JPS60242342A - Method for discriminating corrosion resistance of zirconium alloy - Google Patents
Method for discriminating corrosion resistance of zirconium alloyInfo
- Publication number
- JPS60242342A JPS60242342A JP59096513A JP9651384A JPS60242342A JP S60242342 A JPS60242342 A JP S60242342A JP 59096513 A JP59096513 A JP 59096513A JP 9651384 A JP9651384 A JP 9651384A JP S60242342 A JPS60242342 A JP S60242342A
- Authority
- JP
- Japan
- Prior art keywords
- corrosion
- test piece
- zirconium alloy
- corrosion resistance
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental & Geological Engineering (AREA)
- Environmental Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はジルコニウム合金の耐食性を判定する方法に係
シ、特に耐食性の比較的硬れたジルコニウム合金の優劣
を判定す、る検査方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for determining the corrosion resistance of zirconium alloys, and more particularly to an inspection method for determining the superiority or inferiority of relatively hard zirconium alloys in corrosion resistance.
ジルコニウム合金は水冷形原子炉の炉心材及び構造材と
して広く使用されているが、その理由はジルコニウム合
金にかかる用途に適した特性、とりわけ小さい中性子断
面積を有することにある。Zirconium alloys are widely used as core materials and structural materials for water-cooled nuclear reactors because they have properties that make them suitable for such applications, particularly a small neutron cross section.
この点に関しては、原子炉材料ノ・ンドブックを参照さ
れたい。主として原子炉用途のため、何種類かのジルコ
ニウム合金組成物が開発されかつ市販されている。かか
るンルコニウム台金組成物の典型例はジルカロイ−2及
びジルカロイ−4と呼ばれる市販材料であり、これらジ
ルカロイ(類ンは、少なくとも約95(重量)チのジル
コニウム、約2.0(重量)チまでのスズ、約0.5(
重量)チ捷での鉄、約0.5(重量)%までのクロム、
及びO〜約0.15(重量)%のニッケルから成る分会
組成物である。また、他の原子炉用ジルコニウム合金組
成物として、少なくとも約95(重量)チのZ rに約
2〜3チのNbを宮む、ニオブ含有ジルコニウム合金が
実用化されている。以上に示したジルコニウム合金組成
物の市販品に関する合金成分はa、sTM−8350及
び原子炉拐料ノ・ンドプツク等の記載を参照されたい。In this regard, please refer to the Reactor Materials Book. Several zirconium alloy compositions have been developed and are commercially available, primarily for nuclear reactor applications. Typical examples of such luconium base metal compositions are commercially available materials called Zircaloy-2 and Zircaloy-4, which Zircaloys contain at least about 95 (by weight) zirconium and up to about 2.0 (by weight) zirconium. of tin, about 0.5 (
(weight) iron, up to approximately 0.5% (by weight) chromium,
and O to about 0.15% (by weight) nickel. In addition, as another zirconium alloy composition for nuclear reactors, a niobium-containing zirconium alloy containing at least about 95 (by weight) Zr and about 2 to 3 Nb has been put into practical use. Regarding the alloy components of the commercially available zirconium alloy compositions shown above, please refer to the descriptions of a, sTM-8350, nuclear reactor materials, etc.
ところで、腐食に対する、材iの感受性に水冷形原子炉
におけるそれの使用または性能にとって重要な因子とな
る。、原子炉の環境においては、通常、ジルコニウム合
金にその表面を一様に覆う比較的無害な暗色の表面酸化
物が生成し、この酸化膜は下方の金属に対して保繰をも
たらすと共に、原子炉内の滞留時間が長くなるに従って
徐々に肥厚する。しかるに、ジルコニウム合金はまた有
香な結節状の腐食(noduJar corrosro
n) (時には爪状腐食(pu51ular corr
osion)とも呼ばれる。)を生じることがある。か
かる結節状の腐食は合金表面において面積及び深さが急
速に増大し、そのためにある条件下では合金の特性を損
うこともある。結節状腐食は白色酸化物からなるが、こ
れは無害の黒色酸化物より数倍も速く成長して厚い白色
酸化物層を生成し、それによって熱伝達率、減肉による
機械的強厩の低下等の障害を生じる。However, the susceptibility of material i to corrosion is an important factor for its use or performance in water-cooled nuclear reactors. In the environment of a nuclear reactor, zirconium alloys typically develop a relatively harmless dark surface oxide that uniformly covers the surface of the zirconium alloy, providing protection for the underlying metal and protecting the atoms. It gradually thickens as the residence time in the furnace increases. However, zirconium alloys also suffer from fragrant nodular corrosion.
