血液チャンバー2の上部には、血液チャンバーに連通し
て血液導入管3と血液排出管4とが上向きに、セして略
々平行に形成し、かつ血液チャンバー部の上部周囲には
フランジ5を設けてあり、このフランジ部によって血液
チャンバーはハウジングアウターケース内に機密に収納
される。まだ図は省略したが、前記血液導入管3と血液
排出管4との内部には、血液の逆流を防止する公知の弁
が装着してあり、これにより血液導入管3から血液チャ
ンバー2内に導入された血液は、血液排出管4より拍出
されるようになっている。
A sack-type blood pump consists of a pressure-resistant (for example, made of polycarbonate or polyurethane) housing outer case 1 and a flat bag-shaped blood chamber 2 that is secretly housed within the housing outer case. A blood inlet pipe 3 and a blood discharge pipe 4 are formed facing upward and substantially parallel to each other in communication with the blood chamber, and a flange 5 is provided around the upper part of the blood chamber part. The flange portion securely accommodates the blood chamber within the housing outer case. Although not shown, a known valve is installed inside the blood inlet tube 3 and the blood outlet tube 4 to prevent backflow of blood. The introduced blood is pumped out from a blood discharge tube 4.

血液の拍出はハウジングアウターケース1の底部に設け
られたボート8を通じて、流体の導入、排出を交互に行
い、血液チャンバー外圧の変化に伴って、血液チャンバ
ーが膨張、収縮をくり返して行うことによってなされる
ものである。
Blood is pumped out by alternately introducing and discharging fluid through the boat 8 provided at the bottom of the housing outer case 1, and the blood chamber repeatedly expands and contracts as the external pressure of the blood chamber changes. It is what is done.

発明が解決しようとする問題点 本発明は上記の如きサック型の人工心臓の長期にわたる
詳細な山羊を用いた動物実験において、血液チャンバー
2内の血栓の生成条件と、ポンプの耐久性の実地テスト
をくり返して行い、血液チャンバー2内にて血栓が生じ
ない、長時間にわたり使用可能な血液ポンプの開発研究
を行った結果得られたものである。
Problems to be Solved by the Invention The present invention is based on a detailed long-term animal experiment using goats using the sac type artificial heart described above, and a practical test of the thrombus formation conditions in the blood chamber 2 and the durability of the pump. This was obtained as a result of research and development of a blood pump that can be used for a long period of time without causing thrombi in the blood chamber 2.

本発明者尋の検討に依れば、動物実験において血栓の発
生し易い場所は概ね決まっており、血液チャンバー2内
では、血液導入管3及び血液排出管4に近いところには
血栓の生成が極めて少なく、血液チャンバー2の底部、
殊に底部に近い両脇(相対する狭面積側面側)に血栓が
発生しやすいことが分った。
According to research conducted by the inventor, the locations where blood clots are likely to occur have been determined in animal experiments, and within the blood chamber 2, thrombi are not likely to form near the blood inlet tube 3 and blood outlet tube 4. Very little, the bottom of blood chamber 2,
It was found that blood clots were particularly likely to occur on both sides near the bottom (on the opposing narrow side sides).

本発明者等は、更にこの現象の原因について検討と観察
とを進めたところ、血液の流れの比較神速いところでは
、血栓の生成はきわめて少ないが血流が多少とも滞留す
るところには、血栓発生の可能性が高いことをも知った
。これは導管付近は轟然血液の出入れがあるところであ
り、血液の流れが速<、シたがって血栓生成が極めて少
ない。
The inventors further studied and observed the causes of this phenomenon, and found that in areas where blood flow is comparatively fast, thrombus formation is extremely small, but where blood flow stagnates to some extent, thrombus formation occurs. I also learned that there is a high possibility of this happening. This is because the vicinity of the conduit is a place where blood flows in and out rapidly, and the flow of blood is fast, so there is very little thrombus formation.

一方面液チャンバー2の底部付近は、ややもすれば血液
が滞留しやすいことが判明した。
It has been found that blood tends to accumulate near the bottom of the one-sided liquid chamber 2.

本発明者等L、この本質的に血液が滞留し易い血液チャ
ンバー2の底部付近の血液の滞留を、出来るだけ無くす
ことについて種々検討を行った結果、ついに本発明に到
達し、血液チャンバー内での血栓生成を防止することに
成功したものである。
The inventors of the present invention have conducted various studies on how to eliminate as much as possible the stagnation of blood near the bottom of the blood chamber 2, where blood tends to stagnate as much as possible, and have finally arrived at the present invention. This method was successful in preventing the formation of blood clots.

これまでの血液チャンバー2における周壁の肉厚は、第
3〜4図に例示するように略々均一であり、この場合血
液チャンバー2を、第1図に示すハウジングアウターケ
ース1内にて、流体の圧力により圧縮すると、第5図A
からBへと容積が変化して行く。
The thickness of the peripheral wall of the conventional blood chamber 2 is approximately uniform as illustrated in FIGS. When compressed by the pressure of Figure 5A
The volume changes from to B.

