JPS6024182B2 - Automatic control device for metal surface treatment liquid - Google Patents

Automatic control device for metal surface treatment liquid

Info

Publication number
JPS6024182B2
JPS6024182B2 JP57171670A JP17167082A JPS6024182B2 JP S6024182 B2 JPS6024182 B2 JP S6024182B2 JP 57171670 A JP57171670 A JP 57171670A JP 17167082 A JP17167082 A JP 17167082A JP S6024182 B2 JPS6024182 B2 JP S6024182B2
Authority
JP
Japan
Prior art keywords
concentration
surface treatment
amount
metal surface
treatment liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57171670A
Other languages
Japanese (ja)
Other versions
JPS5964780A (en
Inventor
喜夫 盛屋
安信 松島
与吉 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Parkerizing Co Ltd
Original Assignee
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Parkerizing Co Ltd filed Critical Nihon Parkerizing Co Ltd
Priority to JP57171670A priority Critical patent/JPS6024182B2/en
Publication of JPS5964780A publication Critical patent/JPS5964780A/en
Publication of JPS6024182B2 publication Critical patent/JPS6024182B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/77Controlling or regulating of the coating process

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【発明の詳細な説明】 本発明は金属表面を処理するための各種処理液を自動的
に制御することができる制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control device that can automatically control various treatment liquids for treating metal surfaces.

金属製品の表面を洗浄し、その表面に化成皮膜、メッキ
等を連続的に形成させる表面処理ラインの装置は、一般
に金属製品を搬送する手段、金属製品をスプレー法又は
浸債法等により表面処理する手段、薬剤を補給する手段
及び表面処理するに必要な処理液の成分、濃度及び温度
を検出、測定し、制御する装置いわゆる自動制御装置か
ら構成される。本発明は金属表面処理液(以下処理液と
いう)の成分、濃度を自動的に検出測定し、制御する装
置、いわゆる処理液の自動制御装置に関するものであり
、表面処理ラインの処理液を自動制御する方法において
、処理される金属製品の単位時間あたりの個数を計測又
は処理面積を演算し、処理される金属製品の個数、又は
処理面積に対応して消費される処理液の成分を、処理さ
れる金属製品の処理個数又は処理面積に応じた量だけ薬
剤を補給する手段、及び処理液の濃度を測定する手段に
より該処理液の濃度を測定して上記手段による補給量を
調整する手段とにより構成される処理液の自動制御装置
に関するものである。
Surface treatment line equipment that cleans the surface of metal products and continuously forms a chemical conversion film, plating, etc. on the surface is generally a means of transporting the metal products, and a surface treatment method such as spraying or dipping. It consists of a device for detecting, measuring, and controlling the components, concentration, and temperature of the treatment liquid necessary for surface treatment, a so-called automatic control device. The present invention relates to a device that automatically detects, measures, and controls the components and concentrations of a metal surface treatment liquid (hereinafter referred to as treatment liquid), a so-called automatic treatment liquid control device, and is used to automatically control the treatment liquid in a surface treatment line. In the method of means for replenishing the chemical in an amount corresponding to the number of metal products to be treated or the area to be treated, and means for measuring the concentration of the treatment liquid using a means for measuring the concentration of the treatment liquid and adjusting the amount of replenishment by the above means. The present invention relates to an automatic control device for processing liquid.

尚、本発明において、金属製品には各種缶類、自動車ボ
デ−、冷蔵庫ボデー、その他あらゆる形状の金属製品、
金属ストリップ、及び金属功板などが含まれる。一般に
、金属製品を表面処理する場合、洗浄表面の祥状、皮膜
の特性は処理液の成分、濃度、温度及び処理時間によっ
て定まり、所望する性状、特性を得るには処理液の成分
、濃度を最適値の狭い範囲に制御しなければならない。
処理液は処理によって、溶液中の化学成分が金属と反応
し、処理過程中に不要成分及び妨害イオンが混入、蓄積
する。又、処理液は物理的に金属製品により特出され、
或はミストとなって飛散する。このため、処理液は消耗
して成分、濃度が減少する。従って、処理液の成分、濃
度を薬剤によって連続的あるいは定期的に補給し処理液
の化学成分を所要濃度に維持しなければならない。この
制御手段は手動で行うこともあるが、従来より自動制御
装置が用いられており、これらの装置は処理液のpH、
電導度、酸化還元電位、及び金属イオン、F′、CN′
等の特定成分の濃度測定器を用い、処理液の濃度測定値
が所定の値より低い場合、濃度測定器と連動したポンプ
が作動し薬剤を処理液に補給して、所定の測定値になる
ように連続的に制御することができる。
In the present invention, metal products include various cans, automobile bodies, refrigerator bodies, and other metal products of all shapes.
Includes metal strips, metal gong plates, etc. Generally, when surface-treating metal products, the texture of the cleaned surface and the characteristics of the film are determined by the components, concentration, temperature, and treatment time of the treatment solution.To obtain the desired properties and characteristics, the components and concentration of the treatment solution are determined. It must be controlled within a narrow range of optimal values.
As the treatment liquid is processed, chemical components in the solution react with metals, and unnecessary components and interfering ions are mixed in and accumulated during the treatment process. In addition, the processing liquid is physically extracted by metal products,
Or it becomes a mist and scatters. Therefore, the processing liquid is consumed and its components and concentration decrease. Therefore, it is necessary to continuously or periodically replenish the components and concentration of the processing solution using chemicals to maintain the chemical components of the processing solution at the required concentration. This control means may be performed manually, but conventionally automatic control devices have been used, and these devices control the pH of the processing liquid,
Conductivity, redox potential, and metal ions, F', CN'
If the measured concentration of the processing liquid is lower than a predetermined value using a concentration measuring device for a specific component such as, a pump linked to the concentration measuring device is activated and replenishes the chemical to the processing liquid to reach the predetermined measured value. It can be controlled continuously.