n) (sometimes nail-like corrosion (pu51ular corr)
Also called osion). ) may occur. Such nodular corrosion rapidly increases in area and depth on the alloy surface and can therefore, under certain conditions, impair the properties of the alloy. Nodular corrosion consists of white oxides that grow several times faster than harmless black oxides to produce thick white oxide layers, thereby reducing heat transfer rates and mechanical strength due to thinning. This may cause other problems.
水冷形原子炉の環境に慕露にされたジルコニウム合金の
結節状腐食に対する感受性は、運転中の原子炉における
環境因子(温度、圧力等)の他に、ジルコニウム合金の
合金相成やそれのミクロ組織に大きく依存することを判
明している。The susceptibility of zirconium alloys to nodular corrosion when exposed to the environment of a water-cooled nuclear reactor is determined not only by environmental factors (temperature, pressure, etc.) in the operating reactor, but also by the alloy phase composition of the zirconium alloy and its microstructure. It has been found that it is highly dependent on the organization.
上記の理由により、ジルコニウム合金の製造工程におけ
る、加工K及び熱処理条件等に柚々の工夫がなされてき
たが現行の行程では、ジルコニウム合金の腐食感受性は
しばしば変動することが判明している。すなわち、焼な
ましが不完全または不充分であったり、あるいは絞りや
引抜き、形削りや切断、または溶接からなる金属工作ま
たは加工操作を施したりすると、合金内部のミクロ組織
に差異や不均一化の生じることがある。For the above reasons, many improvements have been made to the processing conditions, heat treatment conditions, etc. in the manufacturing process of zirconium alloys, but it has been found that the corrosion susceptibility of zirconium alloys often fluctuates in the current process. That is, incomplete or insufficient annealing, or metalworking or fabrication operations such as drawing, drawing, shaping, cutting, or welding, can lead to differences and non-uniformity in the microstructure within the alloy. may occur.
それ故、ジルコニウム合金組成物から製造される燃料被
覆管、チャンネル及びスペーサーのごとき原子炉構成部
品の腐食感受性に関しては、大きな変動幅または不確定
性が存在するのである。従って耐食性の悪いものと良い
ものを判別することが必要となり、品質管理の面から耐
食性の劣るものを除くために従来ASTM−02に記載
されている400C,72hrにおける高温腐食試験が
実施されている。また、特許出願公開昭58−9524
7に記載されている490〜520Cにおける高温腐食
試験も実施されている。Therefore, large variations or uncertainties exist regarding the corrosion susceptibility of nuclear reactor components such as fuel cladding, channels, and spacers made from zirconium alloy compositions. Therefore, it is necessary to distinguish between those with poor corrosion resistance and those with good corrosion resistance, and in order to eliminate those with poor corrosion resistance from the standpoint of quality control, a high-temperature corrosion test at 400C, 72 hours, as described in ASTM-02, has been carried out. . Also, patent application publication 1982-9524
A high-temperature corrosion test at 490-520C as described in No. 7 has also been carried out.
一方、原子炉の経済性向上を目的とし原子炉燃料の高燃
焼度化、運転期間の長期化をはかるために、従来のジル
コニウム合金の耐食性をさらに向上させる必要がある。On the other hand, it is necessary to further improve the corrosion resistance of conventional zirconium alloys in order to improve the economic efficiency of nuclear reactors, increase the burnup of reactor fuel, and extend the operating period.