第5図Aは、第3図に示す無負荷状態のものにハウジン
グアウターケース1内にて陽圧を加えた際の変化状態を
示すものである。これによれば、血液チャンバー2にお
ける容積の減少は、その断面形状なりに均等に生ずると
いうものではなく、最も変化し易い部分、すなわち、血
液チャンバー2の両人面積側面の中央部付近の変化が優
先的に生じ、そのような変化状態の下に、圧力の増加に
伴う容積の減少が周囲に伝播して行く。そして更に加圧
されたときには、第5図Bに示すように、最も変化し易
い部分がまず互に接触し、この接触が順次上下及び左右
へと拡がって行く。この結果、上方の血液ね、直接的に
血液排出管4の方向へと押出されるが、下方の血液は両
脇に沿って流れることになり、そこに滞留が生じ易くな
る。加えて血液チャンバー2の周辺の押し潰しは、弾性
を有する周壁の抗力によって、たとえば空気圧のみをも
ってしては困難となり、このため底部付近や両脇に未密
着部(第5図B1第6図参照)が生じる。
FIG. 5A shows the state of change when positive pressure is applied within the housing outer case 1 to the unloaded state shown in FIG. According to this, the volume reduction in the blood chamber 2 does not occur uniformly depending on its cross-sectional shape, but the change in the part that is most likely to change, that is, the center part of the side surface of the blood chamber 2, This occurs preferentially, and under such changing conditions, a decrease in volume due to an increase in pressure propagates to the surroundings. When further pressure is applied, as shown in FIG. 5B, the parts that are most susceptible to change first come into contact with each other, and this contact gradually spreads upward and downward and horizontally. As a result, the blood in the upper part is pushed out directly toward the blood discharge pipe 4, but the blood in the lower part flows along both sides, where it is likely to stagnate. In addition, it is difficult to crush the periphery of the blood chamber 2 by using only air pressure, for example, due to the drag force of the elastic peripheral wall, and as a result, there are areas near the bottom and on both sides that are not in close contact with each other (see Fig. 5, B1, Fig. 6). ) occurs.

そして底部付近及び両脇の血液の滞留の程度は、当然完
全に圧縮によって両側壁が相互に接触してひしやける中
央部よりも大きい。またこの部分はハウジングアウター
ケース1内が減圧されて、第5図Cに示すように容積が
膨張したとき、すなわち、拍動毎に新しく導入される血
液との入れ換りも悪い。
Naturally, the degree of blood retention near the bottom and on both sides is greater than that at the center where both side walls contact each other due to complete compression and are crushed. Furthermore, when the pressure inside the housing outer case 1 is reduced and the volume expands as shown in FIG. 5C, this portion is not easily replaced with blood newly introduced at each pulsation.

実際に動物実験の結果、血栓生成がみられる場所は、第
2図のクロスラインで示した部分に多い。
In fact, as a result of animal experiments, thrombus formation is often observed in the areas indicated by the cross lines in Figure 2.

このようなことから、血栓の生成を抑制するためには、
血液チャンバー2が圧縮したときに、底端を始め両脇ま
で出来るだけ未密着部分が残らぬように、ひしやけるこ
とがよいことを見出した。
Therefore, in order to suppress the formation of blood clots,
It has been found that when the blood chamber 2 is compressed, it is best to compress it so that as much as possible, from the bottom end to both sides, there are no unattached parts left.

問題点を解決するための手段、作用 本発明者等は、たとえば空気圧により血液チャンバー2
が圧縮され、容積が減少する際に、底部付近から圧縮が
生じ、その圧縮に伴う容積の減少が、底部付近から伝播
するような圧縮容積変化パターンがよいことも見出した
Means and operation for solving the problem The present inventors have disclosed that, for example, the blood chamber 2 is
It has also been found that when the material is compressed and the volume is reduced, the compression occurs from near the bottom, and the reduction in volume accompanying the compression propagates from near the bottom.

前記圧縮容積変化パターンを得る手段としては、種々の
方法或は構造が考えられるが、血液チャンバー2の基本
的形態をそのままにして、その目的を達成するためには
、従来略々均一に形成されていたチャンバー周壁の肉厚
に変化を持たせることが、最も確実で効果的であること
を見出した。そのため、血液チャンバーの膜厚に所望す
るテーパーを付与する方法について種々検討を続け、新
しい成形方法を見出したものであって、その要旨L1血
液導入管及び血液排出管を有する上蓋部に容器状の金型
を液密に冠着し、この金型内にポリ塩化ビラルプラスチ
ゾルを前記上蓋部に接する程度に加え、次いで前記金型
の外側よりの伝熱によって血液チャンバーを一体成形す
る4スラツシユ成形法において、前記金型の外側に断熱
材を配し、血液チャンバーの少なくとも一部をテーバ−
状に薄肉化して成形してなる血液ポンプの成形方法に係
るものである。
Various methods or structures can be considered as means for obtaining the compression volume change pattern, but in order to achieve the purpose while keeping the basic shape of the blood chamber 2 as it is, conventionally, the blood chamber 2 has been formed substantially uniformly. It was discovered that the most reliable and effective method was to vary the thickness of the surrounding wall of the chamber. Therefore, we continued to study various ways to give the desired taper to the film thickness of the blood chamber, and discovered a new molding method. A four-slash molding method in which a mold is capped in a liquid-tight manner, polychlorinated plastisol is added into the mold to the extent that it contacts the upper lid part, and then a blood chamber is integrally molded by heat transfer from the outside of the mold. In this step, a heat insulating material is placed on the outside of the mold, and at least a portion of the blood chamber is covered with a taber.
The present invention relates to a method of molding a blood pump by thinning it into a shape.

本発明は、可塑剤とポリ塩化ビニルのプラスチゾル、い
わゆる塩ビペーストを用いるスラッシュ成形法による血
液ポンプ成形の改良に係るものであり、本発明の方法に
よって血液チャンバーの膜厚に、所望の肉厚テーパーを
自由につけることが可能となった。
The present invention relates to an improvement in blood pump molding by a slush molding method using a plasticizer and a plastisol of polyvinyl chloride, so-called PVC paste. It is now possible to attach freely.