これらの自動制御方法及び装置に関する発明の例として
は、特公昭44−7606、特公昭44一16203特
公昭45−27錠紙、特公階51一37621、侍公昭
54−35517等を挙げることができる。
Examples of inventions related to these automatic control methods and devices include Tokuko Publication No. 44-7606, No. 44-16203 No. 45-27 Lock Paper, No. 51-37621 No. 51-37621, and Samurai No. 54-35517. can.

従来より公知な自動制御装置はいずれも処理液の成分の
濃度をpH、電導度、イオン電極、酸化還元電極等の測
定方法の単独又は組合せにより測定し、処理液の濃度が
設定濃度範囲の下限値より低下した場合に、その値が設
定濃度範囲の上限値に達するまで薬剤を補給する方法、
すなはちフィードバック法による処理液の濃度制御方法
がとられていた。しかしながら、本発明者らの経験及び
種々の実験によると、実際に制御されている処理液の濃
度が下記理由により設定濃度範囲より大きく変動する欠
点があった。
Conventionally known automatic control devices all measure the concentration of the components of the treatment liquid by measuring methods such as pH, conductivity, ion electrode, redox electrode, etc., either alone or in combination, and when the concentration of the treatment liquid is at the lower limit of the set concentration range. A method of replenishing the drug until the value reaches the upper limit of the set concentration range when the value drops below the set concentration range;
In other words, a feedback method was used to control the concentration of the processing solution. However, according to the experience and various experiments of the present inventors, there was a drawback that the concentration of the actually controlled treatment liquid fluctuated more than the set concentration range for the following reasons.

即ち、実際の表面処理ラインでは、或る時点で処理液に
加えられた薬剤が、それが加えられてから処理液に均一
に溶解し、その一部の液が自動制御装置に移送され、そ
の装置内の濃度測定器にて測定が開始されるまでに3〜
13分を要するのが通例であり、いわゆる自動制御にお
けるむだ時間が3〜15分生ずるのである。処理液の濃
度変化が緩慢な場合は3〜13分間のむだ時間は問題な
いが、処理槽の容量に比較して、単位時間当りの金属製
品の処理面積が大きい場合、つまり加工負荷率の高い場
合は処理液の濃度変化が激しいので、3〜18分のむだ
時間の影響により、濃度を精度良く一定に保つ事は困簸
であった。一般にむだ時間が大きい程制御誤差が大きく
なるので適正な制御が困難になってくることは自動制御
理論により知られている。以上におけるような精度の低
下により、処理液の濃度が設定濃度範囲より大きく変動
すると、不必要に薬剤を補給することから処理液の濃度
変動がそれだけ大きくなりそれから連続的に安定した品
質の表面処理皮膜を得ることが困難である。
That is, in an actual surface treatment line, a chemical added to the treatment liquid at a certain point is uniformly dissolved in the treatment liquid after it is added, and a part of the liquid is transferred to an automatic control device and then 3 to 3 minutes before measurement starts with the concentration measuring device inside the device.
It usually takes 13 minutes, and there is a dead time of 3 to 15 minutes in so-called automatic control. A dead time of 3 to 13 minutes is not a problem if the concentration of the processing solution changes slowly, but if the processing area of metal products per unit time is large compared to the processing tank capacity, that is, the processing load rate is high. In this case, since the concentration of the treatment liquid changes drastically, it is difficult to maintain the concentration accurately and constant due to the dead time of 3 to 18 minutes. It is known from automatic control theory that generally speaking, the larger the dead time, the larger the control error, and therefore the more difficult it is to achieve proper control. If the concentration of the processing liquid fluctuates beyond the set concentration range due to the decrease in accuracy as described above, the chemical will be replenished unnecessarily, and the fluctuations in the concentration of the processing liquid will increase accordingly, resulting in surface treatment with a continuously stable quality. It is difficult to obtain a film.

本発明者らはこれらの欠点を解消する為、種々検討した
結果、処理液の濃度測定のみによる従釆の制御方法を改
善し、本発明を完成した。本発明による制御方法を以下
に述べる。
In order to eliminate these drawbacks, the present inventors conducted various studies, and as a result, improved the control method of the sub-chamber only by measuring the concentration of the processing liquid, and completed the present invention. The control method according to the present invention will be described below.

まず、金属製品の箇数を計測又は単位表面積当りに消費
される成分濃度をあらかじめ測定し算出する。
First, the number of metal products or the component concentration consumed per unit surface area is measured and calculated in advance.

