JPS60242223A - Stabilization work for slope by insertion of reinforcement - Google Patents

Stabilization work for slope by insertion of reinforcement

Info

Publication number
JPS60242223A
JPS60242223A JP9841084A JP9841084A JPS60242223A JP S60242223 A JPS60242223 A JP S60242223A JP 9841084 A JP9841084 A JP 9841084A JP 9841084 A JP9841084 A JP 9841084A JP S60242223 A JPS60242223 A JP S60242223A
Authority
JP
Japan
Prior art keywords
soil
slope
reinforcing material
reinforcing materials
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9841084A
Other languages
Japanese (ja)
Other versions
JPH086331B2 (en
Inventor
Masayuki Kurose
正行 黒瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAIYO GIJUTSU KAIHATSU KK
Original Assignee
TAIYO GIJUTSU KAIHATSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAIYO GIJUTSU KAIHATSU KK filed Critical TAIYO GIJUTSU KAIHATSU KK
Priority to JP59098410A priority Critical patent/JPH086331B2/en
Publication of JPS60242223A publication Critical patent/JPS60242223A/en
Publication of JPH086331B2 publication Critical patent/JPH086331B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines
    • E02D17/207Securing of slopes or inclines with means incorporating sheet piles or piles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/20Securing of slopes or inclines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Abstract

PURPOSE:To prevent the degradation of a slope by a method in which reinforcing materials whose surfaces have a great frictional coefficient with soil are driven into the sloped ground, and the ends of two or more groups of reinforcing materials on the ground surface are pulled to each other for each group. CONSTITUTION:Annular or spiral grooves 7 and 8 or many recessions for example are provided on the surfaces of a reinforcing material 3 to increase the frictional coefficient with soil. Plural reinforcing materials 3 are driven into a slope 1 by leaving their end portions 2 on the ground surface. The materials 3 are divided into at least two or more equal or unequal plural groups, and the end portions 2 on the ground surface of them connected by bars 4 with turnbuckles 5. The turnbuckles 5 are then turned to pull the end portions 2 on the ground surface in such a way as to consolidate the surface layer of the slope by a force F1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、土壌斜面に補強材を挿入して同斜面のの崩壊
を効果的に防止することができる斜面の安定化工法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a slope stabilization method that can effectively prevent collapse of a soil slope by inserting a reinforcing material into the slope.

〔従来の技術〕[Conventional technology]

従来、切取りまたは盛土によって造成された土壌斜面の
地すべり又はその崩壊を防止する工法として、土壌斜面
に補強材を打設する工法が公知であり、その崩壊する土
塊に対する抵抗力は、曲げ剛性、剪断強さ、ロンド径、
ロンド間隔、突出長。
Conventionally, as a construction method to prevent landslides or collapse of soil slopes created by cutting or filling, a method of driving reinforcing materials into soil slopes is known, and the resistance against collapsing soil masses is determined by bending rigidity, shearing stiffness, etc. Strength, Rondo diameter,
Rondo spacing, protrusion length.

根入れ長、地すべり面の深さ、移動層と不動層の土の性
質、ロンド背面土塊の状態、地すべり土圧のかかり方、
移動の状態等の関数であると考えられており、−概に律
することはできないが、実際の施工にあたってはこれら
の要素を単純化して種々の計算式が提唱され、その設計
計算式に基いて施工されている。
Rooting length, depth of the landslide surface, soil properties of the mobile and immobile layers, condition of the soil mass on the back of the rondo, how the landslide soil pressure is applied,
It is thought that it is a function of the state of movement, etc., and although it cannot be generally defined, various calculation formulas have been proposed to simplify these elements in actual construction, and based on the design calculation formula, It is being constructed.

本出願人も先に特開昭56−142935号において補
強材挿入による斜面の安定化工法を開示した。
The present applicant also previously disclosed a method for stabilizing slopes by inserting reinforcing materials in JP-A-56-142935.

