JPS60242604A - Plastic magnet composition - Google Patents

Plastic magnet composition

Info

Publication number
JPS60242604A
JPS60242604A JP59098255A JP9825584A JPS60242604A JP S60242604 A JPS60242604 A JP S60242604A JP 59098255 A JP59098255 A JP 59098255A JP 9825584 A JP9825584 A JP 9825584A JP S60242604 A JPS60242604 A JP S60242604A
Authority
JP
Japan
Prior art keywords
dyes
dye
coated
magnetic powder
plastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59098255A
Other languages
Japanese (ja)
Other versions
JPH043651B2 (en
Inventor
Tokuji Abe
阿部 徳治
Hajime Kitamura
肇 北村
Michinori Tsuchida
土田 道則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP59098255A priority Critical patent/JPS60242604A/en
Publication of JPS60242604A publication Critical patent/JPS60242604A/en
Publication of JPH043651B2 publication Critical patent/JPH043651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0572Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes with a protective layer

Abstract

PURPOSE:To obtain the plastic magnet composition showing a highly efficient magnet characteristics at relatively low cost by a method wherein Nd-Fe-B family is used as a magnetic material, and its powder is coated with dyestuffs. CONSTITUTION:The magnetic powder indicated by the composition formula RxMyBz (the R in the formula indicates rare-earth element, M indicates iron group element, and x, y and z indicate atom% on condition of 8<=x<=30, 2<=z <=20 and y=100-x-z) has excellent magnet characteristics, but as it is inflammable when it comes in contact with air when it is heated up while it is mixed and fused with plastic, the magnetic material is coated by dyestuffs in advance. As the dyestuffs, direct dyes, acid dyes, basic dyes, mordant dyes, sulphite dyes, vat dyes, disperse dyes, oil-soluble dyes, reactive dyes and a fluorescent brightening agent can be included. Pertaining to the quantity of the dyes to be coated, 0.02-2wt% is considered desirable for the magnetic powder.

Description

【発明の詳細な説明】 本発明は高性能を示す新規グラスチック磁石組成物に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel glasstic magnet composition that exhibits high performance.

従来より知られている焼結磁石や鋳造磁石は。Sintered magnets and cast magnets are conventionally known.

硬くてもろいために複雑な形状の加工が困難であり一精
密な加工度が要求される場合にはコスト高となることが
避けられず、また他の部材との一体成形が困難であると
か、ラジアル異方性、多極異方性磁石を製造しようとし
ても破損し製造が困難であるなどの問題がある。
Because it is hard and brittle, it is difficult to process it into complex shapes, and if high-precision machining is required, it is inevitable that the cost will increase, and it is difficult to mold it integrally with other parts. Even if an attempt is made to manufacture a radial anisotropic or multipolar anisotropic magnet, there are problems such as damage and manufacturing difficulty.

プラスチック磁石は上記間紬点を解決するために開発さ
れたものであり、各種磁性材料各種プラスチックの使用
が試みられている。特に最近は磁方体の強力化、小型・
軽量化の要請から、当初のころの7エライト系磁性材料
に代って8B−C。
Plastic magnets were developed to solve the above problems, and attempts have been made to use various magnetic materials and various plastics. Especially recently, magnetic parallelepipeds have become stronger, smaller and
Due to the demand for weight reduction, 8B-C was used instead of the original 7-elite magnetic material.

系のようなきわめてすぐれた磁石性能を発揮する磁性材
料が使用されるに至っている。しかし−8mは希土類鉱
石中でも特に少ない含有量であることと、その精製分離
に多大の費用を有することからきわめて高価であり、他
方Do も高価であるのみならず安定供給に問題がある
Magnetic materials such as those that exhibit extremely excellent magnetic performance have come into use. However, -8m is extremely expensive because it has a particularly low content among rare earth ores and its purification and separation requires a large amount of cost.On the other hand, Do is not only expensive but also has problems in stable supply.

本発明者らは鋭意検討した結果−i性材料(i性粉体)
としてNd−Fe−B 系のものを使用することにより
、比較的低コストで高性能の磁石特性を示すプラスチッ
ク磁石組成物が得られること。
As a result of intensive study by the present inventors - i-type material (i-type powder)
By using a Nd-Fe-B type material as a plastic magnet composition, a plastic magnet composition exhibiting high performance magnetic properties can be obtained at a relatively low cost.

およびこの磁性粉体は前記Sm−9o系磁性粉体と同様
にプラスチックとの混合溶融時に高温になると空気との
接触で発火しやすい問題点ン有するがこの点は該磁性粉
体をあらかじめ染料で被覆処理することにより解決でき
ることを確認し本発明を完成した。
Similarly to the Sm-9o magnetic powder, this magnetic powder has the problem of being easily ignited by contact with air when the temperature reaches a high temperature when mixed and melted with plastic. The present invention was completed after confirming that the problem could be solved by coating.