これより、実際に処理される金属製品の個数又は表面積
に応じた薬剤消費量を制御装置内のコンピューターによ
り演算して、薬剤を補給する。この様に補給を行うと共
に処理液の濃度を濃度測定器にて測定し、その濃度が設
定範囲に維持されていることを確認する。もし、設定範
囲に維持できないときには、コンピューターが先の処理
物一個当り、又は単位表面積当りに消費される処理液の
成分濃度を自動的にチェックし、その消費量の補正を行
なう事により薬剤補給量を調節し、もって濃度を設定範
囲に維持できるようにする。補正方法については後述す
る。この様に制御を行うと処理面積に応じた量の薬剤が
処理を行うと同時に補給されるので、たとえa,bの値
が適正値から多少外れている場合でも濃度はほぼ一定に
保たれ、濃度変化は非常に緩慢となる。
From this, the computer in the control device calculates the consumption amount of the medicine according to the number or surface area of the metal products actually treated, and replenishes the medicine. While replenishing in this manner, the concentration of the processing liquid is measured with a concentration measuring device to confirm that the concentration is maintained within the set range. If it cannot be maintained within the set range, the computer automatically checks the component concentration of the processing liquid consumed per object to be processed or per unit surface area, and corrects the consumption amount to adjust the amount of chemical replenishment. to maintain the concentration within the set range. The correction method will be described later. When controlled in this way, the amount of chemicals corresponding to the treated area is replenished at the same time as the treatment, so even if the values of a and b are slightly different from the appropriate values, the concentration is kept almost constant. Concentration changes will be very slow.

(この様子は実施例を参照)濃度変化が緩慢であれば3
〜15分のむだ時間の影響はほとんど取除かれ、設定濃
度に対して極めて狭い範囲に制御することができる。表
面処理ラインは定常状態で稼動しているとは限らず、時
には完全操業時の1/5あるいは1/10の稼動率の場
合があり、又、時折ラインが停止する事があるので、従
来法では制御する処理液の濃度が以上の様な稼動状況の
差異によって変動し、設定値から大きく外れる事があっ
た。
(Refer to Examples for this situation) If the concentration change is slow, 3
The effect of the ~15 minute dead time is almost eliminated, and the set concentration can be controlled within a very narrow range. The surface treatment line does not always operate in a steady state, and sometimes the operating rate is 1/5 or 1/10 of full operation, and the line sometimes stops, so the conventional method In this case, the concentration of the processing liquid to be controlled fluctuates due to the above-mentioned differences in operating conditions, and sometimes deviates significantly from the set value.

処理液の濃度が大きく変動すると、形成される皮膜品質
は変動、低下し、不必要に薬剤が消費されることになる
。本発明装置の適用により処理液の濃度を従来のフィー
ドバック法による自動制御に比較し、極めて狭い範囲内
に維持することができ、これにより、表面処理ラインで
連続的に処理される皮膜品質を一定、高品質に保つこと
ができると共に無駄な補給がなくなり、薬剤の消費量を
減少させることができるので経済的にも好ましい結果が
得られる。
If the concentration of the treatment solution fluctuates greatly, the quality of the formed film will fluctuate and deteriorate, resulting in unnecessary consumption of chemicals. By applying the device of the present invention, the concentration of the treatment liquid can be maintained within an extremely narrow range compared to automatic control using conventional feedback methods, and this allows the quality of the coating that is continuously processed in the surface treatment line to be constant. Since high quality can be maintained, wasteful replenishment is eliminated, and the amount of medicine consumed can be reduced, economically favorable results can be obtained.

従来のフィードバック方式における薬液自動制御におい
て、pH、電導度、イオン電極等の濃度測定器は処理液
により汚染、劣化する事が多く、所定の感知機能が減退
して実際の処理液濃度とかなり異つた値を示す場合があ
る。
In conventional automatic control of chemical solutions using the feedback method, concentration measuring instruments such as pH, conductivity, and ion electrodes are often contaminated and deteriorated by the processing solution, and their designated sensing functions are diminished, resulting in significant differences from the actual processing solution concentration. In some cases, this value may be indicated.

この様な場合、濃度測定器の値のみを基にして制御を行
うため、設定の濃度とかなり異つた濃度に制御されてし
まい、ライントラブルを招来させる結果となる事が多々
発生した。本発明による自動制御装置は前記の様な濃度
測定器の汚染、劣化等による感知機能の減退を検出する
事が可能である。これによりこの様な濃度測定器の異常
を検出した場合には警報を出して知らせ、濃度測定器の
交換を促す事によって、ライントラブルを未然に防ぐ事
が可能となった。この様な濃度測定器の異常の検出方法
については実施例の末尾において説明する。次に、本発
明による自動制御装置を図示の実施例に基き説明する。
In such cases, since control is performed only based on the value of the concentration measuring device, the concentration is often controlled to a value that is quite different from the set concentration, resulting in line troubles. The automatic control device according to the present invention is capable of detecting a decline in the sensing function due to contamination, deterioration, etc. of the concentration measuring device as described above. This makes it possible to prevent line troubles by issuing an alarm when such an abnormality is detected in the concentration measuring device and prompting the concentration measuring device to be replaced. A method for detecting such an abnormality in the concentration measuring device will be explained at the end of the embodiment. Next, an automatic control device according to the present invention will be explained based on an illustrated embodiment.

例として、飲料缶のクロメート処理におけるクロメート
処理液の浴管理を掲げる。まず以下の成分を有する処理
液を調製し、この処理液にて下記のアルミ缶のクロメー
ト処理を行い、その濃度制御を行う場合について説明す
る。
As an example, bath management of chromate treatment liquid in chromate treatment of beverage cans is given. First, a case will be described in which a treatment liquid having the following components is prepared, and the following chromate treatment is performed on an aluminum can using this treatment liquid, and the concentration is controlled.