この工法は土壌斜面に規則的または不規則的に複数本の
補強材を打設し、同補強材を少くとも2本以上の等又は
不等数の複数群に分ち、各群毎に ・補強材同志の地表
端をターンバックルを有する棒状物又は線状物を用いて
相互に引寄せることによって土壌斜面に圧密力を発生さ
せることを特徴とする。
This construction method involves placing multiple reinforcing materials regularly or irregularly on the soil slope, dividing the reinforcing materials into groups of at least two or more of equal or unequal numbers, and for each group. It is characterized by generating a compaction force on the soil slope by drawing the ground surface ends of the reinforcing members together using a rod-like object or a linear object having a turnbuckle.

また、かかる構成によってクーロンの法則(S−C+σ
tanφ ここでS:土の剪断強さ、C:土の粘着力、
σ:土粒子に加わる垂直応力、φ:土の内部摩擦角〉に
おける土の粘着力を増大することによって剪断強さSも
増大でき、地l’にりを防止することができる。
Moreover, with this configuration, Coulomb's law (S−C+σ
tanφ where S: shear strength of soil, C: adhesive strength of soil,
By increasing the adhesion of the soil at σ: normal stress applied to soil particles, φ: angle of internal friction of the soil, the shear strength S can also be increased, and soil l' can be prevented.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記斜面の安定化工法は、防止杭の数の増加に
眼界があるので剪断強さの増大も限界があるという問題
を有していた。
However, the slope stabilization method described above has a problem in that there is a limit to the increase in the number of prevention piles, so there is a limit to the increase in shear strength.

本発明は補強材の挿入数を増加することなく土の粘着力
を向上して土の剪断強さを著しく増大し、土壌斜面を著
しく安定化することができる補強材挿入による斜面の安
定化工法を提供することを目的とする。
The present invention is a method for stabilizing slopes by inserting reinforcing materials, which improves the adhesion of the soil and significantly increases the shear strength of the soil without increasing the number of reinforcing materials inserted, thereby significantly stabilizing the soil slope. The purpose is to provide

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成するため、本発明では、各補強材の頭部
を連結するのみならず、その地中埋設部の周表面を土と
の摩擦係数が大きい形状としてい〔作用〕 上記構成により、補強材は頭部同志の緊締による圧密に
よって土の粘着力を増加できるのみならず、補強材自体
の周面形状によっても土の粘着力を増加することができ
る。
In order to achieve the above object, the present invention not only connects the heads of each reinforcing member, but also shapes the circumferential surface of the underground part to have a large coefficient of friction with the soil. [Function] With the above configuration, The reinforcing material can increase the adhesion of soil not only by compaction caused by tightening the heads together, but also by the shape of the circumferential surface of the reinforcing material itself.

〔実施例〕〔Example〕

以下、添付図に示す実施例に基づいて本発明を具体的に
説明する。
Hereinafter, the present invention will be specifically described based on embodiments shown in the accompanying drawings.

第1図は本発明に係る安定化工法を施された土壌斜面の
断面図、第2図は補強材の同土壌斜面への作用の説明図
、第3図から第5図は補強材の周表面形状を示す補強材
の一部拡大説明図、第6図から第8図は補強材の配列態
様の説明図である。
Figure 1 is a cross-sectional view of a soil slope that has been subjected to the stabilization method according to the present invention, Figure 2 is an explanatory diagram of the action of the reinforcement material on the soil slope, and Figures 3 to 5 are the surrounding areas of the reinforcement material. A partially enlarged explanatory view of the reinforcing material showing the surface shape, and FIGS. 6 to 8 are explanatory views of the arrangement of the reinforcing material.

第1図において、(1)は土壌斜面であり、同土壌斜面
(1)にその地表端(2)を残して複数の補強材(3)
が打設されている。また(4)ば補強材(3)の地表!
 (21同志を緊締状態に連結する棒状物であり、(5
)ば棒状物(4)の中央に取付けたターンバックルであ
る。
In Figure 1, (1) is a soil slope, and a plurality of reinforcing materials (3) are placed on the same soil slope (1), leaving its surface edge (2).
has been poured. Also (4) is the ground surface of the reinforcement material (3)!
(It is a rod-shaped object that connects 21 comrades in a tight state, (5
) is a turnbuckle attached to the center of the rod-shaped object (4).