現行工程により通常製造されるジルコニウム合金材の他
に、βクエンチと呼ばれる特殊熱処理工程等を含んだ高
耐食性ジルコニウム合金材の製造技術および、低温熱処
理による高耐食性ジルコニウム合金材の製造技術が公知
である。高耐食ジルコニウム合金の製造方法祥細は、特
開昭58−22364および特開昭58−22365に
示されている。又、βクエンチとは、特開昭51−11
0412、特開昭52−70917に示されているよう
にα相とβ相とが共任する温度範囲あるいはβ相単相と
なる温[7蛇囲に加熱することにより、粒内、粒界に均
一に分散していた金属間化合物相をマトリックスに固溶
させ、七の後の冷却過程及びα相親度範囲での焼なまし
により結晶粒界及び亜粒界に選択的に再析出させる熱処
理であるJ
ところが前記の従来性われている高温腐食試験では、以
上述べた特殊熱処理等を施して製造された高耐食性ジル
コニウム合金材と、特殊熱処理等を含まない現行工程に
より製造された通常ジルコニウム合金材のうちでも、比
較的耐食性の優れた合金材との聞に明瞭な試験結果が得
られない。まして、特殊熱処理を施した合金材の耐食性
のバラツキを評価することはできず、従って高耐食性合
金部材の品質管理が不光分となる。In addition to the zirconium alloy materials that are normally manufactured using current processes, there are also known techniques for manufacturing highly corrosion-resistant zirconium alloy materials, including a special heat treatment process called β-quenching, and techniques for manufacturing highly corrosion-resistant zirconium alloy materials using low-temperature heat treatment. . Details of the method for manufacturing highly corrosion-resistant zirconium alloys are shown in Japanese Patent Application Laid-open No. 58-22364 and No. 58-22365. Also, β quench is described in Japanese Patent Application Laid-Open No. 51-11
0412, JP-A-52-70917, the temperature range in which the α phase and the β phase coexist or the temperature at which the β phase becomes a single phase [7. A heat treatment in which the intermetallic compound phase that was uniformly dispersed in the matrix is made into a solid solution in the matrix, and is selectively reprecipitated at the grain boundaries and subgrain boundaries by the cooling process after step 7 and annealing in the alpha phase affinity range. However, in the conventional high-temperature corrosion test described above, the highly corrosion-resistant zirconium alloy material manufactured by applying the above-mentioned special heat treatment, etc., and the ordinary zirconium alloy material manufactured by the current process that does not include special heat treatment, etc. Even among materials, clear test results cannot be obtained compared to alloy materials, which have relatively excellent corrosion resistance. Furthermore, it is not possible to evaluate the variation in corrosion resistance of alloy materials that have been subjected to special heat treatment, and therefore quality control of highly corrosion resistant alloy members becomes a chore.
本発明の目的は、水冷形原子炉の環境内におけるジルコ
ニウム合金の相対的な結節状腐食抵抗性を判定し、従来
の製品に対して高耐食材を判別する方法および高耐食材
の製造履歴による耐食性のバラツキを評価する方法を提
供することにある。The purpose of the present invention is to determine the relative nodular corrosion resistance of zirconium alloys in the environment of a water-cooled nuclear reactor, and to determine the high corrosion resistance of zirconium alloys with respect to conventional products and the manufacturing history of high corrosion resistance. An object of the present invention is to provide a method for evaluating variations in corrosion resistance.
C発明の概要〕
本発明は、ジルコニウム合金に発生する結節状腐食がそ
の雰囲気温度を高くすることによって加速増量され、か
つ一定条件下では結節状腐食に対する感受性が試験後の
腐食増量及びに外観表面上槽
に顕著に見られるという事実に基づいている。以下、そ
の詳細について述べる。C. Summary of the Invention] The present invention provides that the nodular corrosion that occurs in zirconium alloys is accelerated by increasing the ambient temperature, and that under certain conditions, the susceptibility to nodular corrosion decreases after the test due to the increase in corrosion mass and the external appearance of the zirconium alloy. It is based on the fact that it is prominently seen in the upper cisterna. The details will be described below.