処理液成分 濃 度Cず十 1.舷/そ P043− 9.槌/そ 遊離F‐ 0.17g/そ(17の風)アルミ缶ア
ルミDI缶(Drawing&Ironing)寸法
67収め×169岬第1図においてクロメート処理液
は処理槽1に満たされ、処理槽1に連結するスプレーポ
ンプ2を介して処理槽1の上部に配置されたスプレーノ
ズル3に送られて頃霧される。
Processing liquid component concentration C 1. Ship/side P043- 9. Hammer/So Free F- 0.17g/So (17 Wind) Aluminum Can Aluminum DI Can (Drawing & Ironing) Dimensions
67 cases x 169 capes In Fig. 1, the chromate treatment liquid is filled in the treatment tank 1, and is sent to the spray nozzle 3 placed at the top of the treatment tank 1 via the spray pump 2 connected to the treatment tank 1, where it becomes a mist. be done.

この頃落されている処理液中に脱脂・水洗工程を経て充
分に洗浄されたアルミ缶4が連続的に搬送されてクロメ
ート処理液と接触する。これによってアルミ缶4の表面
にクロメート皮膜が形成され、この際処理液の成分が一
部消費される。頃霧された処理液はその後回収され、処
理槽1に戻るが、その一部はアルミ街4及び、その搬送
機器に付着して次の水洗工程に特出され消費される。ア
ルミ缶4は処理される際に、その缶数が缶計数機5によ
って計数され、その値を演算制御器7に送る。
Aluminum cans 4, which have been thoroughly cleaned through the degreasing and water washing process, are continuously conveyed into the treatment liquid that has been dropped into the treatment liquid and come into contact with the chromate treatment liquid. As a result, a chromate film is formed on the surface of the aluminum can 4, and at this time, some of the components of the treatment liquid are consumed. The atomized treatment liquid is then collected and returned to the treatment tank 1, but a portion of it adheres to the aluminum street 4 and its conveyance equipment and is extracted and consumed in the next water washing process. When the aluminum cans 4 are processed, the number of cans is counted by a can counter 5 and the value is sent to an arithmetic controller 7.

処理液の一部はスプレーポンプ2を介して濃度測定器6
に送られ、処理液の濃度が測定される。濃度測定器とし
て、例えば東亜電波工業■製のフッ素イオン電極F−1
25及びフッ素アンプを用い遊離フッ素イオンを測定し
、又同社製導電率セル及び導電率アンプを用いて電気伝
導度を測定した。測定された遊離フッ素値、及び電気伝
導度値は演算制御器7に送られる。演算制御器7は例え
ば日本電気■製ぷPD780マイクロプロセッサを用い
た、いわゆるマイクロコンピューターでこれにより後述
の演算制御を行う。演算制御器7は補給ポンプ8及び9
をON−OFFする事により主補給薬剤10及び副補給
薬剤11を処理槽1に補給し、これにより濃度制御を行
う。各剤の成分は以下に示す。王補給剤 Cぐ十
60g/クP〇43− 410g/ぞ 劉補給剤 F− 20雌ノククィム酸イ
オン及びリン酸イオンは主に皮膜となる成分であるが、
これらによって処理液の電気伝導度はほとんど支配され
る。
A part of the processing liquid is sent to a concentration measuring device 6 via a spray pump 2.
The concentration of the treatment liquid is measured. As a concentration measuring device, for example, fluorine ion electrode F-1 manufactured by Toa Denpa Kogyo ■
Free fluorine ions were measured using No. 25 and a fluorine amplifier, and electrical conductivity was measured using a conductivity cell and a conductivity amplifier manufactured by the same company. The measured free fluorine value and electrical conductivity value are sent to the arithmetic controller 7. The arithmetic controller 7 is a so-called microcomputer using, for example, a NEC Corporation PD780 microprocessor, and performs the arithmetic control described later. Arithmetic controller 7 connects replenishment pumps 8 and 9
By turning ON and OFF the main replenishment agent 10 and the sub-replenishment agent 11 are supplied to the processing tank 1, thereby controlling the concentration. The components of each agent are shown below. King Replenishment Agent C Guju 60g/Ku P〇43- 410g/Zo Liu Replenishment Agent F-20 Female nokkimic acid ions and phosphate ions are the main components that form the film, but
The electrical conductivity of the treatment liquid is mostly controlled by these factors.

換言するとクロム酸、リン酸イオン濃度は電気伝導度を
一定に制御する事により一定に保つ事ができる。又、遊
離フッ素イオンは皮膜生成反応を促進するので、一定品
質のクロメート皮膜を生成するには、この遊離フッ素イ
オンを一定に保つ事が最も重要であり、この濃度はフッ
素イオン電極によって測定する。従って、電気伝導度を
測定する事により主補給剤の補給量を制御し、遊離フッ
素イオンを測定する事により副補給剤の補給量を制御す
る。従来の制御方法ではこれらの濃度を測定し、その設
定範囲より低い場合は補給ポンプを稼動して補給する事
により、濃度を一定に保つわけであるが、本発明では演
算制御器7により、以下に示す制御を行つo本発明によ
る制御手段を具体的に述べるが、電導度フッ素について
全く同様の制御を行う為、フッ素の制御を例に取って説
明する。
In other words, the chromic acid and phosphate ion concentrations can be kept constant by controlling the electrical conductivity. Furthermore, since free fluorine ions promote the film formation reaction, it is most important to keep the free fluorine ions constant in order to produce a chromate film of constant quality, and this concentration is measured using a fluorine ion electrode. Therefore, by measuring the electrical conductivity, the amount of the main replenisher is controlled, and by measuring the free fluorine ions, the amount of the sub-replenisher is controlled. In the conventional control method, these concentrations are measured, and if they are lower than the set range, the replenishment pump is operated to replenish the concentration to keep the concentration constant, but in the present invention, the arithmetic controller 7 performs the following: The control means according to the present invention that performs the control shown in FIG.