本発明に用いる塩ビペーストとは、ポリ塩化ビニールの
超微粒子(〜1μ)をジオクチルフタレートなどの可塑
剤に均一に分散し、適邑な粘度の均一分散ゾルとしたも
のを言い、通常のポリ塩化ビニールの粒子が100μ以
上であるのと比べて塩ビペースト用樹脂の粒子は極めて
小さい0塩とペーストの%徴は、軟質ポリ塩化ビニール
の溶液形態での加工を可能にするもので、しかも−剤を
使用しないところに特長があり、本発明はスラッシュ加
工の改良による塩化ビニル製血液ポンプの成形方法に関
する。塩ビペースト加工の原理は、ある熱容量をもった
金型(または樹脂製の型)と塩ビペーストを接触させ、
接触部分の熱によってゾル中のポリ塩化ビニールの粒子
中に可塑剤を侵入させて、これを可塑化し、型の表面に
セミゲル状の皮膜を形成することを利用する0この状態
で型を塩ビペーストゾルから取り出すと、型の周囲に一
定の厚みを本つ軟質塩化ビニールのゲル状皮膜を形成さ
せることが出来る。これをさらにキユアリングして均一
な樹脂皮膜とする。この場合皮膜の厚さは、基本的にペ
ーストゾルの粘度と金型熱容量、金型と塩ビペーストヅ
ルの接触時間によって決まり、成形条件を一定にすれば
、容易に膜厚を所定の厚みに設定することが出来る。
The PVC paste used in the present invention refers to a product in which ultrafine particles (~1μ) of polyvinyl chloride are uniformly dispersed in a plasticizer such as dioctyl phthalate to form a uniformly dispersed sol with an appropriate viscosity. Compared to the particles of vinyl, which are over 100 microns, the particles of the resin for PVC paste are extremely small. The present invention relates to a method for molding a vinyl chloride blood pump by improving slash processing. The principle of PVC paste processing is to bring the PVC paste into contact with a mold (or resin mold) with a certain heat capacity,
The plasticizer is infiltrated into the PVC particles in the sol by the heat of the contact area, plasticizing it and forming a semi-gel-like film on the surface of the mold.In this state, the mold is coated with PVC paste. When removed from the sol, a gel-like film of soft vinyl chloride having a certain thickness can be formed around the mold. This is further cured to form a uniform resin film. In this case, the thickness of the film is basically determined by the viscosity of the paste sol, the heat capacity of the mold, and the contact time between the mold and the PVC paste crane.If the molding conditions are constant, the film thickness can be easily set to a specified thickness. You can.

本発明の成形法について第7.8図によって説明する。The molding method of the present invention will be explained with reference to FIG. 7.8.

まず公知のディップ方法(たとえに特開昭57−999
65)でポンプの上蓋部(第7図)を作成する。この上
蓋部の導管部3.4に弁取付用として環状突起部を設け
ておいてもよいし、又、弁を取付けた導管素子をあとで
結合させるようにしたものでもよい。いずれにせよ上蓋
部は上蓋5と2つの血液排出用及導入用の導管3.4が
ついている。本例では上蓋の内側に偏平形の筒状部9が
上蓋に一体成形されている。このようにできた上蓋部を
筒状部9の外側に丁度はめ込むように、予め用意された
金属製の成形用金型15に第8図(A)に示すように配
置する。この場合該金型15は上蓋5と液密にあわせら
れる。次にこの金型15に第8図(Blに示すようにポ
リ塩化ビニルプラスチゾル(たとえば日本ゼオン■製ゼ
オン131 A)を図中の破線で示した部分まで加える
0次に加温浴に浸漬する。この場合の加温温度は80°
C〜180℃が用いられ、90℃〜140℃の間が更に
好ましい。プラスチゾルに用いるポリマーが塩化ビニル
単独重合体でなく塩化ビニル−酢酸ビニル、塩化ビニル
−ビニルエーテル共重合物のように熱軟化点の低い共重
合物であるときは比較的低い再度でも良い。処理時間は
数分〜30分位がよい0加熱が不充分であり・たり、処
理時間が短かいとゲル化層が薄すぎるし、逆に高温過ぎ
たり、処理時間が長すぎるとゲル化層が厚すぎて好まし
くない0プラスチゾルは金属金型に接した部分は、熱の
ためにゲル化し、第8図(C1に示すように一定の厚さ
にゲル層16が付着する。上蓋部に一体成形された筒状
部9の内側にもプラスチゾルが存在するが、この部分の
ゾルは、上記筒状部の断熱効果のためゲル化しない。そ
のため、この部分のプラスチゾルは第8図(D)のペー
スト排出工程で自然に流下しその整面効果のために血液
チャンバーは全(段差のない、いわゆる継目のないシー
ムレスな自由表面に仕上けることができる。後、第8図
(Elに示すように加熱キュアを行なう。このときの好
ましい温度範囲は160〜240℃であり、さらに好ま
しくは、190〜210℃である。160℃より低温で
はキユアリング不充分であり、240℃以上ではポリマ
ーの熱分解を伴うおそれがある。
First, a known dipping method (for example, Japanese Patent Application Laid-Open No. 57-999
Step 65) creates the upper lid part of the pump (Fig. 7). The conduit portion 3.4 of the upper cover may be provided with an annular projection for attaching the valve, or the conduit element to which the valve is attached may be connected later. In any case, the upper lid part has an upper lid 5 and two blood drainage and introduction conduits 3.4. In this example, a flat cylindrical portion 9 is integrally molded on the inside of the top lid. The upper lid portion thus produced is placed in a metal mold 15 prepared in advance so as to fit exactly into the outside of the cylindrical portion 9 as shown in FIG. 8(A). In this case, the mold 15 is liquid-tightly fitted to the upper lid 5. Next, as shown in FIG. 8 (B1), polyvinyl chloride plastisol (for example, Zeon 131 A manufactured by Nippon Zeon ■) is added to the mold 15 up to the portion indicated by the broken line in the figure. The mold 15 is then immersed in a heating bath. In this case, the heating temperature is 80°
C to 180C, more preferably between 90C and 140C. When the polymer used for plastisol is not a vinyl chloride homopolymer but a copolymer with a low thermal softening point, such as vinyl chloride-vinyl acetate or vinyl chloride-vinyl ether copolymer, a relatively low temperature softening point may be used. The treatment time should be from a few minutes to 30 minutes. If the heating is insufficient or the treatment time is too short, the gelled layer will be too thin. Conversely, if the temperature is too high or the treatment time is too long, the gelled layer will be too thin. 0 Plastisol is too thick and undesirable. The part of the plastisol that comes into contact with the metal mold gels due to heat, and as shown in Figure 8 (C1), a gel layer 16 adheres to a certain thickness. Plastisol also exists inside the molded cylindrical part 9, but the sol in this part does not gel due to the heat insulating effect of the cylindrical part.Therefore, the plastisol in this part is as shown in FIG. 8(D). The paste flows naturally during the paste discharging process, and due to its flattening effect, the entire blood chamber can be finished with a seamless free surface without any steps or seams. Heat curing is carried out.The preferred temperature range at this time is 160 to 240°C, more preferably 190 to 210°C.Curing is insufficient at lower temperatures than 160°C, and thermal decomposition of the polymer occurs at temperatures higher than 240°C. There is a risk that this may occur.