すなわち本発明は一プラスチックと、染料でまたは染料
とオルガノポリシロキサンとで被覆処理した組成式 R
MB (式中のRは希土類元素。
That is, the present invention provides a plastic coated with a dye or a dye and an organopolysiloxane with the composition formula R.
MB (R in the formula is a rare earth element.

yz Mは鉄族元素であり、x、yおよび2は原子俤を示す、
ただし8≦X≦30−2≦2≦20.7−100−X−
Z)で示される磁性粉体とからなるプラスチック磁石組
成物に関するものである。該組成式中RはNdまたはN
(1を主とする希土類元素であり1MはFeまたはFe
を主とする鉄族元素である。実用上RとしてNdを主と
する2種以上の混合物(ミツシュメクルージジム等)を
使用し、またMとしてFeに少量のOoもしくはN1を
併用したもの(キューリ一点が向上する)を使用するこ
とが望ましい。なお−B(ボロン)にはAA 、 Si
 、Oなどが不純物として混っていてもよい。組成すな
わち原子係を示すX、yおよび2の値は前記のとおりで
ある。只の量を示すXの値が大になると保磁力weが向
上し望ましいが磁性材粉の取扱いに際し酸化燃えやすく
なるので30原子−以下とすべきであり、好ましくは1
0≦X≦20の範囲とすることがよい。またBの量を示
す2の値が大になるとこの場合にも保磁力Haが増大す
るがあまりに太き(すると残留磁束密度Brが低下する
ようになるので20原子チ以下とすべきであり、好まし
くは5≦2≦15の範囲とすることがよい。Mの量を示
すyは残量とされるなお、保磁力をさらに向上させるた
めに−At。
yz M is an iron group element, x, y and 2 indicate atomic radius,
However, 8≦X≦30-2≦2≦20.7-100-X-
The present invention relates to a plastic magnet composition comprising a magnetic powder represented by Z). In the composition formula, R is Nd or N
(It is a rare earth element mainly composed of 1, and 1M is Fe or Fe.
It is an iron group element mainly composed of Practically, as R, a mixture of two or more types mainly containing Nd (such as Mitshmeklujidim) should be used, and as M, a mixture of Fe and a small amount of Oo or N1 should be used (improving the curie point). is desirable. In addition, -B (boron) includes AA, Si
, O, etc. may be mixed as impurities. The values of X, y, and 2 indicating the composition, that is, the atomic ratio, are as described above. It is desirable that the coercive force we increases as the value of
It is preferable that the range is 0≦X≦20. Also, if the value of 2, which indicates the amount of B, becomes large, the coercive force Ha will increase in this case as well, but it will be too large (then the residual magnetic flux density Br will decrease, so it should be less than 20 atoms, Preferably, the range is 5≦2≦15.Y, which indicates the amount of M, is the remaining amount.In order to further improve the coercive force, -At is used.

Ti 、 zr 、 Hf 、 V、 Nb 、Ta 
+ Or % M。
Ti, zr, Hf, V, Nb, Ta
+Or%M.

W−Mn、Sn、Pb、8b、Bi、Ou、Znなどの
1種または2種以上を比較的少量の範囲で添加すること
は差支えない。
One or more of W-Mn, Sn, Pb, 8b, Bi, Ou, Zn, etc. may be added in a relatively small amount.

磁性粉体な製造する方法としては、■原料金属元素(N
d、Fe、B等)を所定の配合で高周波溶解してインゴ
ットをつくり、■これをショククラッシャーおよびブラ
ウンミルで35メツシ5−以下の粒度に粗粉砕し、つい
でボールミルで2〜lOμ程度になるまで微粉砕し、■
磁場中で配向ブレス成形し、■アルゴンガス91000
〜1200℃の温度で焼結し、放冷後時効するー■この
ものを前記■と同様にして粉砕し、乾燥して磁性粉体と
する方法があげられる。もちろんこれ以外の方法で磁性
粉体を製造してもよい。なお。
As a method for producing magnetic powder, ■Material metal element (N
d, Fe, B, etc.) in a predetermined composition by high frequency melting to make an ingot. ■ This is coarsely crushed using a shoku crusher and a brown mill to a particle size of 35 mesh or less, and then a ball mill to a particle size of about 2 to 10μ. Finely grind until ■
Oriented press molding in a magnetic field, ■ Argon gas 91000
Sintering at a temperature of ~1200°C, aging after cooling - (2) This product is crushed in the same manner as in (2) above, and dried to obtain magnetic powder. Of course, magnetic powder may be produced by other methods. In addition.

プラスチック中への高充填化のためには微粉とやや大き
い粒度の粉を混合して使用することが望ましく、また多
極のラジアル異方性磁石には極の大きさの10分の1以
下の充分小さな粒径の粉を用いるとよい。
In order to highly fill plastics, it is desirable to use a mixture of fine powder and powder with a slightly larger particle size, and for multi-polar radial anisotropic magnets, it is desirable to use a mixture of fine powder and powder with a slightly larger particle size. It is best to use powder with a sufficiently small particle size.

上記磁性粉体を被覆処理するために使用される染料とし
ては一直接染料、酸性染料、塩基性染料。
Dyes used to coat the magnetic powder include direct dyes, acid dyes, and basic dyes.

媒染染料、硫化染料、建染染料1分散染料、油溶染料1
反応染料、などのはかけい光増白剤が包含される。これ
らについて具体的例示をあげればつぎのとおりである。
Mordant dye, sulfur dye, vat dye 1 Disperse dye, oil-soluble dye 1
Included are fluorescent brighteners such as reactive dyes and the like. Specific examples of these are as follows.