かかる構成によってターンバックル(5)を回転すると
、補強材(3)の地表端同志が第2図に示す如く相互に
強力に引寄せられることになり、これによって、第2図
に示す如く、斜面深部はF2という力を受ける一方、斜
面表層部はF、によって圧密を受け、かかる圧密によっ
て土の粘着力Cを増大することができる。
With this configuration, when the turnbuckle (5) is rotated, the ground surface ends of the reinforcement (3) are strongly attracted to each other as shown in FIG. 2, and as a result, as shown in FIG. While the deep part is subjected to the force F2, the surface layer of the slope is consolidated by F, and this consolidation can increase the cohesive force C of the soil.

さらに、本発明では補強材(3)の周表面の形状を土と
の摩擦係数が大きい形状、すなわち、表面積が大きい形
状としており、かかる形状によっても土の粘着力を増大
することができる。
Furthermore, in the present invention, the shape of the peripheral surface of the reinforcing material (3) is such that the coefficient of friction with the soil is large, that is, the surface area is large, and this shape can also increase the adhesive force of the soil.

なお、補強材(3)の周表面の形状は土との摩擦係数を
増大できるものであればいかなる形状でもよいが、好ま
しい形状の例を第3図から第5図に示す。
The shape of the peripheral surface of the reinforcing material (3) may be any shape as long as it can increase the coefficient of friction with the soil, but examples of preferred shapes are shown in FIGS. 3 to 5.

第3図は、軸線方向に波状に大径環状部(7)と小径環
状部(8)を交互に設けた補強材(3)を示し、同一径
の補強材(3)に比してその周表面の面積を著しく大き
くすることができる。
Figure 3 shows a reinforcing material (3) in which large-diameter annular portions (7) and small-diameter annular portions (8) are provided alternately in a wavy manner in the axial direction, and the reinforcement material (3) has a larger diameter than a reinforcing material (3) of the same diameter. The area of the circumferential surface can be significantly increased.

第4図は周表面に螺旋状の溝(9)を設けた補強材(3
)を示し、同補強材(3)も同様に周表面の面積を増大
することができる。
Figure 4 shows a reinforcing material (3) with a spiral groove (9) on its circumferential surface.
), and the area of the peripheral surface of the reinforcing material (3) can be similarly increased.

また、第5図は周表面に多数の凸部α0)を設けた補強
材(3)を示し、かかる突部θO)によっても周表面の
面積を増大することができる。
Further, FIG. 5 shows a reinforcing material (3) having a large number of protrusions α0) on the circumferential surface, and the area of the circumferential surface can also be increased by such protrusions θO).

かかる構成によって、本発明では、補強材(3)の頭部
の相互緊締による圧密のみならず、補強材(3)の周表
面の増大によっても土の粘着力を増大でき、これによっ
て剪断力の著しい増大及び斜面の安定効果の増大を得る
ことができる。
With this configuration, in the present invention, the adhesion of the soil can be increased not only by compaction due to the mutual tightening of the heads of the reinforcing material (3), but also by increasing the circumferential surface of the reinforcing material (3), thereby reducing the shearing force. A significant increase and increase in slope stabilization effect can be obtained.

第6図から第8図に補強材(3)の土壌斜面(1)への
打設の配列が示されている。
6 to 8 show the arrangement of placing reinforcement (3) on a soil slope (1).

かかる配列は斜面全体にバランス良く力が加わりさえす
れば、特に均一な数に分けたり、均一な群に分ける必要
はない。
Such an arrangement does not need to be divided into uniform numbers or uniform groups as long as a force is applied to the entire slope in a well-balanced manner.

しかし、斜面全体がバランス良く安定性を保つためには
、全体が崩壊性の土壌斜面(1)の場合等には第6図又
は第7図、第8図の平面図に示すように、各2本毎、又
は3本毎で、かつできるだけ平均した群の分布を示す方
が好ましいが、特にそうせず第6図、第7図及び第8図
の構成を任意に絹合せたものとすることもできる。
However, in order to maintain the stability of the entire slope in a well-balanced manner, in the case of a slope with collapsible soil (1), it is necessary to It is preferable to show the distribution of groups every two or three, and as average as possible, but instead of doing so, the configurations in Figures 6, 7, and 8 can be arbitrarily combined. You can also do that.