このあと、冷却し第8図(F)に示すように金型を離型
すると、導管を具えた上蓋部と血液チャンバー部は、兄
事に継目なしに一体成形することができる。
Thereafter, when the mold is cooled and the mold is released as shown in FIG. 8(F), the upper lid portion provided with the conduit and the blood chamber portion can be integrally molded seamlessly.

さて、本発明は本発明者らが部分断熱法(PT工法(P
artial Thermal工nBulation法
))と呼んでいるものであり、スラッシュ成形法におい
て、ペーストゾルを加熱ゲル化させるとき、金型の外側
(熱媒との接触側)に適当な断熱材をとりつけ、部分的
に熱伝導をさまたけて断熱材をつけた部分のペーストゾ
ルのゲル化層を連続的に薄くする方法を着想し、本発明
に到達したものである。
Now, the present invention was developed by the inventors using the partial insulation method (PT method).
In the slush molding method, when the paste sol is heated to gel, an appropriate heat insulating material is attached to the outside of the mold (the side that comes into contact with the heating medium), and the The present invention was developed based on the idea of a method of continuously thinning the gelled layer of the paste sol in the area where the heat insulating material is attached by interfering with heat conduction.

以下に添付の図面にもとづき本発明を説明する。The present invention will be explained below based on the accompanying drawings.

本発明の第1の例を第9図に示す0本例は金型15の下
半分に断熱材16を密着して被せたものである。金型の
内部にペーストゾルを満たしたのち、これを熱媒中に浸
すと、断熱材を配した部分は熱の伝導をさまたけるので
内部のペーストゾルへの伝熱が少なく、金型内面に付着
するセミゲル状の膜厚も薄くなる。金型そのものは本来
熱の良導体であるから前記断熱材の上端部付近の金型部
は、断熱材が配されていない直接熱媒に接しているとこ
ろからの熱量が適度に伝熱するので前記断熱材との境昇
部に厚みの段差が生じることはない。所望によって断熱
材の厚みを変更したり、より断熱性に富む断熱材を使用
して肉厚テーパーの度合いを変えることが出来る。
A first example of the present invention is shown in FIG. 9. In this example, the lower half of the mold 15 is tightly covered with a heat insulating material 16. After filling the inside of the mold with paste sol, when it is immersed in a heating medium, the part where the insulation material is placed blocks the conduction of heat, so there is less heat transfer to the paste sol inside, and the inside of the mold is heated. The thickness of the attached semi-gel film also becomes thinner. Since the mold itself is originally a good conductor of heat, the amount of heat from the part of the mold near the upper end of the heat insulating material that is in direct contact with the heating medium without any heat insulating material is transferred appropriately. There is no difference in thickness between the insulation and the insulation material. If desired, the thickness of the heat insulating material can be changed or a heat insulating material with better heat insulating properties can be used to change the degree of taper of the wall thickness.

第10図に本発明の第2の例を示す。これはテーパーを
更にきつ(し、望ましくは血液チャンバーの底部付近を
更に一段と薄くしたい場合の例である。本例では断熱材
16を金型15のほぼ下半分に配し、底部付近を2重に
して配したものである。
FIG. 10 shows a second example of the present invention. This is an example where you want to make the taper even tighter (and preferably even thinner near the bottom of the blood chamber. In this example, the heat insulating material 16 is placed almost in the lower half of the mold 15, and the near the bottom is double layered. It was arranged as follows.

なお、所望の厚みとするため、3重、あるいは4重等、
多重に用いることも可能であることはいうまでもない。
In addition, in order to obtain the desired thickness, 3 layers, 4 layers, etc.
It goes without saying that it is also possible to use multiple methods.

第11図は第3の例であり、血液チャンバーの狭側面側
と底部とを同時に薄肉にしたい場合の例であり、金型1
5の狭側面側部と底部付近に断熱材を配したもの、第1
2図は血液チャンバーの狭面積側面のみを薄(する場合
の第4の例であり、第13図は血液チャンバーの両狭面
積側面と底部を薄くし、かつ底部を一段と薄くすること
を意図した場合の第5の例である0 以上5例につき説明したが、仁れに限られるものでなく
、要は血液チャンバーを薄肉にしたい部分に断熱材を配
し、成形することである。
FIG. 11 is a third example, in which the narrow side and the bottom of the blood chamber are desired to be made thinner at the same time.
5 with insulation material placed near the narrow side and bottom, 1st
Figure 2 is a fourth example in which only the narrow-area sides of the blood chamber are thinned, and Figure 13 is a case in which both narrow-area sides and the bottom of the blood chamber are thinned, and the bottom is intended to be made even thinner. The fifth example of the case is 0. Although the above five cases have been described, the present invention is not limited to the case of bulging, and the point is to place a heat insulating material in the part where the blood chamber is desired to be made thinner and then mold the blood chamber.

本発明に用いる断熱材は、出来るだけ金型に液密に密着
させることが必要である0この密着性がおる。
The heat insulating material used in the present invention needs to be in close contact with the mold as liquid-tight as possible.