直接染料 0.工、ダイレクトイエロー26.28.39゜44.
50.86.88.8198%100゜a、1.ダイレ
クトオレンジ39.51.107゜0.1.ダイレクト
レッド79.80.81.83゜84.89.218.
 O,1,ダイレクトグリーン37.63. O,1,
ダイレクトバイオレット47.51.90.94. 0
.1.ダイレクトプルーフ1.78.86.90.98
.106゜160.194−196−202.225゜
226.246. O,1,ダイレクトオレンジダイレ
クトブラック19.3151.75.94.105−1
06−107.108,113゜118.146など。
Direct dye 0. Engineering, Direct Yellow 26.28.39°44.
50.86.88.8198% 100°a, 1. Direct Orange 39.51.107°0.1. Direct Red 79.80.81.83゜84.89.218.
O, 1, Direct Green 37.63. O,1,
Direct Violet 47.51.90.94. 0
.. 1. Direct proof 1.78.86.90.98
.. 106°160.194-196-202.225°226.246. O, 1, Direct Orange Direct Black 19.3151.75.94.105-1
06-107.108, 113°118.146, etc.

酸性染料 0.1.アシッドイエロー7.17.23.25゜40
.44.72.75.98.99.114゜131.1
41 0.1.アシッドオレンジ19゜45.74−8
5.95. 0.1.アシッドレッド6.32.42.
52.57−7k 80.94゜Ill 111115
−118.119−130.131.133.134.
145゜168.180.184.194.198゜2
17.249.303. O,1,アシッドバイオレッ
ト34−47.48. O,1,アシッドブルー15.
29.4145.54.59.80゜100.102.
113.120−130゜14(L 151.154−
184.187゜229、O,1,アシッドグリーン7
.12.16゜20−44.57. O,1,アシッド
ブラウン39゜301 0゜工、アシッドブラック1.
2.24゜26.29.314B、52.63.131
゜140.155など。
Acid dye 0.1. Acid Yellow 7.17.23.25゜40
.. 44.72.75.98.99.114゜131.1
41 0.1. Acid Orange 19°45.74-8
5.95. 0.1. Acid Red 6.32.42.
52.57-7k 80.94゜Ill 111115
-118.119-130.131.133.134.
145°168.180.184.194.198°2
17.249.303. O, 1, acid violet 34-47.48. O, 1, acid blue 15.
29.4145.54.59.80゜100.102.
113.120-130°14 (L 151.154-
184.187°229, O, 1, Acid Green 7
.. 12.16°20-44.57. O, 1, Acid Brown 39° 301 0° Engineering, Acid Black 1.
2.24゜26.29.314B, 52.63.131
゜140.155 etc.

塩基性染料 0、工、ペイシックイエロー11.14.19゜21 
28− 33. 34.:う5.36、 C,I。
Basic Dye 0, Process, Paysic Yellow 11.14.19゜21
28-33. 34. : U5.36, C, I.

ペイシックオレンジ2.14,15.21−32゜0.
1.ペイシックレッド13.1118.22゜23.2
4−29.32.35−36.37゜3139.40.
 0.1.ペイシックバイオレツ)7.1(L 15.
21,25.26.27゜Od、ペイシックブルー12
4.54.58゜60、O,1,ペイシックブラック8
など。
Paysic Orange 2.14, 15.21-32°0.
1. Paysic Red 13.1118.22゜23.2
4-29.32.35-36.37゜3139.40.
0.1. Paysic Violet) 7.1 (L 15.
21,25.26.27゜Od, Paysic Blue 12
4.54.58゜60, O, 1, Paysic Black 8
Such.

媒染染料 0.1.モーダントレッド−1,23,59゜0.1.
モーダントゲリンジ5. O,1,モーダントレッド2
1.26.63,89. O,1,モーダントバイオレ
ット5.O,1,モーダンドブルー1゜29.47. 
O,1,モーダントゲリーン11゜0.1.モーダンド
ブラウン1.14.87゜a、X、モーダンドブラウン
l 3.7%9.11゜13.17.26.38.54
.75.84など。
Mordant dye 0.1. Modern Tread-1, 23, 59°0.1.
Mordant Geringe 5. O, 1, modern tread 2
1.26.63,89. O, 1, Mordant Violet 5. O, 1, Mordand Blue 1゜29.47.
O, 1, Mordant Guerin 11°0.1. Mordand Brown 1.14.87°a, X, Mordand Brown l 3.7%9.11°13.17.26.38.54
.. 75.84 etc.

硫化染料 0、、 工、サルファーオレンジ1.3.O,1,tル
アアープルー2.3.6.7.9.l 3. O,I。
Sulfur dye 0, Sulfur orange 1.3. O, 1, t lure pull 2.3.6.7.9. l 3. O, I.

サルファーレッド3.5. 0.1.サルファーグリー
ン2.6−11.14. O,1,サルファーブラウン
7、8. 0.1.サルファーイエロー4゜0.1.サ
ルファーブラック1. O,1,ソルビライズドサルフ
ァーオレンジ3. O,1,ソルビライズドサルファー
イエロー2.、O,1,ソルビライズドサルファーレッ
ド7. 0.1.ソルビライズドサルノアーブル−4,
0,1,ソルビライズドサルファーグリーン3. O,
1,フルビライズドサルファーブラウン8など。
Sulfur Red 3.5. 0.1. Sulfur Green 2.6-11.14. O, 1, Sulfur Brown 7, 8. 0.1. Sulfur Yellow 4°0.1. Sulfur black 1. O, 1, Solbilized Sulfur Orange 3. O, 1, Solbilized Sulfur Yellow 2. , O,1, Solbilized Sulfur Red 7. 0.1. Solbilized Sarno Hable-4,
0, 1, Solbilized Sulfur Green 3. O,
1.Fulvirized Sulfur Brown 8 etc.