まず補給は次の式に従って、コンピューターが補給量を
演算し補給を行う。
First, the computer calculates the amount of replenishment according to the following formula and performs replenishment.

式−1 遊離フッ素の補給量=処理缶数 ×単位消費量
+機械的損失量r m a b(g/分)
(缶/分) ( /缶)( ごここで単位消費量aと
はアルミ缶−缶当りの推定される遊離フッ素の消費量で
ある。
Formula-1 Replenishment amount of free fluorine = number of cans processed × unit consumption amount
+ Mechanical loss r m a b (g/min)
(can/min) (/can) (Here, the unit consumption amount a is the estimated consumption amount of free fluorine per aluminum can.

また、機械的損失量bは処理液の機械的損失による遊離
フッ素の損失量であって缶の表面処理に基因しない損失
量、例えば空スプレーによる処理液中の成分の分解及び
金属表面処理装置の特去り、漏れなどに起因する損失を
示す。この様にして遊離フッ素の補給量が演算され、遊
離フッ素の補給が行なわれるが、a,bの値が適正でな
い場合は連続的に遊離フッ素濃度(以下濃度と云う)が
増加、又は減少して行くのでこの場合に制御装置が自動
的に濃度を測定し、この値により、a,bの値を検定補
正する。
The mechanical loss b is the amount of free fluorine lost due to mechanical loss of the processing liquid and is not due to the surface treatment of the can, such as decomposition of components in the processing liquid due to empty spraying and metal surface treatment equipment. Indicates losses due to special removal, leakage, etc. In this way, the amount of free fluorine to be supplied is calculated and free fluorine is replenished. However, if the values of a and b are not appropriate, the free fluorine concentration (hereinafter referred to as concentration) will continuously increase or decrease. In this case, the control device automatically measures the concentration, and uses this value to verify and correct the values of a and b.

なお、以下の演算制御方法は全てコンピューターにプロ
グラム化されるのでこれにより実現される。a,bの検
定補正方法は、ある一定期間T,(分)を取り、最初の
濃度をC,(g/〆)とし最後の濃度をC2(g/そ)
とする。
Note that all of the calculation control methods described below are realized by being programmed into a computer. The verification correction method for a and b is to take a certain period of time T, (minutes), set the initial concentration as C, (g/〆), and set the final concentration as C2 (g/s).
shall be.

期間内の遊離フッ素の総補給量(以下総補給量と云う)
をR,(g)とし、総処理缶数をN,とする。処理液の
体積をV(ク)とすると、総補給量の誤差はV×(C2
−C,)となるので適正な総補給量はR,一Vx(C2
−C,)である。同様に他に一定期情m2(分)を取り
、濃度をC3、C4、総補給量をR2、総処理缶数をN
2とすると適正総補給量は、R2−V×(C4−C3)
である。
Total supply amount of free fluorine during the period (hereinafter referred to as the total supply amount)
Let R, (g) be R, and the total number of cans processed be N. If the volume of the processing liquid is V, then the error in the total replenishment amount is V x (C2
-C, ), so the appropriate total supply amount is R, -Vx(C2
-C,). Similarly, taking other constant conditions m2 (minutes), the concentration is C3, C4, the total supply amount is R2, and the total number of cans processed is N.
2, the appropriate total supply amount is R2-V x (C4-C3)
It is.

これより、式−2 R,一Vx(C2−C,)=N,×a十b×T,R2−
V×(C4一C3)=N2xa+b×T2の連立方程式
を解く事により、適正なa,b値が求められる。
From this, formula-2 R, -Vx (C2-C,) = N, ×a + b × T, R2-
By solving the simultaneous equations of V×(C4-C3)=N2xa+b×T2, appropriate a and b values can be obtained.

コンピュ−夕一により、連立方程式を解く具体的な手法
の例としては、ガウス・ジョルダン法などがあり一般に
良く知られているのでここでは省略する。以上の制御プ
ロセスを実際の数値を代入して下記に示す。
A specific example of a method for solving simultaneous equations using a computer is the Gauss-Jordan method, which is generally well known and will therefore be omitted here. The above control process is shown below by substituting actual values.

まず、当初のa,bの値をも,boとしてそれぞれ次の
様に定める。ろ=0.002雌/缶、〜=0.2酸/分
これよりr(g/分)=n(缶/分)× 0.0020gノ缶+0.25gノ分の式によりコンピ
ューターが補給量を演算して補給を行いながら処理を行
った。
First, the initial values of a and b are also determined as bo, respectively, as follows. ro = 0.002 female/can, ~ = 0.2 acid/min From this, the computer calculates the replenishment amount using the formula r (g/min) = n (can/min) x 0.0020 g can + 0.25 g min. Processing was performed while calculating and replenishing.