断熱材の材質としては、本質的には断熱性のある材料で
あれば伺んでも使い得るが、スラッシュ成形の温度にた
えるものであることが必要である0代表的な断熱材とし
て各種の合成高分子があげられる。たとえば、ポリ塩化
ビモル、ポリ塩化ビニリデン、ポリエチレンテレフタレ
ート、ナイロン6、ナイロン66などのいわゆるエンジ
ニアリング樹脂、ポリカーボネート、ポリスルホン、ア
クリル樹脂、ポリアセタール樹脂、A−rssfa4脂
、エボナイトなどの硬質ゴム、ポリウレタン、エポキシ
樹脂等であってもよいし、焼成カーボン、セラミックス
類などの無機絶縁相、おるいは天然木材、石綿セメント
などであってよい。
As for the material of the heat insulating material, any material that essentially has heat insulating properties can be used, but it must be able to withstand the temperature of slush molding. Examples include synthetic polymers. For example, so-called engineering resins such as polybimol, polyvinylidene chloride, polyethylene terephthalate, nylon 6, and nylon 66, polycarbonate, polysulfone, acrylic resin, polyacetal resin, A-rssfa4 resin, hard rubber such as ebonite, polyurethane, epoxy resin, etc. It may also be an inorganic insulating phase such as fired carbon or ceramics, natural wood, asbestos cement, or the like.

これらの断熱材は金型と一体に成形されたものであって
よいが、金型と脱着可能にして、所望の絶縁材を自由に
取りかえて使うようにしたものが好ましい。
These heat insulating materials may be molded integrally with the mold, but it is preferable to make them removable from the mold so that the desired insulating material can be freely replaced and used.

なお、成形される血液チャンバーの肉厚は使用するPV
Oの可胆剤量によって異なるが、通例11111−3 
IIIであるが、本発明により部分的に薄肉化した箇所
の肉厚は0.311m〜1111!Iで形成されるのが
好ましい。0.3n以下では強度が劣り、1鶴以上では
優先的にその部分がひしやけなくなり本発明の目的を達
しなくなるからである。
The wall thickness of the blood chamber to be molded depends on the PV used.
Although it varies depending on the amount of bilebilizer in O, it is usually 11111-3.
However, the thickness of the partially thinned portion according to the present invention is 0.311 m to 1111 m! Preferably, it is formed of I. If it is less than 0.3 n, the strength will be poor, and if it is more than 1 n, that part will preferentially become stiff and the object of the present invention will not be achieved.

本発明の場合、上蓋部は予め別に成型するので、上蓋部
の可塑剤の量を血液チャンバーの部分の可塑剤の量より
少なくするのがよい。従って、上差部ヲポリ塩化ビニル
グラスチゾルから成形する場合、ポリ塩化ビニルプラス
チゾルは可塑剤の比較的少ない、例えばポリ塩化ビニル
100部、ジオクチルフタレート(可塑剤)40〜60
部、安定剤としてカルシウム亜鉛有機複合体3部よりな
るプラスチゾルが好ましい〇 一万、血液チャンバー部は、空気駆動によって体積が変
化し、それによってポンプ作動を行なう部分であるから
、軟らかくかつ弾性を有する必要がある。適当なプラス
チゾルの組成は、ポリ塩化ビニル100部に対しジオク
チルフタレート60〜90部が好ましい。
In the case of the present invention, since the upper lid part is molded separately in advance, it is preferable that the amount of plasticizer in the upper lid part be smaller than the amount of plasticizer in the blood chamber part. Therefore, when the upper part is molded from polyvinyl chloride plastisol, the polyvinyl chloride plastisol contains relatively little plasticizer, for example, 100 parts of polyvinyl chloride and 40 to 60 parts of dioctyl phthalate (plasticizer).
As a stabilizer, a plastisol consisting of 3 parts of a calcium-zinc organic complex is preferred.10,000 The blood chamber is a part whose volume changes when driven by air, and which performs pump operation, so it is soft and elastic. There is a need. A suitable composition of plastisol is preferably 60 to 90 parts of dioctyl phthalate per 100 parts of polyvinyl chloride.

又、可塑剤を加えない硬質ポリ塩化ビニル製の上蓋部を
用いることもできるし、本発明の方法によって、上蓋部
と血液チャンバー部が接着可能な他の高分子素材よりな
る上蓋部を用いることも可能である。この場合、用いら
れる高分子素材としては、ポリウレタン、エポキシ樹脂
、ポリメチルメタクリレート樹脂がある。これらの高分
子素材からなる上蓋部は、本発明に示した方法によって
軟質ポリ塩化ビニル製血液チャンバー部と融合接着が可
能である。
Furthermore, it is also possible to use a top lid made of hard polyvinyl chloride to which no plasticizer is added, or to use a top lid made of another polymeric material to which the top lid and blood chamber can be bonded using the method of the present invention. is also possible. In this case, the polymer materials used include polyurethane, epoxy resin, and polymethyl methacrylate resin. The upper lid part made of these polymeric materials can be fused and bonded to the blood chamber part made of soft polyvinyl chloride by the method shown in the present invention.

このように一体成形した血液ポンプの内部は、公知の抗
血栓性材料、たとえばポリウレタン−ジメチルシロキサ
ンブロック共重合体でコーティングし、血液接触面の抗
血栓性を向上させることもできる。
The interior of the integrally molded blood pump can be coated with a known antithrombotic material, such as a polyurethane-dimethylsiloxane block copolymer, to improve the antithrombotic properties of the blood contacting surface.