建染染料 0.1.バットイエロー2.4.10% 20゜22.
23. O,1,バットオレンジl、2.3゜5.13
. O,1,バットレッド1.10.13゜16.31
.52. O,1,バットバイオレット1゜2.13.
 O,1,バットブルー4.5−6゜0.1.ソルビラ
イズドパットプル−6,0,1,バットブルー14.2
9.41.64. 0.1.バットグリーン1.2.a
−s、9.43.44゜0.1.ソルビライズドバット
グリーン1. 0.1゜バットブラウン1.3.22.
25.39.41゜44.46% 0.X、バットブラ
ック9.14゜25.57など。
Vat dye 0.1. Bat Yellow 2.4.10% 20°22.
23. O, 1, Bat Orange L, 2.3°5.13
.. O, 1, Bat Red 1.10.13゜16.31
.. 52. O, 1, Bat Violet 1゜2.13.
O, 1, Bat Blue 4.5-6°0.1. Solbilized Putt Pull - 6,0,1, Bat Blue 14.2
9.41.64. 0.1. Bat Green 1.2. a
-s, 9.43.44°0.1. Solbilized bat green 1. 0.1° Bat Brown 1.3.22.
25.39.41°44.46% 0. X, butt black 9.14°25.57, etc.

分散染料 0、工、ディスペンスイエ日−1,3,4゜0、Lディ
スヘンスレッドl 2.80 0.1.ディスペンスブ
ルー27など。
Disperse dye 0, Technique, Dispensing dye day -1, 3, 4°0, L Dispersion thread l 2.80 0.1. Dispense Blue 27 etc.

油溶染料 0、工、ンルベントイエロー2.6.14.1921.
33.61. 0.1.ソルベントオレンジl。
Oil-Soluble Dye 0, Polymer Bento Yellow 2.6.14.1921.
33.61. 0.1. Solvent orange l.

5.6.14.37.44.4B、0.X、ソにベント
レッド1.3.8.23.24.25.27゜30.4
9.81.82.83.84.100゜109− 12
1. 0.1.ソルベントバイオレット1.8.13.
14.21,27.O,1,ソルベントブルー2.11
,12.2B、35.36゜55.73. O,1,ソ
ルベントグリーンl、3゜0、工、ソルベントブラウン
3.5.20.37゜Ojl、ソルベントブラック3.
5.22.23゜123など。
5.6.14.37.44.4B, 0. X, bent red 1.3.8.23.24.25.27゜30.4
9.81.82.83.84.100°109-12
1. 0.1. Solvent Violet 1.8.13.
14.21, 27. O, 1, Solvent Blue 2.11
, 12.2B, 35.36°55.73. O, 1, Solvent Green l, 3゜0, Engineering, Solvent Brown 3.5.20.37゜Ojl, Solvent Black 3.
5.22.23°123 etc.

反応染料 0.1.リアクティブイエロー1.2.7.17゜22
、O,1,リアクティブオレンジ1,5.7゜14、O
,1,リアクティブレッド3.6.1“2゜a、1. 
リフ/?(ププ#−2,’4.6.7.15゜19、O
,1,リアクティブグリーン7、O,I。
Reactive dye 0.1. Reactive Yellow 1.2.7.17°22
, O, 1, Reactive Orange 1, 5.7° 14, O
, 1, Reactive Red 3.6.1"2゜a, 1.
Riff/? (Pupu #-2, '4.6.7.15゜19, O
,1,Reactive Green 7,O,I.

リアクティブブラック1など。Reactive Black 1 etc.

けい光増白剤 c、1.フルオレセンドブライトニングエイジェント2
4.84.85.91162.163゜164.167
.169.172,174゜175.176など。
Fluorescent brightener c, 1. Fluorescent brightening agent 2
4.84.85.91162.163゜164.167
.. 169.172, 174°175.176 etc.

本発明は以上例示した染料の1種または2種以上を適当
な溶媒におおむね0.01〜5重1ttlJで溶解して
被覆処理液となし、この被覆処理液を用いて対象の磁性
粉体を浸漬する方法や、この処理液を磁性粉体表面に吹
き付ける方法で被覆処理し。
In the present invention, one or more of the dyes exemplified above are dissolved in a suitable solvent at approximately 0.01 to 5 times 1 ttlJ to prepare a coating solution, and this coating solution is used to coat the target magnetic powder. Coating treatment is performed by dipping the magnetic powder or by spraying this treatment liquid onto the surface of the magnetic powder.

ついで室温ないし150℃程度までの温度で加熱乾燥す
るという方法で実施される。
This is then carried out by heating and drying at a temperature ranging from room temperature to about 150°C.

染料を溶解するための溶媒としては、アルコール系溶剤
、脂肪族炭化水素系溶剤、芳香族炭化水素系溶剤、ハロ
ゲン化炭化水素系溶剤、ケトン系溶剤、エーテル系溶剤
、エステル系溶剤および水などが例示され、これらは1
種または2種以上の混合溶媒として使用される・ 被覆する染料の量としては磁性粉体に対して0.02〜
2重量%(好ましくは0.05〜1重量%)とすること
が望ましい。この被覆量が少なすぎると酸化防止能が悪
くなり、一方多すぎるとコスト高となるばかりでなく、
バインダーとしてのプラスチックの比率が相対的に低下
するので、流動性の面からも磁性粉体の高充填化の阻害
になる。
Examples of solvents for dissolving dyes include alcohol solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, ketone solvents, ether solvents, ester solvents, and water. For example, these are 1
Used as a seed or a mixed solvent of two or more types. The amount of dye to be coated is 0.02~
The content is desirably 2% by weight (preferably 0.05 to 1% by weight). If the amount of coating is too small, the antioxidant ability will deteriorate, while if it is too large, it will not only increase the cost, but also
Since the proportion of plastic as a binder is relatively reduced, it becomes difficult to increase the filling of magnetic powder from the viewpoint of fluidity.