また、本発明を実施する土壌斜面(11は切土又は盛り
土、亀裂のある岩磐1重粘質ないしは砂質の何れの場合
にも適用できる。
Further, the present invention can be applied to any soil slope (11 is cut or filled soil, rock with cracks, single layer clay or sandy).

使用する補強材(3)の材質は金属、木製、コンクリー
ト等何れの材質でも使用できる。なお、アンカーロンド
(3)の設置はあらかじめ地盤中に削孔した孔中に補強
材を挿入し、セメントミルクを注入して固定するため、
セメントミルクが土中深部の内部亀裂や空隙に浸透して
一体化を増長することもできる。
The material of the reinforcing material (3) to be used may be metal, wood, concrete, etc. In addition, to install Anchor Rondo (3), reinforcing material is inserted into a hole drilled in the ground in advance, and cement milk is injected to fix it.
Cement milk can also penetrate into internal cracks and voids deep in the soil to increase integration.

〔実験例〕[Experiment example]

補強材の挿入が土の粘着力C及び摩擦角φに対して如何
なる関係を有するかについての実験を行った。以下、同
実験を説明する。
An experiment was conducted to examine the relationship between the insertion of reinforcing material and the adhesive force C of the soil and the friction angle φ. The experiment will be explained below.

なお、第9図は補強材の土の粘着力及び摩擦角への影響
を調査した実験において用いた土の粒度試験結果を示す
線図、第1O図及び第11図は同実験に用いた剪断箱及
び突固め具の説明図、第12図は補強材の径、本数nと
土の粘着力C及び摩擦角φとの関係説明図、第13図か
ら第15図は補強材の数による剪断強度の違いを説明す
る線図、第16図は補強材挿入角度による剪断強度の違
いを説明する線図、第17図は上記線図を総合した総括
図であり、第18図は補強材の配置と試験結果の関係を
示す説明図、第19図は試験後の補強材の変形を示す説
明図である。
Figure 9 is a diagram showing the soil particle size test results used in an experiment to investigate the influence of reinforcement materials on soil adhesion and friction angle, and Figures 1O and 11 are shear diagrams used in the experiment. An explanatory diagram of the box and tamping tool. Figure 12 is an explanatory diagram of the relationship between the diameter and number n of reinforcing materials and the adhesive force C of the soil and the friction angle φ. Figures 13 to 15 are shearing diagrams depending on the number of reinforcing materials. Figure 16 is a diagram to explain the difference in strength, Figure 16 is a diagram to explain the difference in shear strength depending on the reinforcing material insertion angle, Figure 17 is a summary diagram that combines the above diagrams, and Figure 18 is a diagram to explain the difference in shear strength depending on the reinforcing material insertion angle. FIG. 19 is an explanatory diagram showing the relationship between the arrangement and the test results, and FIG. 19 is an explanatory diagram showing the deformation of the reinforcing material after the test.

A、試料および試験方法 試料は長崎市東町付近で採取した角閃安山岩の″マサ”
状風化のブロックサンプルであって、その粗度組成は、
第9図に示ず通り、シルト質砂である。
A. Sample and test method The sample is “masa”, a hornblende andesite collected near Higashimachi, Nagasaki City.
The roughness composition is as follows:
As shown in Figure 9, it is silty sand.

(試料の調整) 試料(20)を粒度分布、含水比共に均等になる様には
くして再度調整した。
(Preparation of sample) Sample (20) was adjusted again so that the particle size distribution and water content ratio were equalized.

(試料の突固め) 剪断試験では、第10図に示す如く底板(21)を有す
る剪断箱(11)中で3層3回、第11図に示す突固め
具(12)で突固め均質とした。その突固め度は、ペネ
トロメーターを使用し、常に垂直力σはσ−5kgとし
た。補強材(13)は試料調整後挿入した。三軸圧縮試
験では、6N6回で突固め、剪断試験と同−突固め度と
し、下層より2層目で補強材(13)を挿入し、挿入し
たまま突固め具(]2)及び加圧板(22)を用いて突
固めた。
(Tampling of samples) In the shear test, three layers were tamped three times in a shearing box (11) having a bottom plate (21) as shown in Fig. 10, using a tamping tool (12) shown in Fig. 11 to make it homogeneous. did. The degree of tamping was determined using a penetrometer, and the vertical force σ was always set to σ-5 kg. The reinforcing material (13) was inserted after sample preparation. In the triaxial compression test, 6N was tamped six times, the tamping degree was the same as in the shear test, the reinforcing material (13) was inserted in the second layer from the bottom, and the tamping tool (] 2) and the pressure plate were inserted. (22) was used for tamping.