本発明における血液ポンプの血液チャンバーの形態は、
第2図に例示する偏平状のものでよく、血液チャンバー
2の最大中りと、第3図に示す無負荷状態での最大厚み
Wの比D / Wは15〜50口、好ましくは1.6〜
2.5、更に好ましくは1.8〜2.3がよい。
The form of the blood chamber of the blood pump in the present invention is as follows:
The flat shape illustrated in FIG. 2 may be used, and the ratio D/W of the maximum thickness of the blood chamber 2 to the maximum thickness W in the unloaded state shown in FIG. 3 is 15 to 50, preferably 1. 6~
2.5, more preferably 1.8 to 2.3.

また前記血液チャンバー2の中心線上における全高りと
、前記最大中りとの間に 0.8≦D/L≦2.0 の比があるのがよい。
Further, it is preferable that there is a ratio of 0.8≦D/L≦2.0 between the total height on the center line of the blood chamber 2 and the maximum height.

このような条件を充足する血液チャンバーでは、空気圧
によってひしゃげるパターンを、拍動毎に一定にするこ
とができる。
In a blood chamber that satisfies these conditions, the pattern of crushing due to air pressure can be made constant for each beat.

実施例 実施例1〜3及び比較例 第7図に示す上蓋部を、DOP70重量部(ポリ塩化ビ
ニル100重量部に対し)含むポリ塩化ビニルで作成し
、次いで第8図で示す如く金型を前記上蓋部の筒状部に
液密に冠着した。該金型には、(1)第9図に示すよう
に金型の下半分に厚み151Imの軟質ポリ塩化ビニル
からなる断熱材を、(2)第10図に示す如き金型の下
半分に前記(1)と同じ厚みで、かつ底部付近には厚み
5.0111の軟質ポリ塩化ビニルからなる断熱材を、
(3)第12図に示すように金型の狭面積側面部に前記
111と同じ厚みの軟質ポリ塩化ビニルからなる断熱材
を、各密着させた。後、第8図(Blに示す如き血液導
入用管よリボリ塩化ビニル(ゼオン■13iA)100
重量部にDOP 80重量部含むポリ塩化ビニルプラス
チゾルを上蓋部に接する位置まで各導入した。
Examples Examples 1 to 3 and Comparative Examples The upper lid shown in FIG. 7 was made of polyvinyl chloride containing 70 parts by weight of DOP (based on 100 parts by weight of polyvinyl chloride), and then a mold was formed as shown in FIG. The cap was fluid-tightly attached to the cylindrical portion of the upper lid. The mold includes (1) a heat insulating material made of soft polyvinyl chloride with a thickness of 151 Im in the lower half of the mold as shown in FIG. A heat insulating material made of soft polyvinyl chloride with a thickness of 5.0111 mm is placed near the bottom with the same thickness as in (1) above,
(3) As shown in FIG. 12, a heat insulating material made of soft polyvinyl chloride having the same thickness as 111 above was attached to the narrow side surface of the mold. Then, from the blood introduction tube as shown in Figure 8 (BL)
Polyvinyl chloride plastisol containing 80 parts by weight of DOP was introduced into each part up to a position in contact with the upper lid part.

次にこれらの金型を130℃の加温浴に2分間浸漬し、
次いで第8図(D)に示すように前記プラスチゾルを排
出した。該排出工程により、断熱材の密着部と金型のみ
の部分の境界部がプラスチゾルの自然流下により段差が
全く生じないテーパー状に形成される。 排出後、断熱
材を取り外して190°Cで20分間金型を加熱した。
Next, these molds were immersed in a 130°C heating bath for 2 minutes,
The plastisol was then discharged as shown in FIG. 8(D). Through this discharge process, the boundary between the adhesive part of the heat insulating material and the part containing only the mold is formed into a tapered shape with no step at all due to the natural flow of plastisol. After evacuation, the insulation was removed and the mold was heated at 190°C for 20 minutes.

この後、室温で冷却し、金型を脱型したところ、第8図
(Fl及び第1図に示す如き上蓋部と血液チャンバー部
とが一体的にシームレスに形成された。
Thereafter, when the mold was cooled to room temperature and the mold was removed, the upper lid part and the blood chamber part as shown in FIG. 8 (Fl) and FIG. 1 were integrally and seamlessly formed.

なお、成形された血液チャンバーの肉厚は断熱材の配さ
れなかった部分における肉厚(断熱材が配された境界部
分のテーパー状の部分を除く)は、+11 、 (21
、+31とも1,7龍であり、断熱材を配して薄肉状と
した最も薄い部分の肉厚は、11112wIm、(2)
1.2鴎及び断熱材を二重とした底部は(L8酩、(3
)13111であった。
In addition, the wall thickness of the molded blood chamber in the part where the insulation material is not placed (excluding the tapered part at the border where the insulation material is placed) is +11, (21
, +31 are both 1.7 dragons, and the thickness of the thinnest part made thin by placing insulation material is 11112wIm, (2)
1.2 The bottom with double roof and insulation material is (L8), (3
)13111.

ちなみに、血液チャンバーの最大幅D(第2図に示す)
は60m1L第3図に示す如き最大厚みWは25111
、従ってD/WFi2.4であり、血液チャンバーの中
心線上における全高L(第2図に示す)は6011mで
、D/L id、 t oであった。
By the way, the maximum width D of the blood chamber (shown in Figure 2)
is 60m1L as shown in Figure 3, the maximum thickness W is 25111
, therefore D/WFi2.4, and the total height L (shown in Figure 2) on the center line of the blood chamber was 6011 m, and D/L id, to.

比較例として、断熱材を配しない以外は実施例と同様に
して上蓋部と薄肉状とした部分のない血液チャンバー部
をシームレスに一体的に作成した。
As a comparative example, the upper lid part and the blood chamber part without the thin-walled part were seamlessly and integrally formed in the same manner as in the example except that no heat insulating material was provided.