本発明はこのようにして磁性粉体を染料により被覆処理
するのであるが、この場合に必要に応じオルガノポリシ
ロキサン化合物を併用してもよべ。
In the present invention, magnetic powder is coated with a dye in this manner, and in this case, an organopolysiloxane compound may be used in combination if necessary.

これによれば被覆処理による耐酸化性付与の効果がさら
に向上され、かつプラスチック磁石組成物の成形時にお
ける滑性効果も付与されるという利点がもたらされる。
According to this, the effect of imparting oxidation resistance by the coating treatment is further improved, and there is an advantage that a lubricity effect is also imparted during molding of the plastic magnet composition.

オルガノポリシロキサン化合物の使用方法は。How to use organopolysiloxane compounds.

染料と共に処理液中に添加含有させる方法−あるいは染
料による被覆処理に続いてオルガノポリシロキサン化合
物の処理液による被覆処理を施す方法のいずれでもよく
、これによれば染料の使用割合を減少させることができ
る。
Either a method in which the dye is added to the treatment solution together with the dye, or a method in which coating treatment with the dye is followed by a coating treatment with the treatment solution containing the organopolysiloxane compound is possible. According to this method, the proportion of dye used can be reduced. can.

上記目的に供されるオルガノポリシロキサン化合物とし
ては、その分子構造1種類等に特に制限はなく、シリコ
ーンオイル、シリコーンゴム、シリコーン樹脂(シリコ
ーンフェス)−あるいハソれらの各種変性オルガノポリ
シロキサンが例示され1分子量についても低分子量のも
のから高分子量のものまで任意に使用することができる
The organopolysiloxane compound used for the above purpose is not particularly limited to one type of molecular structure, and various modified organopolysiloxanes such as silicone oil, silicone rubber, silicone resin (silicone face), etc. As for the exemplified molecular weight, any one from low molecular weight to high molecular weight can be used.

染料の被覆処理液中にオルガノポリシロキサンを添加含
有させる場合は、染料1重量部当りオルガノポリシロキ
サンの添加量をおおむね1〜10重量部、また染料によ
る被覆処理終了後ついでオルガノポリシロキサンにより
表面処理する場合は。
When organopolysiloxane is added to the dye coating treatment solution, the amount of organopolysiloxane added is approximately 1 to 10 parts by weight per 1 part by weight of dye, and the surface treatment with organopolysiloxane is carried out after the dye coating treatment is completed. If you do.

その処理量を磁性粉体に対しておおむね0.02〜2重
量%とすればよい。
The amount to be treated may be approximately 0.02 to 2% by weight based on the magnetic powder.

本発明にかかわるプラスチック磁石組成物は。The plastic magnet composition according to the present invention is as follows.

前記被覆処理された磁性粉体とプラスチックとを混合す
ることにより得られるが、ここに使用されるプラスチッ
クとしてはポリエチレン、ポリプロピレン、ポリスチレ
ン、ポリ塩化ビニル、アクリレート樹脂等のほか、いわ
ゆるエンジニアリングプラスチックと称されているもの
たとえばポリアミド、ポリフェニレンサルファイド、ポ
リフェニレンオキサイド、ポリアセタール、ポリエチレ
ンテレフタレート、ポリブチレンテレフタレート。
It is obtained by mixing the coated magnetic powder and plastic, and the plastics used here include polyethylene, polypropylene, polystyrene, polyvinyl chloride, acrylate resin, etc., and so-called engineering plastics. For example, polyamide, polyphenylene sulfide, polyphenylene oxide, polyacetal, polyethylene terephthalate, polybutylene terephthalate.

ポリカーボネートなどが例示される。Examples include polycarbonate.

本発明によれば磁性粉体をきわめて高い含有率でグラス
チックと混合することができ、組成物中における磁性粉
体含量を最尚95重量%程度まで高めることができる。
According to the present invention, magnetic powder can be mixed with glass in an extremely high content, and the magnetic powder content in the composition can be increased to about 95% by weight.

この点従来は成形性ならびに磁気配向性の点から磁性粉
体の充填密度を高めることが困qであったため、磁気特
性にすぐれたプラスチック磁石を得ることができなかっ
た。
In this regard, in the past, it has been difficult to increase the packing density of magnetic powder from the viewpoint of moldability and magnetic orientation, so it has been impossible to obtain plastic magnets with excellent magnetic properties.

プラスチック磁石を得るための成形方法としては、従来
公知の方法たとえば射出成形、押出成形。
Molding methods for obtaining plastic magnets include conventionally known methods such as injection molding and extrusion molding.

圧縮成形等の手段によればよく、成形方法それ自体に制
限はない。
It may be formed by means such as compression molding, and the molding method itself is not limited.

本発明によればつぎの諸利点が得られる。According to the present invention, the following advantages can be obtained.

(1)高性能のプラスチック磁石を低コストで得ること
ができる。
(1) High performance plastic magnets can be obtained at low cost.

(2)磁性粉体は被覆処理されているので成形時に高温
で空気と接触しても酸化変質を受けたり発火したりする
ことがないので、きわめて高磁気特性のプラスチック磁
石が得られる。
(2) Since the magnetic powder is coated, it will not undergo oxidative deterioration or catch fire even if it comes into contact with air at high temperatures during molding, so a plastic magnet with extremely high magnetic properties can be obtained.