(補強材) 補強材(13)は0.9.1.2.1.5鮪径の3種類
の軟鉄線とし、長さは直接剪断では4.6cm、三軸圧
縮では6.0cmとした。
(Reinforcing material) The reinforcing material (13) was made of three types of soft iron wire with diameters of 0.9, 1, 2, and 1.5, and the length was 4.6 cm for direct shearing and 6.0 cm for triaxial compression. .

(試験法) 直接剪断試験では、補強材(13)は0本、1本。(Test method) In the direct shear test, there were 0 and 1 reinforcement (13).

2本、3本、5本の5種とし、その配置および結果を第
12図及び第1表に示す。
There were five types, 2, 3, and 5, and the arrangement and results are shown in FIG. 12 and Table 1.

三軸圧縮試験では、補強材(13)を0本、1本。In the triaxial compression test, 0 and 1 reinforcing material (13) were used.

2本、3本の4種とし、その配置および結果を第12図
に示す。
There were four types, two and three, and the arrangement and results are shown in FIG.

B、試験結果 今回の試験は、供試体中に異物を挿入した場合、異物に
よって供試体に如何なる変化が起るかを検討したもので
ある。その結果は、第1表及び第12図から第19図に
示す通り、粘着力Cの増加となって表われた。
B. Test Results This test examined what changes would occur in the specimen when a foreign object was inserted into the specimen. As shown in Table 1 and FIGS. 12 to 19, the results showed an increase in adhesive force C.

(+>第12図に示す通り、内部摩擦角φは、補強材(
13)の本数に関係なく、33°〜37°の間であった
(+> As shown in Figure 12, the internal friction angle φ is
13) was between 33° and 37°, regardless of the number of lines.

−(ii)粘着力Cは、補強材(13)の本数に比例し
て増加する。第12図では、増加した粘着力を補強材の
同表面積で除した値は、補強材(13)が1本の場合を
除き、はとんど返信する値で、0.029〜0.038
 kg f / cnlを示しテいル。平均値は0.0
33kgf/c司である。
-(ii) Adhesive force C increases in proportion to the number of reinforcing materials (13). In Figure 12, the value obtained by dividing the increased adhesive force by the same surface area of the reinforcing material is a value that is almost always returned, and is 0.029 to 0.038, except when there is only one reinforcing material (13).
The tail shows kg f/cnl. The average value is 0.0
It is 33kgf/c.

(iii )三軸圧縮試験では、増加粘着力を補強材(
13)の同表面積で除すと、その値は0.033〜0゜
036 kg f / cJとなり、直接剪断試験の値
とほぼ等しい値を示し、補強材(13)の周辺摩擦力に
よって粘着力を増加している。
(iii) In the triaxial compression test, the increasing adhesion force was determined by the reinforcement (
When divided by the same surface area of 13), the value is 0.033 to 0゜036 kgf/cJ, which is almost the same as the value of the direct shear test, and the adhesive force is determined by the peripheral frictional force of the reinforcing material (13). is increasing.

(iv)補強材(13)は、接着材によって砂粒をつけ
て摩擦係数を大きくしたものと、砂粒をっけないものと
では、砂粒をっけないものは(但し1本)全く補強効果
を発揮しない。
(iv) Regarding the reinforcing material (13), one has sand grains attached with an adhesive to increase the coefficient of friction, and the other has no sand grains.The one without sand grains (however, one reinforcing material) has no reinforcing effect at all. Does not perform well.

(V)試験後の補強材(13)の変形は、第19図の通
り、剪断箱00)の固定部分では動かず、剪断方向へ曲
っている。三軸圧縮試験では、補強材(13)の変形は
見られなかった。
(V) As shown in FIG. 19, the reinforcing material (13) after the test did not move in the fixed part of the shear box 00), but bent in the shearing direction. In the triaxial compression test, no deformation of the reinforcing material (13) was observed.