最初の1時間は200缶/分のべ−スで、次の1時間は
60戊石/分のベースで処理を行った。その結果次の様
になった。なお、設定濃度は0.17雌/夕(17瓜血
)、処理液の体積Vは2000そである。最初の1時間
(20巧五/分ベースで処理)最初の濃度C,=0.1
70gノそ(17の蝿)最後の濃度C2=0.172g
ノク(17数伽)総処理缶数N,=1240坊五総補給
量R,=1240坊古×0.0020g/缶+0.25
g/分×60分=39.礎次の1時間(60畔石/分ベ
ースで処理)最初の濃度C3=0.17を/そ(】7か
血)最後の濃度C4=0.18※/夕(183岬)総処
理缶数N2=3540畔古総補給量 R2=3540畔
古×0.0020g/缶+0.25gノ分x6粉二=8
5.総以上の値は、コンピューター内部に記憶され、こ
れらの値を用いコンピューターが次の連立方程式を解く
ことにより、a,bの値を自動的に補正する。
Processing was carried out at a rate of 200 cans/min for the first hour and at a rate of 60 cans/min for the second hour. The result was as follows. The set concentration was 0.17 females/unit (17 melon blood), and the volume V of the treatment liquid was 2000 units. First hour (processed on a 20 minute basis) Initial concentration C, = 0.1
70g pieces (17 flies) Final concentration C2 = 0.172g
Noku (17 Sukka) Total number of cans processed N, = 1240 Bogo total supply amount R, = 1240 Boko x 0.0020g/can + 0.25
g/min x 60 min = 39. The next 1 hour of foundation (processing on a base of 60 rocks/min) Initial concentration C3 = 0.17 / So (]7 blood) Last concentration C4 = 0.18 * / Evening (183 Cape) Total processing can Number N2 = 3540 Danko total supply amount R2 = 3540 Hanko x 0.0020g/can + 0.25g portion x 6 powder 2 = 8
5. The values above the total are stored inside the computer, and the computer automatically corrects the values of a and b by solving the following simultaneous equations using these values.

39.総−2000そ×(0.17衣/夕−0.170
g/そ)=1240坊去Xa+bX60分 35.礎−2000夕×(0.18巡/そ−0.17を
/夕)二3540坊五×a+b×6び分 ,.a=0.00122gノ缶、b=0.345gノ分
この様にa,bが補正されたので以後の制御はこのa,
bを用いて行う。
39. Total -2000 sox (0.17 clothes/evening -0.170
g/so) = 1240 Bogo Xa + bX 60 minutes 35. Foundation - 2000 evenings x (0.18 rounds / so - 0.17 evenings) 23540 bows 5 x a + b x 6 minutes, . Since a and b have been corrected in this way for a = 0.00122g can and b = 0.345g, the subsequent control will be as follows:
This is done using b.

a,bが適正な値に近づくにつれて濃度変化が緩慢にな
るので、補正に用いる一定期間(前記例では60分間)
を長くして行なうことにより、より精密な補正が可能と
なり濃度も一定値を安定に保つ事が可能となる。第2図
は前記例と同じ処理条件において、従来方式の濃度測定
によるON−OFF制御を行った結果をグラフに示した
ものである。この方式では濃度が設定値0.17g/夕
を越えた事が検出されてから補給を停止する為にオーバ
ーシュートがあり、又濃度減少過程ではこの逆となるの
で、結果としてかなりの制御誤差が出て来る。またこの
過程は処理缶数によって異なる。第3図は前記例と同じ
処理条件において、本発明の装置により実施し、充分検
定補正が行われた後に、同条件で制御を行った結果をグ
ラフに示したものである。
As the density changes become slower as a and b approach appropriate values, a certain period of time (60 minutes in the above example) used for correction.
By making the time longer, more precise correction becomes possible, and the density can be stably maintained at a constant value. FIG. 2 is a graph showing the results of ON-OFF control using conventional concentration measurement under the same processing conditions as in the previous example. In this method, there is an overshoot because replenishment is stopped after the concentration exceeds the set value of 0.17 g/night, and the opposite occurs during the concentration reduction process, resulting in a considerable control error. Come out. Also, this process differs depending on the number of cans to be processed. FIG. 3 is a graph showing the results obtained by carrying out the process using the apparatus of the present invention under the same processing conditions as in the previous example, and performing control under the same conditions after sufficient verification correction was performed.

この制御では処理缶数に応じてあらかじめ補給を行うの
で、従来方式の様に大きな濃度変化はなく、濃度が略一
定となって安定化する。次に濃度測定器の故障検出につ
いて述べる。
In this control, replenishment is performed in advance according to the number of cans to be processed, so there is no large change in concentration unlike in the conventional system, and the concentration is stabilized to be approximately constant. Next, we will discuss failure detection of the concentration measuring device.