試験温度と腐食増量の関係を第1図に示す。本図は耐食
性が異なると推定される各種試験片を410 U 10
5に4/cd条件下に8時間暴露し、(第1ステツプ)
引続き同圧力で480C〜550Cの一温度条件下に1
・6時間暴露して(第2ステツプ)得られた各種試験片
の試験温度と腐食増量との相関を示したものである。た
だし、図中の試験温度400Cのデータは、前記AsT
M腐食試験法によるものである。Figure 1 shows the relationship between test temperature and corrosion weight increase. This figure shows various test pieces estimated to have different corrosion resistance.
5 for 8 hours under 4/cd conditions (first step)
1 under the same pressure and temperature condition of 480C to 550C.
・This shows the correlation between the test temperature and corrosion weight increase of various test pieces obtained after 6 hours of exposure (second step). However, the data at the test temperature of 400C in the figure is for the AsT
This is based on the M corrosion test method.
本図で確認できるように、第2ステツプの試験温度が約
520により高くなると、ジルコニウム合金である試験
材の結節状腐食の有無の判別だけでなく、高耐食材と通
常材との判別、さらには製造履歴による高耐食材の耐食
性のノくラツキを判別することができる。As can be seen in this figure, when the test temperature in the second step becomes higher than approximately 520℃, it is not only possible to determine the presence or absence of nodular corrosion in the test material, which is a zirconium alloy, but also to distinguish between highly corrosion-resistant and ordinary materials. It is possible to determine irregularities in the corrosion resistance of highly resistant materials due to manufacturing history.
また、試験時間については実炉の長期運転を仮想してそ
れを模擬し得る試験時間の範囲が望しい。Furthermore, the test time is preferably within a range that can simulate the long-term operation of an actual reactor.
この件に関し、腐食増量が同一となる炉内滞在時と試験
時間
間8関係を第2図に示している。ここでわかるように炉
内滞在時間を2000日(約5年間)と仮定すると試験
温度及び試験時間については約530Cにおいて10時
間以上が望ましいことになる。Regarding this matter, Fig. 2 shows the relationship between the time in the furnace and the test time when the corrosion weight increase is the same. As can be seen here, assuming that the residence time in the furnace is 2000 days (approximately 5 years), the test temperature and test time are preferably approximately 530C and 10 hours or more.
ところで、加速試験という観点からは試験温度は高い方
が望しいのであるが、高温雰囲気にさらされたジルコニ
ウム合金材はその腐食特性が変化する。第3図は400
?r〜700Cで焼鈍したジルコニウム合金材(ジルカ
ロイ−2材)の腐食試験を500C124時間、水蒸気
中で行った結果である。この図でわかるように、焼鈍温
度を550C以上とするとジルコニウム合金材の腐食特
性が変化することが示される。従って、腐食試験の温度
は550Cまでがとりうる範囲となる。Incidentally, from the viewpoint of accelerated testing, it is desirable that the test temperature be high, but the corrosion characteristics of zirconium alloy materials exposed to high temperature atmosphere change. Figure 3 is 400
? These are the results of a corrosion test of a zirconium alloy material (Zircaloy-2 material) annealed at r~700C in steam at 500C for 124 hours. As can be seen from this figure, it is shown that the corrosion characteristics of the zirconium alloy material change when the annealing temperature is set to 550C or higher. Therefore, the temperature range for the corrosion test is up to 550C.
以下、本発明の好適な実施態様について説明する。 Hereinafter, preferred embodiments of the present invention will be described.