前記実施例の3例と比較例の血液チャンバーを第1図に
示すようにアウターケース1内に収納し、上蓋部とアウ
ターケースを密着した。なお、血液導入管及び排出管3
,4には各弁6,7を装填して血液ポンプを各形成し、
これらの血液ポンプを、山羊を用いて左心バイパスによ
る心臓補助実験を44日間拍動15//n+inで行な
ったところ、本実施例に係る血液チャンバーは全く血栓
の生成をみなかった。用いたポンプのストロークボリュ
ームはすべてsodであった。比較のため、本発明の肉
厚テーパーを付さない血液ポンプで同じ実験を行ったが
、血栓を30日間生じさせないためには6゜5//酊n
 の拍出量が必要であり、それ以下の例えば実施例と同
じ1.517m1nで7日間拍動させたところ、サック
状血液チャンバーの底の部分に血栓が発生した。なお、
用いた血液ポンプのストロークボリュームは同様に50
−であった。
The blood chambers of the three Examples and the Comparative Example were housed in an outer case 1 as shown in FIG. 1, and the upper lid portion and the outer case were brought into close contact. In addition, blood introduction pipe and discharge pipe 3
, 4 are each loaded with valves 6 and 7 to form a blood pump,
When these blood pumps were used in goats to carry out cardiac assistance experiments using left heart bypass at a rate of 15//n+in for 44 days, no thrombus was observed in the blood chamber of this example. The stroke volumes of the pumps used were all sod. For comparison, the same experiment was conducted using the blood pump without the wall thickness taper of the present invention, and in order to prevent thrombus from forming for 30 days,
When the blood was pulsated for 7 days at a stroke volume smaller than that, for example, 1.517 m1n, which is the same as in the example, a thrombus was generated at the bottom of the sac-shaped blood chamber. In addition,
The stroke volume of the blood pump used was also 50
-It was.

発明の効果 本発明の特徴の1としては、圧縮により血液チャンバー
の容積が減少する際に、その減少が底部付近から生ずべ
く、前記血液チャンバーの底部付近の肉厚を、他の部分
の肉厚よりも薄く形成したことにある。
Effects of the Invention One of the features of the present invention is that when the volume of the blood chamber is reduced by compression, the reduction occurs from the vicinity of the bottom. The reason is that it is made thinner than it is thick.

また本発明の更に他の特徴としては、圧縮により血液チ
ャンバーの容積が減少する際に、その減少が底部付近か
ら生じ、かつ減少に伴い両脇がひしゃげて確実に密着す
べく、前記血液チャンバーの狭面積側面の肉厚を他の部
分よりも薄く形成してなることにある。
Still another feature of the present invention is that when the volume of the blood chamber is reduced due to compression, the reduction occurs from near the bottom, and as the volume decreases, both sides of the blood chamber are crushed to ensure tight contact. The reason is that the wall thickness of the narrow-area side surface is thinner than that of the other parts.

本発明の適用は水系のプラスチゾルでもよいが、分散媒
体が有機溶媒であるオルガノゾルにも勿論適用されるこ
とは言うまでもない。
Although the present invention may be applied to aqueous plastisols, it goes without saying that it is also applicable to organosols in which the dispersion medium is an organic solvent.

本発明は全く新しい着想によって、理想とする血液チャ
ンバーの膜厚を自由にテーパ化することを可能としたも
ので、これによって人工心臓の最も大きい実用化への問
題点である血液チャンバー内での血液の流れを滞流のな
いように改善して血栓の生成の防止に大きい進歩をもた
らしたものであり、大きい意義を有するものである。
The present invention is based on a completely new idea and makes it possible to freely taper the ideal membrane thickness of the blood chamber. This is of great significance as it has brought about great progress in preventing the formation of thrombi by improving the flow of blood to avoid stagnation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はサック型血液ポンプの分解斜視図、第2図は上
蓋部及び血液チャンバー部の正面縦断面図、第3図は同
じく側面縦断面図、第4図は血液チャンバー部の横断面
図、第5図囚、 (B)、 ((りは第2図に示す血液
チャンバーの容積減少変化及び膨張変化を順に示す側面
縦断面図、第6図は第5図BにおけるX−X線断面図、
第7図は上蓋部の斜視図、第8図(N〜(’F)は血液
チャンバーの成形過程を示す説明図であり、第9図〜第
13図は本発明に係る断熱材を配して血液チャンバーを
成形する実施例を示す説明図である。 図中、符号1はアウターケース、2は血液チャンバー、
5は上蓋、15は金型、16は断熱材を各示す。 特許出願人 H本ゼオン株式会社 填1図 第2図 第3図 第4図 第5図 (A) (B) (C) 第6図 c−一一くフ 第7図
Fig. 1 is an exploded perspective view of the sac-type blood pump, Fig. 2 is a front longitudinal cross-sectional view of the upper lid and blood chamber, Fig. 3 is a side longitudinal cross-sectional view, and Fig. 4 is a cross-sectional view of the blood chamber. , Fig. 5, (B), (((ri) is a side longitudinal cross-sectional view showing in order the volume reduction and expansion changes of the blood chamber shown in Fig. 2, and Fig. 6 is a cross-sectional view taken along the line X-X in Fig. 5B. figure,
Fig. 7 is a perspective view of the upper lid, Fig. 8 (N-('F) is an explanatory diagram showing the forming process of the blood chamber, and Fig. 9-13 is a perspective view of the upper lid part. It is an explanatory view showing an example in which a blood chamber is formed by using the same method. In the figure, numeral 1 is an outer case, 2 is a blood chamber,
Reference numeral 5 indicates an upper lid, 15 indicates a mold, and 16 indicates a heat insulating material. Patent Applicant: Zeon Co., Ltd. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 (A) (B) (C) Figure 6 c-11 Figure 7

Claims (1)