濃度測定器、特に本例に示すフッ素イオンメーターは、
イオン電極の部分が劣化し、又は汚れ付着等によって実
際の濃度とかなり異る値を示す場合がある。この様な場
合、従釆のフィードバック方式では濃度測定器の示す値
により制御を行うので、制御装置上では正常な濃度に制
御している様に見えるが、実際の濃度はかなり異る値と
なり、ライントラブルを生じる事があった。本発明の手
段は 補 給 量 =処理缶数 ×単位消費量 十機械
的損失量r n a b(g/分)(缶/分
)(g/缶)(g/分)の式により補給を行う。
Concentration measuring instruments, especially the fluorine ion meter shown in this example,
Due to deterioration of the ion electrode portion or the adhesion of dirt, the ion electrode may exhibit a value considerably different from the actual concentration. In such cases, the secondary feedback method performs control based on the value indicated by the concentration measuring device, so although it appears to be controlling the concentration to a normal level on the control device, the actual concentration may be a considerably different value. There were times when line troubles occurred. The means of the present invention performs replenishment using the formula: replenishment amount = number of cans processed × unit consumption amount + mechanical loss r na b (g/min) (cans/min) (g/cans) (g/min) conduct.

a,bの値は処理ライン、処理缶によって定まる定数で
設定濃度、温度、搬送速度等により、多少は変化する。
しかし設定濃度、温度、搬送速度等も大幅に変更する性
質のものではないので、a,bの値はある一定範囲内に
入る。ところが濃度測定器が異常となった場合はこの継
続使用によりa,bの値は前記一定範囲を大幅に逸脱す
る様な値となってしまう。何故なら、a,bの値は、前
述の式−2により補正されるわけであるが、式−2にお
けるC,,C2,C3,C4の値は、それぞれ濃度測定
器により測定された濃度値であるので、もし、濃度測定
器が異常となれば、C,〜C4の値が異常な値となり、
それにより、a,bの値も又異常な値としてしまうので
ある。本発明においては、コンピューターが常にa,b
の値を監視し、もし、それ等の単独又は双方の値が設定
範囲の限度に到達した場合には、コンピューターが直ち
に自動的に警報を出すようにプログラム化してあり、も
って、a,bの値を異常な値にする要因即ち濃度測定器
の異常を知らせるようにしたので、現場作業者は警報に
よりこれを知り、迅速に正常な濃度測定器と交換できる
ようになった。
The values of a and b are constants determined by the processing line and processing can, and vary somewhat depending on the set concentration, temperature, conveyance speed, etc.
However, since the set concentration, temperature, conveyance speed, etc. are not of a nature that changes significantly, the values of a and b fall within a certain range. However, if the concentration measuring device becomes abnormal, the values of a and b will significantly deviate from the above-mentioned fixed range due to its continued use. This is because the values of a and b are corrected by the above-mentioned formula-2, but the values of C, , C2, C3, and C4 in formula-2 are the concentration values measured by the concentration measuring device. Therefore, if the concentration measuring device becomes abnormal, the values of C, ~ C4 will become abnormal values,
As a result, the values of a and b also become abnormal values. In the present invention, the computer always has a, b
The computer is programmed to monitor the values of a and b, and if one or both of them reach the limits of the set range, the computer is programmed to immediately and automatically issue an alarm. Since the system is designed to notify the cause of the abnormal value, that is, the abnormality of the concentration measuring device, the on-site workers are informed by the alarm and can quickly replace the concentration measuring device with a normal concentration measuring device.

従って、a,bの値の異常化を迅速に抑える事が可能と
なったのである。かくして、桑剤補給量rの異常化は抑
制され、これにより処理液の濃度が設定範囲外になるの
が抑制されるので、これに基〈ライントラブルを回避す
ることができると云う優れた効果を奏するのである。
Therefore, it has become possible to quickly suppress abnormalities in the values of a and b. In this way, abnormalities in the mulberry agent replenishment amount r are suppressed, and as a result, the concentration of the processing liquid is suppressed from falling outside the set range. It is played.

【図面の簡単な説明】 第1図は本発明に係る金属表面処理液の自動制御装置を
略示的に示したブロック図、第2図は従来方式で金属表
面処理液の制御を行った場合のグラフ、第3図は本発明
の装置を使用して制御を行った場合のグラフである。 1・・・・・・処理膜、2・・・・・・スプレーポンプ
、3・・・・・・スプレーノズル、4・…・・アルミ缶
、5・・・・・・缶計数機、6・・・・・・濃度測定器
、7…・・・演算制御器、8,9・・・・・・補給ポン
プ、10・・・・・・主補給剤、11・・・・・・副補
給剤。 第2図 第3図 図 船
[Brief Description of the Drawings] Fig. 1 is a block diagram schematically showing an automatic control device for metal surface treatment liquid according to the present invention, and Fig. 2 shows a case where metal surface treatment liquid is controlled by the conventional method. The graph in FIG. 3 is a graph when control is performed using the apparatus of the present invention. 1... Processing membrane, 2... Spray pump, 3... Spray nozzle, 4... Aluminum can, 5... Can counter, 6 ...Concentration measuring device, 7...Arithmetic controller, 8,9...Replenishment pump, 10...Main replenishment agent, 11...Substitute replenisher. Figure 2 Figure 3 Figure Ship

Claims (1)