本発明の芙施に当っては、ジルコニウム合金の試験片(
またはそれに適当な標本)を洗浄することによって全て
の汚れや異物を除去した後、それの重量が正確に測定さ
れる。上記の洗浄は、酸浴中への浸漬けるすなわち「酸
洗い」およびそれに続く水洗から成る通常の手順によっ
て行えばよい。When applying the present invention, test pieces of zirconium alloy (
After removing all dirt and foreign matter by washing the sample (or a suitable specimen), its weight is accurately determined. The above cleaning may be carried out by the usual procedure consisting of immersion in an acid bath or "pickling" followed by washing with water.
次に、約70〜105Kg/CJの範囲内の圧力下にあ
るオートクレーブ内において、上記の試験片が水蒸気に
暴露される。かかる水蒸気は先ず約300〜4 ’20
tZ’の温度レベルにまで昇温されかつその温度のレ
ベルに少なくとも約5時間にわたって保たれ、次いで約
520〜約550Cレベルに昇温されかつその温度レベ
ルに少なくとも約12時間にわたって保たれる。更に詳
しく述べれば、有効な水蒸気゛暴露を達成するための時
間は、約300〜約4200の第1の温度レベルに関し
ては昇温後約5〜約15時間であり、また約510〜約
550tZ’の第2の温度レベルに関しては昇温後約1
2〜約30時間である。The specimen is then exposed to water vapor in an autoclave under pressure in the range of about 70-105 Kg/CJ. Such water vapor is initially about 300 to 4'20
The temperature is increased to a temperature level of tZ' and maintained at that temperature level for at least about 5 hours, and then increased to a level of about 520 to about 550 C and maintained at that temperature level for at least about 12 hours. More specifically, the time to achieve effective water vapor exposure is about 5 to about 15 hours after heating for a first temperature level of about 300 to about 4200, and about 510 to about 550 tZ'. For the second temperature level of approximately 1 after heating
2 to about 30 hours.
本発明の好適な一実施態様に従えば、試験片は先ず約4
10r程度の水蒸気に対し約8〜10時間にわたって暴
露され、次いで約530C程度の水′蒸気に対し約16
〜24時間にわたって暴露される。According to one preferred embodiment of the invention, the test specimen is first
Exposure to water vapor at about 10r for about 8 to 10 hours, then exposure to water vapor at about 530C for about 16 hours.
Exposure for ~24 hours.
オートクレーブから取出して周囲条件にまで冷却した後
、水蒸気処理済みの試験片は秤量され、そして重量増加
の有無が確認される。かかる試験片はまた、その表面上
における結節状腐食の形跡の有無についても視覚的に検
査される。After removal from the autoclave and cooling to ambient conditions, the steam treated specimens are weighed and checked for weight gain. Such specimens are also visually inspected for evidence of nodular corrosion on their surfaces.
次に、本発明の好適な一実施態様を詳しく説明する。Next, a preferred embodiment of the present invention will be described in detail.
腐食試験には、次に示す3種類のジルコニウム合金を用
いた。The following three types of zirconium alloys were used in the corrosion test.
(1)高耐食ジルコニウム合金材:原子炉燃料被覆管製
造工程にα+β焼入工程を追加して製造した高耐食燃料
被覆管。(焼入工程挿入時期の異なる被覆管数種類)
(2)通常ジルコニウム合金材:通常原子炉燃料被覆管
。(1) Highly corrosion-resistant zirconium alloy material: A highly corrosion-resistant fuel cladding tube manufactured by adding an α+β quenching process to the reactor fuel cladding manufacturing process. (Several types of cladding tubes with different quenching process insertion times) (2) Normal zirconium alloy material: Normal nuclear reactor fuel cladding tube.
(3)耐食性不良ジルコニウム合金材:通常原子炉燃料
被覆管を高温で焼鈍し、耐食性を劣化恣せた被覆管。(3) Zirconium alloy material with poor corrosion resistance: Normal reactor fuel cladding tube is annealed at high temperature to deteriorate its corrosion resistance.