C0考察 上記試験の結果、補強材(13)の挿入によって、地盤
の見かけの粘着力が増加し、補強材(13)の周表面が
大きな摩擦係数を持つほど有利であることがわかる。
C0 Discussion As a result of the above test, it can be seen that the insertion of the reinforcing material (13) increases the apparent adhesion of the ground, and that it is more advantageous for the peripheral surface of the reinforcing material (13) to have a larger coefficient of friction.

〔発明の効果〕〔Effect of the invention〕

以上述べてきた如く、本発明は、土壌斜面に打設した補
強材の地表端同志を相互に強力に引寄せるように連結す
るとともに補強材の同表面積の増大によって土の粘着力
を著しく向上でき、これによって剪断強さを著しく増大
でき、土壌斜面を著しく安定させることができるという
効果を奏する。
As described above, the present invention connects the surface edges of the reinforcing material cast on the soil slope so as to strongly attract each other, and increases the surface area of the reinforcing material, thereby significantly improving the adhesion of the soil. This has the effect of significantly increasing the shear strength and significantly stabilizing the soil slope.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る安定化工法を施された土壌斜面の
断面図、第2図は補強材の同土壌斜面への作用の説明図
、第3図から第5図は補強材の周表面形状を示す補強材
の一部拡大説明図、第6図から第8図は補強材の配列態
様の説明図、第9図は補強材の土の粘着力及び摩擦角へ
の影響を調査した実験において用いた土の粒度試験結果
を示す線図、第10図及び第11図は同実験に用いた剪
断箱及び突固め具の説明図、第12図は補強材の径、本
数nと土の粘着力C及び摩擦角φとの関係説明図、第1
3図から第15図は補強材の数による剪断強度の違いを
説明する線図、第16図は補強材挿入角度による剪断強
度の違いを説明する線図、第17図は上記線図を総合し
た総括図であり、第18図は補強材の配置と試験結果の
関係を示す説明図、第19図は試験後の補強材の変形を
示す説明図である。 図中、 (1):土壌斜面 (2):地表端 (3):補強材 (4);棒状物 (5):ターンハソクル (7):大径環状部(8):
小径環状部 (9):溝 00):凸部 特許出願人 ケイエム企画株式会社 代理人 手掘 益(ばか1名) 第1図 図 第4図 第5図 第6図 第7図 第8図 第9図 第10図 第11図 第17図 σ(kgf/cポ) 第旧図 第19図
Figure 1 is a cross-sectional view of a soil slope that has been subjected to the stabilization method according to the present invention, Figure 2 is an explanatory diagram of the action of the reinforcement material on the soil slope, and Figures 3 to 5 are the surrounding areas of the reinforcement material. A partially enlarged explanatory diagram of the reinforcement material showing the surface shape, Figures 6 to 8 are explanatory diagrams of the arrangement of the reinforcement material, and Figure 9 is an investigation of the influence of the reinforcement material on soil adhesion and friction angle. A line diagram showing the results of the soil particle size test used in the experiment, Figures 10 and 11 are explanatory diagrams of the shear box and tamping tool used in the experiment, and Figure 12 shows the diameter and number n of reinforcement materials and the soil Explanatory diagram of the relationship between the adhesive force C and the friction angle φ, 1st
Figures 3 to 15 are diagrams that explain the difference in shear strength depending on the number of reinforcing materials, Figure 16 is a diagram that explains the difference in shear strength depending on the reinforcing material insertion angle, and Figure 17 is a diagram that combines the above diagrams. FIG. 18 is an explanatory diagram showing the relationship between the arrangement of the reinforcing material and the test results, and FIG. 19 is an explanatory diagram showing the deformation of the reinforcing material after the test. In the figure: (1): Soil slope (2): Ground surface edge (3): Reinforcement material (4); Rod-shaped object (5): Turning hook (7): Large diameter annular part (8):
Small-diameter annular portion (9): Groove 00): Protrusion Patent applicant: KM Planning Co., Ltd. Agent Masu Tegori (one idiot) Figure 1 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 17 σ (kgf/c port) Old figure Figure 19