【特許請求の範囲】 1 金属表面処理液の濃度を測定する手段、金属製品の
処理箇数又は処理速度を計測する手段および該処理液へ
薬剤を補給する手段有する金属表面処理ラインにて、金
属製品を表面処理する場合において、コンピユーターに
より金属製品の単位時間当りの処理箇数を計測又は処理
面積を演算し、その値と予め記憶した金属製品の処理箇
数又は単位面積当りの薬剤消費量と単位時間当りの薬剤
の機械的損失量とから、下式に従つて単位時間当り金属
表面処理液へ補給すべき薬剤量を演算し、その補給によ
り表面処理液の濃度を設定範囲に制御することを特徴と
する金属表面処理液の自動制御装置。 r=n×a+b 薬剤補給量 処理箇数(箇/分)薬剤消費量(g/箇)
*機械的(g/分)又は処理面積(m^2/分) 又
は(g/m^2)損失量(g/分)(注)*金属製品の
表面処理に基因しない損失量例えば空スプレーによる金
属表面処理液中に成分の分解及び金属表面処理装置に 基因する損失などによつて失なわれる薬 剤量 2 コンピユーターにより処理箇数又は処理面積当りの
薬剤消費量と単位時間当りの薬剤の機械的損失量を自動
的に補正することを特徴とする特許請求の範囲の第1項
記載の金属表面処理液の自動制御装置。
[Scope of Claims] 1. In a metal surface treatment line that has a means for measuring the concentration of a metal surface treatment solution, a means for measuring the number of processed metal products or a processing speed, and a means for supplying chemicals to the treatment solution, When surface-treating a product, a computer measures the number of metal products to be treated per unit time or calculates the area to be treated, and combines that value with a pre-memorized number of metal products to be treated or the amount of chemical consumption per unit area. From the mechanical loss amount of the chemical per unit time, calculate the amount of chemical to be replenished to the metal surface treatment liquid per unit time according to the formula below, and control the concentration of the surface treatment liquid within the set range by replenishing it. An automatic control device for metal surface treatment liquids featuring: r=n×a+b Amount of drug replenishment Number of processed items (units/minute) Amount of drug consumption (g/unit)
*Mechanical (g/min) or treatment area (m^2/min) or (g/m^2) loss (g/min) (Note) *Loss not due to surface treatment of metal products, e.g. empty spray Amount of chemical lost due to decomposition of components in the metal surface treatment solution and loss due to metal surface treatment equipment 2 Amount of chemical consumed per number of treated items or treated area by computer and chemical consumption per unit time The automatic control device for a metal surface treatment liquid according to claim 1, wherein the automatic control device for a metal surface treatment liquid automatically corrects the amount of loss.
JP57171670A 1982-09-30 1982-09-30 Automatic control device for metal surface treatment liquid Expired JPS6024182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57171670A JPS6024182B2 (en) 1982-09-30 1982-09-30 Automatic control device for metal surface treatment liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57171670A JPS6024182B2 (en) 1982-09-30 1982-09-30 Automatic control device for metal surface treatment liquid

Publications (2)

Publication Number Publication Date
JPS5964780A JPS5964780A (en) 1984-04-12
JPS6024182B2 true JPS6024182B2 (en) 1985-06-11

Family

ID=15927511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57171670A Expired JPS6024182B2 (en) 1982-09-30 1982-09-30 Automatic control device for metal surface treatment liquid

Country Status (1)

Country Link
JP (1) JPS6024182B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19703641B4 (en) * 1997-01-31 2006-10-19 Marx, Joachim, Dr. Process for producing welded hollow bodies with improved corrosion protection and hollow bodies produced in this way
JP2005344186A (en) * 2004-06-04 2005-12-15 Nippon Paint Co Ltd Chemical conversion treatment method for metal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486439A (en) * 1977-12-23 1979-07-10 Nippon Kokan Kk <Nkk> Control method for concentration of hydrochloric acid in pickling vessel
JPS5710288A (en) * 1980-06-19 1982-01-19 Hoomaa Denshi Kk Method and device for etching copper-lined laminated board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486439A (en) * 1977-12-23 1979-07-10 Nippon Kokan Kk <Nkk> Control method for concentration of hydrochloric acid in pickling vessel
JPS5710288A (en) * 1980-06-19 1982-01-19 Hoomaa Denshi Kk Method and device for etching copper-lined laminated board

Also Published As

Publication number Publication date
JPS5964780A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
TWI435384B (en) Etching fluid management device
US6471845B1 (en) Method of controlling chemical bath composition in a manufacturing environment
US5352350A (en) Method for controlling chemical species concentration
US5858196A (en) Method of controlling component concentration of plating solution in continuous electroplating
TW201710563A (en) Electrolyte delivery and generation equipment
KR20040034464A (en) Method and apparatus for maintaing an eching solution
JPH0359989B2 (en)
JPS61199069A (en) Method for automatically controlling plating solution
US6921193B2 (en) Chemical concentration control device for semiconductor processing apparatus
JPS6024182B2 (en) Automatic control device for metal surface treatment liquid
JP2012127004A (en) Device for managing etchant
US20040195104A1 (en) Method and apparatus for controlling concentration of electrolytic solution
KR100278768B1 (en) Etching solution management device
CA1224390A (en) Process for controlling zinc phosphating treating solutions
JP2007316360A (en) Management method and management device for water-based photoresist stripping liquid
JP3978129B2 (en) Apparatus and method for controlling concentration of processing solution for forming phosphate film
US20170283955A1 (en) Optimized process control in the anti-corrosive metal pretreatment based on fluoride-containing baths
JPH05129274A (en) Multicomponent chemical treatment equipment
JPH111781A (en) Method and apparatus for managing etchant
TWI682067B (en) Etching solution managing apparatus, etching solution managing method and concentration measuring method for component of etching solution
JP5111701B2 (en) Surface treatment method for aluminum or aluminum alloy
JPS6376883A (en) Method for controlling surface regulating liquid for chemical conversion treatment of coated film by phosphate
JPH0524660B2 (en)
US3731653A (en) Coating rate cell
KR20000000227U (en) Sulfuric acid concentration automatic control device of electrolytic chromium solution