尚、上記(1) 、 (2)の製造法詳細は、先に示し
た特開昭58−22364による。The details of the manufacturing methods of (1) and (2) above are based on the above-mentioned Japanese Patent Application Laid-Open No. 58-22364.
上記3種類の材料から試験片を切取り、ばり取りを行い
、次いで洗浄した。表面酸化物を存在する場合には、紙
やすりを用いてそれを除去することが必要である。洗浄
に際しては、たとえば、5.0(容量)チの濃フッ化水
素酸(E(F)、45(容量)チの濃硝酸(HNO3)
及び残溜水から成る酸溶液中においてエツチングが施さ
れる。Test pieces were cut from the above three types of materials, deburred, and then washed. If surface oxides are present, it is necessary to remove them using sandpaper. For cleaning, for example, 5.0 (by volume) of concentrated hydrofluoric acid (E (F), 45 (by volume) of concentrated nitric acid (HNO3)
Etching is performed in an acid solution consisting of water and residual water.
エツチングの後、試験片を水洗、乾燥し、そして0.1
mg の精度で秤量を行った。After etching, the specimen was washed with water, dried, and
Weighing was performed with an accuracy of mg.
こうして得られた試験片をオートクレーブ内に吊下げ、
水蒸気を導入し、そしてその試験系を約410 Cs
105 Ky / ctiの条件に平衡させた。第1段
階においては、このような温度−圧力平衡状態を約8時
間にわたって維持した。その後、温度を更に上昇させて
第2段階すなわち試験系を53゜r、105Kt/iの
条件に平衡させた。第2段階においては、このような平
衡状態を約16時間にわたって維持した。The test piece thus obtained was suspended in an autoclave,
Water vapor is introduced and the test system is heated to about 410 Cs.
Equilibrated to conditions of 105 Ky/cti. In the first stage, such temperature-pressure equilibrium was maintained for about 8 hours. Thereafter, the temperature was further increased to equilibrate the second stage, that is, the test system, to conditions of 53° r and 105 Kt/i. In the second stage, such equilibrium was maintained for about 16 hours.
2つの温度レベル段階における水蒸気処理の完了後、オ
ートクレーブを大気条件に戻し、試験片を取出し、乾燥
し、そして秤量及び視覚検査を行った。それにより、試
験片の重量増加の有無及び結節状腐食のM無を確認した
。After completion of the steam treatment at the two temperature level steps, the autoclave was returned to atmospheric conditions, the specimens were removed, dried, and weighed and visually inspected. Thereby, the presence or absence of an increase in the weight of the test piece and the absence of nodular corrosion were confirmed.
その結果、A8TM腐食試験による腐食増量1、Oに対
し、高耐食ジルコニウム合金材は2.0〜7.0の腐食
増量を、通常ジルコニウム合金材は10〜50の腐食増
量を、耐食性不良ジルコニウム合金材はそれ以上の腐食
増量を示した。又結節状腐食の発生状態も上記3sの材
料間で明確に異なっておシ、耐食性の異なる材料3橿を
明確に識別することができた。さらに、製造方法の違い
による高耐食ジルコニウム合金材の耐食性の差を識別す
ることもできた。As a result, compared to the corrosion increase of 1.0 in the A8TM corrosion test, the highly corrosion resistant zirconium alloy material showed a corrosion increase of 2.0 to 7.0, the normal zirconium alloy material showed a corrosion increase of 10 to 50, and the poor corrosion resistance zirconium alloy The material showed further increase in corrosion. In addition, the state of occurrence of nodular corrosion was clearly different among the materials of the above 3s, and the three materials with different corrosion resistance could be clearly distinguished. Furthermore, it was possible to identify differences in the corrosion resistance of highly corrosion-resistant zirconium alloy materials due to differences in manufacturing methods.
前記第2段階の腐食試験温度を500iC〜520Cと
すると、通常ジルコニウム合金材の腐食増量相対値と高
耐食ジルコニウム合金材の相対値とは、一部重複するこ
とにな9、両者を明確に識別することはできない。If the corrosion test temperature in the second stage is 500iC to 520C, the relative value of the corrosion increase for the normal zirconium alloy material and the relative value for the highly corrosion-resistant zirconium alloy material will partially overlap9, and the two can be clearly distinguished. I can't.
上記実施例に示した様に、第2段階の腐食試験温度を5
30Cとすることにより通常ジルコニウム合金材と高耐
食ジルコニウム合金材の耐食性を明確に識別できること
を確認した訳であるが、図−1に示した様に、実質的に
は約520C以上の温度範囲において可能であると言え
る。As shown in the above example, the second stage corrosion test temperature was set to 5
It was confirmed that the corrosion resistance of normal zirconium alloy materials and highly corrosion-resistant zirconium alloy materials can be clearly distinguished by setting the temperature to 30C. It can be said that it is possible.
本発明によれば、ジルコニウム合金の相対的な耐食性を
判定するだけではなく、高耐食材と通常材の判定ができ
る効果がある。筐た、短時間試験で長期の炉内滞在を模
擬できる。According to the present invention, it is possible not only to determine the relative corrosion resistance of zirconium alloys, but also to determine whether the materials are highly corrosion resistant or ordinary materials. The long-term stay inside the reactor can be simulated through short-term tests.
第1図は試験温度と腐食増量の関係図、第2図は腐食増
量が同一となる炉内滞在時間と試験時間の関係図、第3
図は焼鈍温度と腐食増量の関係図を示す。
代理人 弁理士 高橋明夫
′f11図
’g2[m
ガ匈糧九時間(tl)
第1頁の続き
@発明者 中高 潤二部 日立車輪3丁目内
@発明者 高 瀬 磐 雄 日立市幸町3丁目所内Figure 1 is a diagram showing the relationship between test temperature and corrosion weight increase, Figure 2 is a diagram showing the relationship between residence time in the furnace and test time at which the corrosion weight gain is the same, and Figure 3
The figure shows the relationship between annealing temperature and corrosion increase. Agent Patent Attorney Akio Takahashi 'f11 Diagram'g2 [m 9 Hours of Provisions (tl) Continuation of page 1 @ Inventor Jun Nakataka 2nd Department Hitachi Wheels 3-chome @ Inventor Iwao Takase 3-chome Saiwaimachi, Hitachi City Inside the office
Claims (1)
の雰囲気に対しジルコニウム合金の試験片を少なくとも
約5時間にわたって暴露し、(b)引続いて約520C
を越える温度領域で、かつ約550C以下の温度を有す
る水蒸気の雰囲気に対し前記試験片を少なくとも約12
時間にわたって暴露し、それから、(C)水蒸気暴露後
の前記試験片上における腐食発生の有無を確認する諸工
程から成ることを特徴とするジルコニウム合金の耐食性
を判定する方法。 2 前記試験片が前記工程(a)の水蒸気雰囲気に対し
約5〜約15時間にわたって暴露されることを特徴とす
る特許請求の範囲第1項記載のジルコニウム合金の耐食
性を判定する方法。 3、前記試験片が前記工程(b)の水蒸気雰囲気に対し
約10〜約30時間にわたって暴露されることを特徴と
する特?lf請求の範囲第1項記載のジルコニウム合金
の耐食性を判定する方法。 4、約1000〜約15001)s ig (70,3
〜105Kti/crl)の圧力下にあるオートクV−
グ炉内におけることを特徴とする特許請求の範囲第1項
、第2項または第3項記載のジルコニウム合金の耐食性
を判定する方法。 5、 オートクV−プ炉内の水蒸気雰囲気は循環または
滞留であることを特徴とする特許請求の範囲第1項、第
2項または第3項記載のジルコニウム合金の耐食性を判
定する方法。Claims: 1. (a) exposing a zirconium alloy specimen to an atmosphere of water vapor having a temperature of about 300 to about 420C for at least about 5 hours;
The test piece is exposed to a water vapor atmosphere having a temperature of at least about 550C or less at a temperature of at least about
A method for determining the corrosion resistance of a zirconium alloy, comprising the steps of: (C) confirming the presence or absence of corrosion on the test piece after exposure to water vapor. 2. A method for determining corrosion resistance of a zirconium alloy according to claim 1, wherein the test piece is exposed to the steam atmosphere of step (a) for about 5 to about 15 hours. 3. The test piece is exposed to the steam atmosphere of step (b) for about 10 to about 30 hours. lf A method for determining the corrosion resistance of a zirconium alloy according to claim 1. 4, about 1000 to about 15001) s ig (70,3
~105Kti/crl)
A method for determining the corrosion resistance of a zirconium alloy according to claim 1, 2, or 3, characterized in that the method is performed in a furnace. 5. The method for determining the corrosion resistance of a zirconium alloy according to claim 1, 2, or 3, wherein the steam atmosphere in the autocupboard furnace is circulating or stagnation.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59096513A JPS60242342A (en) | 1984-05-16 | 1984-05-16 | Method for discriminating corrosion resistance of zirconium alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59096513A JPS60242342A (en) | 1984-05-16 | 1984-05-16 | Method for discriminating corrosion resistance of zirconium alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60242342A true JPS60242342A (en) | 1985-12-02 |
Family
ID=14167209
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59096513A Pending JPS60242342A (en) | 1984-05-16 | 1984-05-16 | Method for discriminating corrosion resistance of zirconium alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60242342A (en) |
-
1984
- 1984-05-16 JP JP59096513A patent/JPS60242342A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sabol et al. | Development of a cladding alloy for high burnup | |
US4440862A (en) | Method of determining corrosion properties of zirconium alloys | |
EP0155603B1 (en) | Cladding tube for nuclear fuel and nuclear fuel element having this cladding tube | |
Sedriks et al. | Inconel alloy 690-A new corrosion resistant material | |
JPS61270360A (en) | Production of pipe coated with zirconium alloy for nuclear reactor excellent in corrosion resistance | |
JPS6389650A (en) | Heat-treatment of nickel base alloy | |
JPS60242342A (en) | Method for discriminating corrosion resistance of zirconium alloy | |
JPS58177445A (en) | Heat treatment of ni-cr alloy | |
GB2132345A (en) | Method of determining corrosion properties of zirconium alloys | |
JPS63213629A (en) | Zirconium based alloy | |
JPH0660364B2 (en) | Corrosion resistant zirconium alloy containing bismuth | |
JPH09508672A (en) | Zirconium alloy containing tungsten and nickel | |
Cheng et al. | Method of determining corrosion properties of zirconium alloys | |
Castaldelli et al. | Long-term test results of promising new zirconium alloys | |
Fontana | Stress corrosion in titanium and its alloys | |
US3431104A (en) | Zirconium base alloy | |
JPS5817823B2 (en) | Heat treatment method for Ni-based alloy containing Cr | |
JPS6277448A (en) | Manufacture of high strength nickel alloy member having superior scc resistance | |
Bandy et al. | Tests with Inconel 600 to obtain quantitative stress-corrosion cracking data for evaluating service performance.[PWR] | |
US3427210A (en) | Method of producing alloys of zirconium with iron,vanadium and chromium for use in nuclear reactors cooled with an organic coolant | |
Loomis et al. | Response of unirradiated and neutron-irradiated vanadium alloys to Charpy-impact loading | |
JP2000008149A (en) | Protective coase-graining annealing of zirconium alloy | |
Bradley et al. | Microstructure and properties of corrosion-resistant zirconium-tin-iron-chromium-nickel alloys | |
JPH01191756A (en) | Corrosion-resistant zirconium alloy | |
JPS61272359A (en) | Manufacture of cladding pipe of zirconium alloy |