(3)プラスチックとして200℃以上のような高温成
形が必要とされるエンジニアリングプラスチックを使用
しても、不都合をともなうことなく、磁性粉体の高充填
成形品を射出成形、押出′ 成形等の成形手段で容易に
得ることができる。
(3) Even if engineering plastics that require high-temperature molding such as 200°C or higher are used, highly filled molded products of magnetic powder can be molded by injection molding, extrusion molding, etc. without any inconvenience. It can be easily obtained by means.

このプラスチック磁石は高温下での使用に耐えかつ磁石
特性が経時的変化(劣化)することがなく信頼性の高い
ものである。
This plastic magnet can withstand use under high temperatures, and its magnetic properties do not change (degrade) over time, making it highly reliable.

(4)一体成形が簡単であり、複雑な形状に容易に成形
でき、後加工に要するコストが大幅に低減される。
(4) Integral molding is simple, it can be easily molded into complex shapes, and the cost required for post-processing is significantly reduced.

(5)性能の高いラジアル異方性、ラジアル多極性のプ
ラスチック磁石を容具に得ることができる。
(5) A plastic magnet with high performance radial anisotropy and radial multipolarity can be obtained in a container.

(6)得られるプラスチック磁石は均一な磁気性能を示
すものであって、また耐衝撃性が大きいので、リレー、
ブザー等への使用に有利である。
(6) The obtained plastic magnet exhibits uniform magnetic performance and has high impact resistance, so it can be used as a relay,
It is advantageous for use in buzzers, etc.

(7)前記したように高温で成形しても酸化変質を受け
ず1発火を起こすというようなことがないので、生産工
程上安全が確保され、また再生使用できその際性能の低
下をともなわない。
(7) As mentioned above, even if molded at high temperatures, it will not undergo oxidative deterioration and will not cause ignition, so safety is ensured in the production process, and it can be recycled and used without deteriorating performance. .

つぎに参考例および実施例をあげる。Next, reference examples and examples will be given.

参考例1 約20wLlの秤量ビンに希土類−鉄一ボロン系磁性粉
体 Nd、、 Fe、8f3. (粒度フィッシャー法
で3μ)を2g秤取した。一方、第1表に示す各種染料
の溶媒溶液(いずれも濃度は0.5重量%)を調製し、
これの所定量を前記秤取試料に加えて全体が均一に湿潤
吸着されるようにかくはんし、ついで60℃で乾燥して
溶剤分を除去し、さらに110℃で1時間加熱処理した
。染料の被覆量はそれぞれ同表に示すとおりであった。
Reference Example 1 Rare earth-iron-boron magnetic powder Nd, Fe, 8f3. (Particle size: 3μ by Fisher method) was weighed out. On the other hand, solvent solutions of various dyes shown in Table 1 (all concentrations 0.5% by weight) were prepared,
A predetermined amount of this was added to the weighed sample and stirred so that the entire sample was evenly moistened and adsorbed, then dried at 60°C to remove the solvent, and further heated at 110°C for 1 hour. The coating amount of the dye was as shown in the table.

このようにして染料で被覆処理した磁性粉体試料につい
て耐酸化性を調べるため、送風式加熱炉中にて開放状態
で20分間250℃に加熱し一下記式によって重量変化
率をめた。結果は第1表に示すとおりであった。
In order to examine the oxidation resistance of the magnetic powder sample coated with dye in this manner, it was heated at 250° C. for 20 minutes in an open air heating furnace and the rate of weight change was calculated using the following formula. The results were as shown in Table 1.

w1=秤量ビンの重さ w、=秤量ビン+試料の重さ W3=被覆処理し一110℃1時間加熱処理後の重さ W4 ==250℃20分加熱後の重さ第1表の結果か
ら判るとおり、染料で被覆処理を行わなかった試料の場
合には酸化による重量増加が大きかったのに対し、染料
で被覆処理したものはM量増加が小さく、その被覆膜に
よる耐酸化性付与の効果が大である。
w1 = Weight of weighing bottle w, = Weight of weighing bottle + sample W3 = Weight after coating and heating at 110°C for 1 hour W4 = = Weight after heating at 250°C for 20 minutes Results in Table 1 As can be seen from the figure, the weight increase due to oxidation was large in the case of the sample not coated with dye, whereas the increase in M amount was small in the sample coated with dye, indicating that the coating film imparted oxidation resistance. The effect is great.

実施例1 1tのビーカーに、希土類−鉄−ボロン系磁性粉体 N
d Fe B (粒度フィッシャ法で3μ)15 71
1 7 をl Kf秤取し、これに第2表に示す染料の0.5%
トルエン溶液を同表の被覆量となるように添加し。
Example 1 In a 1 ton beaker, rare earth-iron-boron magnetic powder N
d Fe B (particle size 3 μ by Fisher method) 15 71
1 Kf was weighed out, and 0.5% of the dye shown in Table 2 was added to it.
Add toluene solution to achieve the coating amount shown in the table.

よくかくはん混合してさらに要すればトルエンを添加し
て全体を湿潤させ、ついで60℃で乾燥して溶剤を揮散
させ、さらに110℃で1時間加熱処理した。ただし、
第2表中実験&6〜A8.AlOは、染料で被覆処理し
た磁性粉体についてさらに各種シリコーン化合物の1%
トルエン溶液を同表忙示す処5!!A量となるように添
加して全体を湿潤させ、110℃で30分間乾燥処理し
た。
The mixture was thoroughly stirred and mixed, and if necessary, toluene was added to moisten the whole, followed by drying at 60°C to volatilize the solvent, and further heat treatment at 110°C for 1 hour. however,
Experiment &6 to A8 in Table 2. AlO is added to 1% of various silicone compounds for magnetic powder coated with dye.
The place where the toluene solution is shown in the same table 5! ! Amount A was added to moisten the entire body, and the mixture was dried at 110° C. for 30 minutes.

このようにして被覆処理した各磁性粉体440.1gと
UBEナイ四ン12P−3014U〔宇部興産(株)製
)55.’lおよびステアリン酸アミド1.2 lIを
ビーカーに秤取し、常温でかくはん後琶素ガス剪囲気中
ジャケット温度200℃のブラベンダー社製S−300
0H型ミャサーを用いてかくはん造粒した。
440.1 g of each magnetic powder coated in this manner and 55.1 g of each magnetic powder coated with UBE Ny4in 12P-3014U (manufactured by Ube Industries, Ltd.). 'l and stearic acid amide 1.2 lI were weighed into a beaker, stirred at room temperature, and then heated using Brabender's S-300 with a jacket temperature of 200°C in a nitrogen gas atmosphere.
The mixture was stirred and granulated using an 0H type Myasa.

この造粒品をタナベコウギョウ社裂磁場射出成形機TL
−50MGBを用い、空気中への射出による発火性なら
びに成形品の磁気特性を測定した。
This granulated product is manufactured using Tanabe Kogyo Co., Ltd.'s fission field injection molding machine TL.
-50MGB was used to measure the ignitability when injected into the air and the magnetic properties of the molded product.

結果は第2表に示すとおりであった。The results were as shown in Table 2.

射出成形条件ニジリンダ一温度(ホッパー側から)O+
=170℃、C2= 230℃−ノズル温度220℃。
Injection molding conditions Niji cylinder temperature (from hopper side) O+
= 170°C, C2 = 230°C - nozzle temperature 220°C.

金型温度90℃、スクリュー回 転数28 Orpm (無負荷時の設 定)、配向磁場20 k Oe 第2表の結果から表面被覆処理を行わなかった場合には
、空気中への射出により瞬時に発火するが、染料被覆す
ることによって顕著な耐酸化性が付与され0発火現象が
抑制されることが判った。
Mold temperature: 90°C, screw rotation speed: 28 Orpm (setting at no load), orientation magnetic field: 20 kOe From the results in Table 2, if surface coating treatment was not performed, the injection into the air would cause instant ignition. However, it has been found that dye coating imparts remarkable oxidation resistance and suppresses the zero ignition phenomenon.

また、染料被覆に加えてシリコーン化合物による表面処
理を行った場合には負荷の軽減(スクリュー回転が大に
なる)と角形性の向上が認められした。
Furthermore, when the surface was treated with a silicone compound in addition to dye coating, a reduction in load (screw rotation increased) and an improvement in squareness were observed.

OシリコーンオイルKF96:信越化学工業製商品名、
ジメチルシリコーンオイル 0 シリコーンオイルKP358:信越化学工業製商品
名、変性シリコーンオイル 実施例2 実施例1と同様な方法で、希土類−鉄一ボロン系磁性粉
体 Nd1B ’ 618 B? を染料、シリコーン
化合物で被覆処理した。その磁性粉体とUBKナイロン
12P−3014Uとを第3表に示す組成で配合し、実
施例1と同様の条件でかくはん造粒し成形した。結果は
第3表に示すよおりであった。
O silicone oil KF96: Shin-Etsu Chemical product name,
Dimethyl silicone oil 0 Silicone oil KP358: Shin-Etsu Chemical Co., Ltd. trade name, modified silicone oil Example 2 In the same manner as in Example 1, rare earth-iron-boron magnetic powder Nd1B' 618 B? were coated with dyes and silicone compounds. The magnetic powder and UBK nylon 12P-3014U were blended in the composition shown in Table 3, and the mixture was stirred, granulated, and molded under the same conditions as in Example 1. The results were as shown in Table 3.

従来の技術では磁性粉体の充填度が88重量%であった
もの力ζ本発明では92.6重を憾tcも高めることが
でき、したがって磁気特性を大幅に向上させることがで
きた。また本発明の場合成形体の外観はいずれも良好で
あった。
In the conventional technology, the degree of filling of magnetic powder was 88% by weight, but in the present invention, it was possible to increase the degree of filling by 92.6% by weight, and therefore the magnetic properties were able to be significantly improved. In addition, in the case of the present invention, the appearance of the molded products was good in all cases.

Claims (1)

【特許請求の範囲】 1、 プラスチックと、染料で被覆処理した組成式RM
B (式中のRは希土類元素1Mは鉄族YZ 元素であI) L z 、 yおよび2は原子チを示す
。 ただし8≦X≦30.2≧2≦20.7=Zoo−x−
z)で示される磁性粉体とからなるプラスチック磁石組
成物 一20組成式 RMB 中のRがNdまたはNd7 z を主とする希土類元素1MがFeまたはFeを主とする
鉄族元素である特許請求の範囲第1項記載のプラスチッ
ク磁石組成物 3、プラスチックと、染料とオルガノポリシロキサンと
で被覆処理した組成式 RMB C弐X、7 z 中のRは希土類元素1Mは鉄族元素であり、X、yおよ
び2は原子チを示す、ただし8≦X≦30.2≦2≦2
0.7−100−x−z )で示される磁性粉体とから
なるプラスチック磁石組成物
[Claims] 1. Compositional formula RM coated with plastic and dye
B (R in the formula is a rare earth element, 1M is an iron group YZ element, and I) L z , y and 2 represent atoms. However, 8≦X≦30.2≧2≦20.7=Zoo−x−
A patent claim in which R is a rare earth element mainly composed of Nd or Nd7 and 1M is Fe or an iron group element mainly composed of Fe in the composition formula RMB of a plastic magnet composition consisting of magnetic powder represented by z) Plastic magnet composition 3 according to item 1, coated with plastic, dye and organopolysiloxane Compositional formula RMB C2X, 7z where R is a rare earth element 1M is an iron group element; , y and 2 represent atoms, provided that 8≦X≦30.2≦2≦2
0.7-100-x-z)
JP59098255A 1984-05-16 1984-05-16 Plastic magnet composition Granted JPS60242604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098255A JPS60242604A (en) 1984-05-16 1984-05-16 Plastic magnet composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098255A JPS60242604A (en) 1984-05-16 1984-05-16 Plastic magnet composition

Publications (2)

Publication Number Publication Date
JPS60242604A true JPS60242604A (en) 1985-12-02
JPH043651B2 JPH043651B2 (en) 1992-01-23

Family

ID=14214847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098255A Granted JPS60242604A (en) 1984-05-16 1984-05-16 Plastic magnet composition

Country Status (1)

Country Link
JP (1) JPS60242604A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152107A (en) * 1985-12-25 1987-07-07 Sumitomo Metal Mining Co Ltd Magnetic powder for synthetic resin magnet
JPS62196057A (en) * 1986-02-24 1987-08-29 Matsushita Electric Ind Co Ltd Permanent magnet-type motor
JPH01294809A (en) * 1988-05-23 1989-11-28 Seiko Electronic Components Ltd Production of particle having single magnetic domain and magnet using same
JP2005026663A (en) * 2003-06-11 2005-01-27 Neomax Co Ltd Oxidation-resistant rare-earth magnet powder and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880046A (en) * 1972-01-14 1973-10-26
JPS52117326A (en) * 1976-03-29 1977-10-01 Yoshida Kogyo Kk <Ykk> Method of coating an extruded aluminum material
JPS5662903A (en) * 1979-10-23 1981-05-29 Hitachi Maxell Ltd Metal magnetic powder and its treatment
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4880046A (en) * 1972-01-14 1973-10-26
JPS52117326A (en) * 1976-03-29 1977-10-01 Yoshida Kogyo Kk <Ykk> Method of coating an extruded aluminum material
JPS5662903A (en) * 1979-10-23 1981-05-29 Hitachi Maxell Ltd Metal magnetic powder and its treatment
JPS5946008A (en) * 1982-08-21 1984-03-15 Sumitomo Special Metals Co Ltd Permanent magnet

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62152107A (en) * 1985-12-25 1987-07-07 Sumitomo Metal Mining Co Ltd Magnetic powder for synthetic resin magnet
JPS62196057A (en) * 1986-02-24 1987-08-29 Matsushita Electric Ind Co Ltd Permanent magnet-type motor
JPH0687634B2 (en) * 1986-02-24 1994-11-02 松下電器産業株式会社 Permanent magnet type motor
JPH01294809A (en) * 1988-05-23 1989-11-28 Seiko Electronic Components Ltd Production of particle having single magnetic domain and magnet using same
JP2005026663A (en) * 2003-06-11 2005-01-27 Neomax Co Ltd Oxidation-resistant rare-earth magnet powder and manufacturing method therefor

Also Published As

Publication number Publication date
JPH043651B2 (en) 1992-01-23

Similar Documents

Publication Publication Date Title
US4497722A (en) Composition for plastic magnets
US4022701A (en) High-performance anisotropic plastics magnet and a process for producing the same
EP0111331B1 (en) Plastic magnets impregnated with a dye-coated metallic magnet powder
US4983231A (en) Coated magnetic powder and a bonded permanent magnet composition containing the same
US4834812A (en) Method for producing polymer-bonded magnets from rare earth-iron-boron compositions
JPS60242604A (en) Plastic magnet composition
US4190548A (en) Plastic bonded permanent magnet and method of making same
JPS60240105A (en) Plastic magnet composition
JPH0341965B2 (en)
JPS6041202A (en) Plastic magnet composition
JPS60244004A (en) Plastic magnet composition
Hirosawa et al. Development of high-coercivity nanocomposite permanent magnets based on Nd2Fe14B and FexB
US5004499A (en) Rare earth-iron-boron compositions for polymer-bonded magnets
JPS5923445B2 (en) permanent magnet
JPS636587B2 (en)
JP2967827B2 (en) Hard ferrite powder for composite magnet, compound using the same, and composite magnet
JPS62101003A (en) Anisotropic-resin magnet composition
JP2989420B2 (en) Preservation method of R-Fe-B alloy kneaded products for injection molding
JPS63185005A (en) Permanent magnet
JPH053124B2 (en)
JPS60216524A (en) Manufacture of permanent magnet
JPS6013826A (en) Plastic magnet composition
JP2689651B2 (en) Method for manufacturing permanent magnet molded body
JPH0516161B2 (en)
JPH0617015B2 (en) Resin composite material containing ferromagnetic metal powder and its manufacturing method