【特許請求の範囲】[Claims] 1、 血液導入管及び血液排出管を有する上蓋部に容器
状の金型を液密に冠着し、この金型内にポリ塩化ビニル
プラスチゾルを前記上蓋部に接する程良に加え、次いで
前記金型の外側よりの伝熱によって血液チャンバーを一
体成形するスラッシュ成形法において、前記金型の外側
に断熱材を配し、血液チャンバーの少なくとも一部をテ
ーパー状に薄肉化して成形することを特徴とする血液ポ
ンプの成形方法◇
1. A container-shaped mold is liquid-tightly attached to an upper lid having a blood inlet tube and a blood discharge tube, and polyvinyl chloride plastisol is added into the mold to the extent that it contacts the upper lid, and then the gold is poured into the mold. A slush molding method in which a blood chamber is integrally molded by heat transfer from the outside of the mold, characterized in that a heat insulating material is arranged on the outside of the mold, and at least a part of the blood chamber is thinned into a tapered shape. How to mold a blood pump◇
JP59099825A 1984-05-18 1984-05-18 Molding of blood pump Granted JPS60242860A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59099825A JPS60242860A (en) 1984-05-18 1984-05-18 Molding of blood pump
US06/734,367 US4707315A (en) 1984-05-18 1985-05-15 Method of making a blood pump
DE3517888A DE3517888C2 (en) 1984-05-18 1985-05-17 Method of manufacturing a blood pump
GB08512694A GB2160812B (en) 1984-05-18 1985-05-20 Method of making a blood pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59099825A JPS60242860A (en) 1984-05-18 1984-05-18 Molding of blood pump

Publications (2)

Publication Number Publication Date
JPS60242860A true JPS60242860A (en) 1985-12-02
JPH0414586B2 JPH0414586B2 (en) 1992-03-13

Family

ID=14257596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59099825A Granted JPS60242860A (en) 1984-05-18 1984-05-18 Molding of blood pump

Country Status (4)

Country Link
US (1) US4707315A (en)
JP (1) JPS60242860A (en)
DE (1) DE3517888C2 (en)
GB (1) GB2160812B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610900A (en) * 1992-04-27 1994-01-21 Canon Inc Method and device for moving liquid and measuring device utilizing these method and device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4874565A (en) * 1986-04-11 1989-10-17 Ex-Cell-O Corporation Plastisol slush process
US5011380A (en) * 1989-01-23 1991-04-30 University Of South Florida Magnetically actuated positive displacement pump
US5173228A (en) * 1989-07-10 1992-12-22 Davidson Textron Inc. Method for forming a 360 degree skin handle
US5549860A (en) * 1989-10-18 1996-08-27 Polymedica Industries, Inc. Method of forming a vascular prosthesis
US5300908A (en) * 1990-10-10 1994-04-05 Brady Usa, Inc. High speed solenoid
US5230855A (en) * 1992-03-19 1993-07-27 Davidson Textron Inc. Method for forming smooth handle
US6120905A (en) * 1998-06-15 2000-09-19 Eurotech, Ltd. Hybrid nonisocyanate polyurethane network polymers and composites formed therefrom
US6579223B2 (en) 2001-08-13 2003-06-17 Arthur Palmer Blood pump
CA2374989A1 (en) * 2002-03-08 2003-09-08 Andre Garon Ventricular assist device comprising a dual inlet hybrid flow blood pump
WO2006047620A2 (en) * 2004-10-25 2006-05-04 Arthur Palmer Method for making a blood pump and pumping blood
CN115773225B (en) * 2022-11-30 2023-11-03 苏州灵思生物科技有限公司 Stem cell culture perfusion device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185866A (en) * 1981-05-11 1982-11-16 Nippon Zeon Co Production of blood pump
JPS587257A (en) * 1981-07-08 1983-01-17 日本ゼオン株式会社 Blood pump
JPS58138466A (en) * 1982-02-10 1983-08-17 日本ゼオン株式会社 Pulse type blood pump

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2830325A (en) * 1956-05-10 1958-04-15 Davol Rubber Co Mold for forming open-ended bulbs
JPS6022944B2 (en) * 1980-11-10 1985-06-05 日本ゼオン株式会社 Blood pump device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57185866A (en) * 1981-05-11 1982-11-16 Nippon Zeon Co Production of blood pump
JPS587257A (en) * 1981-07-08 1983-01-17 日本ゼオン株式会社 Blood pump
JPS58138466A (en) * 1982-02-10 1983-08-17 日本ゼオン株式会社 Pulse type blood pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610900A (en) * 1992-04-27 1994-01-21 Canon Inc Method and device for moving liquid and measuring device utilizing these method and device

Also Published As

Publication number Publication date
GB2160812A (en) 1986-01-02
GB8512694D0 (en) 1985-06-26
DE3517888C2 (en) 1994-01-13
DE3517888A1 (en) 1985-11-21
US4707315A (en) 1987-11-17
JPH0414586B2 (en) 1992-03-13
GB2160812B (en) 1988-10-12

Similar Documents

Publication Publication Date Title
US4578077A (en) Blood pump applicable to an artifical heart
JPS60242860A (en) Molding of blood pump
JPS6359707B2 (en)
JP2583079B2 (en) Blood pump molding method
EP0313069B1 (en) Process for manufacturing spherical objects
JPS6252584B2 (en)
JPS622538B2 (en)
JPS6249859A (en) Production of blood pump apparatus
CA1204962A (en) Blood pump and method of manufacturing the same
CA1191050A (en) Blood pump and method of manufacturing the same
JPS6185952A (en) Blood pump apparatus
JPS622539B2 (en)
JPS6355943B2 (en)
JPH0429480B2 (en)
JPS63246172A (en) Production of fluid conduit
JPH067695Y2 (en) Medical valve device built-in connector
JPS6026545B2 (en) Satsuku type blood pump
JPS61176355A (en) Valve apparatus
JPH05329178A (en) Production of spherically shaped body
JPH0622582B2 (en) Canyon
JPS62159648A (en) Production of valve device
JPS5875557A (en) Pulse type blood pump
JPH0567302B2 (en)
JPS63246173A (en) Valve apparatus and its production
JPH05277177A (en) Production of spherical molding