Claims (1)

【特許請求の範囲】[Claims] 1、土壌斜面に規則的または不規則的に複数本の補強材
を打設し、同補強材を少くとも2本以上の等又は不等数
の複数群に分ち、各群毎に補強材同志の地表端をターン
バックルを有する棒状物又は線状物を用いて相互に引寄
せることによって土壌斜面に圧密力を発生させる補強材
による斜面の安定工法において、同補強材の周表面を土
との摩擦係数が大きい形状としたことを特徴とする補強
材挿入による斜面の安定化工法。
1. Place multiple reinforcing materials regularly or irregularly on the soil slope, divide the reinforcing materials into multiple groups of equal or unequal number of at least two reinforcing materials, and install reinforcing materials for each group. In a method of stabilizing slopes using reinforcing materials, which generates a compaction force on the soil slope by drawing together the surface edges of similar materials using rods or wires with turnbuckles, the peripheral surface of the reinforcing materials is connected to the soil. A method for stabilizing slopes by inserting reinforcing materials, which is characterized by having a shape with a large coefficient of friction.
JP59098410A 1984-05-15 1984-05-15 Stabilization method for slopes by inserting reinforcements Expired - Fee Related JPH086331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59098410A JPH086331B2 (en) 1984-05-15 1984-05-15 Stabilization method for slopes by inserting reinforcements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59098410A JPH086331B2 (en) 1984-05-15 1984-05-15 Stabilization method for slopes by inserting reinforcements

Publications (2)

Publication Number Publication Date
JPS60242223A true JPS60242223A (en) 1985-12-02
JPH086331B2 JPH086331B2 (en) 1996-01-24

Family

ID=14219058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59098410A Expired - Fee Related JPH086331B2 (en) 1984-05-15 1984-05-15 Stabilization method for slopes by inserting reinforcements

Country Status (1)

Country Link
JP (1) JPH086331B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142935A (en) * 1980-04-08 1981-11-07 K M Kikaku Kk Stabilized piling method for earth slope

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142935A (en) * 1980-04-08 1981-11-07 K M Kikaku Kk Stabilized piling method for earth slope

Also Published As

Publication number Publication date
JPH086331B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US5145285A (en) Discontinuous structural reinforcing elements and method of reinforcing and improving soils and other construction materials
Das Pullout resistance of vertical anchors
US4958962A (en) Methods of modifying the structural integrity of subterranean earth situs
Hong et al. Pullout resistance of single and double nails in a model sandbox
JPS60242223A (en) Stabilization work for slope by insertion of reinforcement
Kurian et al. Studies on the behaviour of axially loaded tapered piles by the finite element method
JPH05302318A (en) Method and apparatus for stabilizing friction soiland adjacent cohesion soil layers
Brown et al. Axial capacity of augered displacement piles at Auburn University
Fakher et al. Experimental study of relative density effect on bearing capacity of sand reinforced with geogrid
Al-Recaby Assessing the increase in bearing capacity of bored piles in sandy soil using expansive additives
Vesic Load transfer, lateral loads, and group action of deep foundations
JPH0748833A (en) Foundation pile structure
JPH0548816B2 (en)
Ikeda et al. A study on damping and mitigation performance of side surfaces of foundations on soft soil-Part 1: Forced vibration tests of foundation block with various embedment conditions
WO1991018150A1 (en) Elements and methods for reinforcing soil-like materials
JPS5942148B2 (en) Slope stabilization method using anchor rods
JP7168328B2 (en) Slope reinforcement work and construction method of slope reinforcement work
Makki et al. Modeling and Analysis Variable Cross Section Pile Driven in Sandy Soil using Finite Element
JP2927612B2 (en) Foundation method
Akinmusuru Multibell and block anchor capacities in sand
JPH01226913A (en) Improvement works of weak ground
JPH1037650A (en) Drilling device for foundation ground
Al-Kaisi et al. Mathematical estimation for the bearing capacity of sand column inserted in soft clay soil
JPH0548817B2 (en)
Evirgen et al. In-Situ Evaluation of Adhesion Resistance in Anchor Root Zone

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees