JPS60241665A - Fuel cell controller - Google Patents

Fuel cell controller

Info

Publication number
JPS60241665A
JPS60241665A JP59096477A JP9647784A JPS60241665A JP S60241665 A JPS60241665 A JP S60241665A JP 59096477 A JP59096477 A JP 59096477A JP 9647784 A JP9647784 A JP 9647784A JP S60241665 A JPS60241665 A JP S60241665A
Authority
JP
Japan
Prior art keywords
pressure
differential pressure
electrode
fuel
air electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59096477A
Other languages
Japanese (ja)
Inventor
Junichi Fujikake
藤掛 純一
Toshio Kasano
笠野 利夫
Masanori Yamaguchi
山口 雅教
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59096477A priority Critical patent/JPS60241665A/en
Publication of JPS60241665A publication Critical patent/JPS60241665A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04432Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04104Regulation of differential pressures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04776Pressure; Flow at auxiliary devices, e.g. reformer, compressor, burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To maintain the differential pressure between a cell container and an air electrode, an air electrode and a fuel electrode constant under variation of load by providing a pressure transmitter at the outlet of combustion section of a material reformer then performing pressure regulation of an auxiliary tank while following after said pressure. CONSTITUTION:The differential pressure between a container 8 and the air electrode 9 of fuel cell is detected through a detector 27 to control a pressure regulation valve 16 at the outlet of the air electrode while the differential pressure between the air electrode 9 and the fuel electrode 11 is detected through a detector 17 to control a pressure regulation valve 19 at the outlet of the fuel electrode. An auxiliary tank 23 of smaller capacity than the container 8 is provided to feed a signal from a pressure detector 22 at the outlet of a material reformer 4b to an arithmetic unit 30 thus to control a pressure regulation valve 29 at the outlet of said tank 23 while the differential pressure between said tank 23 and the air electrode 8 is detected through a detector 24 to control the regulation valve 25 of the container 8. Consequently, the pressure in the auxiliary tank 23 will follow after the load variation resulting in the differential pressure control having no response lag.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、燃料電池、原料改質器をもつ燃料′区池発′
成システムに係り、特に、11L池負荷fl!11時、
或いは、負荷追従運転時の電池容器−9気極間、及び窒
気極−燃料極間の差圧を常に一足状態rこ―節する、燃
料電池制御装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a fuel cell and a fuel tank generator having a fuel cell and a raw material reformer.
In particular, the 11L pond load fl! 11 o'clock,
Alternatively, the present invention relates to a fuel cell control device that always maintains the differential pressure between the battery container and the gas electrode and between the nitrogen electrode and the fuel electrode to a certain level during load following operation.

〔発明の背景〕[Background of the invention]

従来の燃料区池発電システムは、電池容器と空気極間の
差圧、空気極と燃料極間の差圧をコントロールする手段
として、各々の差圧を検出し望気他出ロ9111圧力調
節弁、燃料極出口側圧力調節弁をコントロールする方式
全採用していたが、燃料電池の化学反応に必要な空気、
把料流量を比較してみると大幅に空気供給量が多く、空
気極出口側に設けられる圧力調節弁は帽料極出口側の圧
力調節弁より口径が大きい弁となる。そのため、弁の無
駄時間を比較してみても9気極出口側の圧力調節弁の方
が長くなる。又、空気極出口側圧力調節弁と燃料他出口
側圧力調節弁とを各々コントロールする演n機内蔵型調
節計の設足足数である比例定数を比較してみると、供給
量の多い空気極側圧力v14節弁節升節計の方が小さい
。これに負荷追従運転時、或いは、負向変vJ時に電池
容器−孕気極間差圧をゆるやかにコントロールするため
である。
In the conventional fuel storage pond power generation system, as a means to control the differential pressure between the battery container and the air electrode, and the differential pressure between the air electrode and the fuel electrode, each differential pressure is detected and a 9111 pressure control valve is used. , all systems used to control the pressure control valve on the fuel electrode outlet side, but the air required for the chemical reaction of the fuel cell,
Comparing the flow rates of the material, the amount of air supplied is significantly larger, and the pressure regulating valve provided on the air electrode outlet side has a larger diameter than the pressure regulating valve on the cap material electrode outlet side. Therefore, when comparing the dead time of the valves, the pressure regulating valve on the nine electrode outlet side has a longer time. In addition, when comparing the proportionality constant, which is the number of feet of the built-in controller that controls the air electrode outlet side pressure regulating valve and the fuel outlet side pressure regulating valve, it is found that The pole side pressure v14 valve meter is smaller. This is to gently control the differential pressure between the battery container and the impregnated electrode during load following operation or when there is a negative change in vJ.

、負荷追従運転を行なう場合、9気極、燃料極への供給
流量が急激に増大したとすると、電池容器−9気極間差
圧、及び空気極−燃料極間差圧を一足虻囲内に調節しよ
うと窒気極出ロ圧力調節弁、及び燃料極出口圧力調節弁
が双方とも開方向に作動する。しかし、9気極出ロ圧力
vI4節弁の弁動作は、無駄時間、応答)!!7′L時
間が比較的長いため、燃料極出口圧力調節弁に比べて保
々に上昇する。
, when performing load following operation, if the supply flow rate to the 9th electrode and the fuel electrode increases rapidly, the differential pressure between the battery container and the 9th electrode, and the differential pressure between the air electrode and the fuel electrode will be reduced within a foot of the animal. In order to adjust the pressure, both the nitrogen electrode outlet pressure control valve and the fuel electrode outlet pressure control valve operate in the opening direction. However, the valve operation of the 9 air pole output pressure vI 4-section valve is dead time, response)! ! Since the 7'L time is relatively long, the pressure rises constantly compared to the fuel electrode outlet pressure control valve.

又、この状態に空気極側の併空気量が多いので、改買器
燃焼部出口圧力は上昇する。改貞器燃焼部出口圧力が上
昇すると空気極、燃料極人口圧力も等価的に上昇し、一
定圧力である*m容器と、9気極間差圧をコントロール
する窒気他出ロ圧力調節弁に、更に、一度を増す方向に
作動し、ついには、差圧調節がきかZ<Zす、孕気極−
燃料間σ〕差圧を増す欠点がめる。
In addition, since there is a large amount of air on the air electrode side in this state, the pressure at the exit of the combustion section of the converter increases. When the pressure at the outlet of the reformer combustion section increases, the air electrode and fuel electrode population pressures also rise equivalently, and the pressure is kept constant. Then, it operates in the direction of increasing the rate of increase, and finally, the differential pressure is adjusted so that Z<Z, the impregnated electrode -
σ between fuels] The disadvantage is that it increases the differential pressure.

すなわち、第1図に従来の燃料電池発゛区システムの概
略的プロッタ構成図を示す。原料改質器反応部4aに供
給される原料1はここで改買さrL、−酸化炭素変成器
5に送り込まれ、−酸化炭素?取り除かれる。−酸化炭
素成分を取り除かれた改買ガヌ5aは、気水分離器6、
加熱器、又は、熱交換器7a=1介して槁料カス13と
して燃料電池本体12の燃料極11へe科として供給さ
れる。
That is, FIG. 1 shows a schematic plotter configuration diagram of a conventional fuel cell power generation system. The raw material 1 supplied to the raw material reformer reaction section 4a is repurchased here and sent to the -carbon oxide shift converter 5, where it is converted into -carbon oxide? be removed. - The repurchased Ganu 5a from which the carbon oxide component has been removed is a steam separator 6,
It is supplied to the fuel electrode 11 of the fuel cell main body 12 as waste material 13 via a heater or heat exchanger 7a=1.

又、空気2は、コンブVツサ−2aで圧lIi!芒れ加
熱器、又に、熱交換器7bを介して、9気極9へ供給さ
れる。電池本体12は、空気極9、燃料極11の内極間
に、薄いマトリタス構造の電解質10があり、これを境
に9気と燃料カスとの化学反応により、9.10の両極
間から直流電源を出力するようになっており、又、これ
ら電池本体12を保験する電池容器8の内部には、常に
、輩素ガス等の不活性ガス3が供給されている。このよ
うな燃料゛電池発電システムは、負荷変動に対応し、応
答性が良く、出力′に流kRえることができることが強
く望まれる。燃料極11及び空気極9の両端より取り出
された直流電源出力を変えるには、燃料カス13及び空
気2の反応量を変える必要があり、そのためには、燃料
ガス13及びを気2の供給量を負荷変動に追従し、迅速
に変化させる必要゛がめる。この場合、反応量は、燃料
ガス13と空気2とでに異なるので、その必要量に応じ
て燃料カス13、空気2の供給量7i−変えると、′に
池谷器8−突気極9間、窒気惨9−燃料極11間の各々
の差圧に変動が生じ、燃料電池本体12を破損させる恐
れがある。又、電池本体12の最も重要な構成要素であ
る電解質10は、非常に薄いマドI+クスで構成これて
おり、輸科極11−空気極9間の差圧が大きくなると、
その差圧により電解質10が破れ、燃料ガス13と空気
2が電池本体12内で直接混合すると、爆発する危険性
も生じる。これらの対策として、従来型の燃料電池制御
i11装mは、8g2図に示すように′電池容器8−空
気極9間差圧全検出する差圧検出器14と、この差圧検
出器14の出力信号を取り込み、空気極9出口側の圧力
調節弁16をコントロールする演算様内蔵型調節計15
、燃料極11−空気極9間の差圧を検出する差圧検出器
17と、この差圧検出器17の出力信号を取り込み燃料
極11出口側の圧力調節弁19をコントロールする演算
様内蔵型調節計18などで構成され、電池容器8は常に
輩素ガス等の不活性ガス3を供給し、圧力調節弁20に
より、常に、圧力全一定に保持するようになっている。
Also, the air 2 is at a pressure lIi! It is supplied to nine gas electrodes 9 via a seed heater and a heat exchanger 7b. The battery body 12 has an electrolyte 10 with a thin matritas structure between the inner electrodes of the air electrode 9 and the fuel electrode 11, and direct current flows from between the two electrodes 9 and 10 due to the chemical reaction between the air and the fuel residue. The inside of the battery container 8 which outputs power and protects these battery bodies 12 is always supplied with an inert gas 3 such as a hydrogen gas. It is strongly desired that such a fuel battery power generation system be able to cope with load fluctuations, have good responsiveness, and be able to increase the output power. In order to change the DC power output taken out from both ends of the fuel electrode 11 and the air electrode 9, it is necessary to change the reaction amount of the fuel scum 13 and the air 2. It is necessary to follow load fluctuations and change quickly. In this case, the amount of reaction is different between the fuel gas 13 and the air 2, so if the supply amount 7i of the fuel scum 13 and air 2 is changed according to the required amount, the difference between the Ikeya device 8 and the thrust pole 9 will be , the pressure difference between the nitrogen gas 9 and the fuel electrode 11 may fluctuate, and the fuel cell body 12 may be damaged. In addition, the electrolyte 10, which is the most important component of the battery body 12, is made of very thin polyester, and when the pressure difference between the air electrode 11 and the air electrode 9 increases,
If the electrolyte 10 ruptures due to the pressure difference and the fuel gas 13 and air 2 mix directly within the battery body 12, there is a risk of explosion. As a countermeasure for these problems, the conventional fuel cell control system has a differential pressure detector 14 that detects the entire differential pressure between the battery container 8 and the air electrode 9, and a A built-in controller 15 for calculation takes in the output signal and controls the pressure control valve 16 on the outlet side of the air electrode 9
, a differential pressure detector 17 that detects the differential pressure between the fuel electrode 11 and the air electrode 9, and a built-in calculation type that takes in the output signal of this differential pressure detector 17 and controls the pressure regulating valve 19 on the outlet side of the fuel electrode 11. It is composed of a regulator 18 and the like, and the battery container 8 is always supplied with an inert gas 3 such as nitrogen gas, and the pressure is always maintained at a constant level by a pressure regulating valve 20.

しかし、負荷追従運転時のように、急激に電池入口燃料
ガス13.9気2の供給量が増大する場合には、無駄時
間、応答遅れ時間が比較的長い圧力調節弁16でコニ/
トロールされている9気極9側は、圧力が上昇する。又
、原料改質器燃焼部出口側の圧力は徐々に上昇するため
、空気極9、燃料極11への入口圧力も等制約に上昇す
る。この状態での電池容器8−空気極9間の差圧は、圧
力pi節節升6の応答遅れがかさみ、負の方向に大きく
なり9気極9圧力が電池容器圧力より高くなるという現
象が生じ、空気極9−燃料極11の差圧をコントロール
する圧力調節弁19が開、閉動作を繰り返しくハンチン
グ動作)空気極9−燃料極11の差圧が大きく変動する
という欠点があった。
However, when the supply amount of the cell inlet fuel gas 13.9 air 2 suddenly increases as during load following operation, the pressure control valve 16 has a relatively long dead time and response delay time.
The pressure increases on the side of the nine gas electrodes 9 that are being trolled. Furthermore, since the pressure at the outlet side of the combustion section of the raw material reformer gradually increases, the inlet pressures to the air electrode 9 and fuel electrode 11 also increase with equal restrictions. In this state, the differential pressure between the battery container 8 and the air electrode 9 increases in the negative direction due to the increased response delay of the pressure pi node 6, resulting in a phenomenon in which the pressure at the air electrode 9 becomes higher than the battery container pressure. The problem is that the pressure difference between the air electrode 9 and the fuel electrode 11 fluctuates greatly (hunting operation in which the pressure regulating valve 19 that controls the pressure difference between the air electrode 9 and the fuel electrode 11 repeatedly opens and closes).

〔発明の目的〕[Purpose of the invention]

本発明の目的は、燃料電池、原料改質器をもつ燃料IE
池発電システムに於いて、負荷追従運転時、或いは、負
荷変動時の電池容!−9気極間、及び孕気極−燃料極間
の差圧を常に一定状態に調節できる制鉤装置金提供する
にある。
The object of the present invention is to provide a fuel IE with a fuel cell and a raw material reformer.
In a pond power generation system, battery capacity during load following operation or during load fluctuation! -9 To provide a clamping device that can always adjust the differential pressure between gas electrodes and between a pregnant gas electrode and a fuel electrode to a constant state.

〔発明の概要〕[Summary of the invention]

本発明は、燃料+1池、原料改質器を備えた燃料電池発
電システムに於いて、負荷追従運転時、或いは、負荷変
動時の原料改質器燃焼部出口の圧力全検出し、それに追
従して、電池容器内部或いに、外部に設けられ、盆素ガ
ス等の不活性カスを供給している補助タンク(又は配置
r)の圧力をコントロールし、補助タンク(又は配管)
と空気極間の差圧調節を窒気極出ロ圧力擦料極比ロ側圧
力調節弁で行ない、窒気−−擦料極間差圧金燃料極出ロ
側圧力調節弁でコントロールすることにより、負荷追従
運転時或いは、負角変動時に原料改質器燃焼部出口圧力
が変動しても、空気極出ロ側圧力調説弁の升一度状態を
常に安定動作範囲内にとどめられるため、1池容器−空
気極間、及び、空気極−燃料極聞咎々の差圧?常に一足
状態にv4i!i5するものである。
In a fuel cell power generation system equipped with a fuel +1 pond and a raw material reformer, the present invention detects the total pressure at the outlet of the combustion section of the raw material reformer during load follow-up operation or during load fluctuations and follows it. The pressure of the auxiliary tank (or arrangement r) that is installed inside or outside the battery container and supplies inert gas such as bonito gas is controlled, and the auxiliary tank (or piping)
The differential pressure between the nitrogen electrode and the air electrode is controlled by the pressure regulating valve on the negative side of the nitrogen electrode and the metal fuel electrode. Therefore, even if the outlet pressure of the raw material reformer combustion section fluctuates during load following operation or negative angle fluctuations, the condition of the air electrode outlet side pressure control valve can always be kept within the stable operating range. 1. Differential pressure between the pond container and the air electrode, and between the air electrode and the fuel electrode? Always have one pair of v4i! i5.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第3席1.第4図に示す。 An embodiment of the present invention is shown in the third seat 1. It is shown in Figure 4.

本発明は、従来型と比べ、原料改質器燃焼部4bの出口
圧力を検出する圧力検出器22と゛電池容器8の内部或
いは、外部に設けられ原料改質器4b出口圧力に追従し
て圧力コントロールされ輩素ガス等の不活性ガス3を供
給している補助タンク(又は配管)23、この補助タン
ク(又は配管)23と電池容器8間の差圧を検出する差
圧検出器24、この差圧検出器24の出力信号を取り込
み電池容器8出口側に設けられる圧力調節弁25をコン
トロールする演算様内蔵型調節計26、補助タンク(又
は配管)23と空気極9間の差圧を検出する差圧検出器
27、この差圧検出器27の出カイ=号を取り込み空気
極9の出口側に設けられる圧力調節弁16をコントロー
ルする演算様内蔵型調節計28、及び原料改質器燃焼部
4b出口圧力のf動に追従して補助タンク(又は配管)
の圧力をコントロールするために1圧力検出器22の出
力信号を取り込み補助タンク(又は配管)23出口側に
設けられる圧力調節弁29をコントロールする演算機3
0等を新設しており、補助タンク(又は配管)23と電
池容器8間の差圧をコントロールする調節計26の設定
(1には零とし、補助タンク(又は配管)23と空気極
9間、空気極9と燃料極11間各々の差圧設定は、任意
VC設けている。
In comparison with the conventional type, the present invention has a pressure detector 22 that detects the outlet pressure of the raw material reformer combustion section 4b and a pressure detector 22 that is installed inside or outside the battery container 8 to follow the raw material reformer 4b outlet pressure. An auxiliary tank (or piping) 23 that is controlled and supplies an inert gas 3 such as oxygen gas, a differential pressure detector 24 that detects the differential pressure between this auxiliary tank (or piping) 23 and the battery container 8, and this A controller 26 with built-in calculation that takes in the output signal of the differential pressure detector 24 and controls the pressure regulating valve 25 provided on the outlet side of the battery container 8, detects the differential pressure between the auxiliary tank (or piping) 23 and the air electrode 9. a differential pressure detector 27 that receives the output signal from the differential pressure detector 27 and controls the pressure regulating valve 16 provided on the outlet side of the air electrode 9; Section 4b Auxiliary tank (or piping) following f movement of outlet pressure
In order to control the pressure of
0 etc. are newly installed, and the setting of the controller 26 that controls the differential pressure between the auxiliary tank (or piping) 23 and the battery container 8 (0 for 1, and the setting between the auxiliary tank (or piping) 23 and the air electrode 9 , an arbitrary VC is provided for setting the differential pressure between the air electrode 9 and the fuel electrode 11.

このような制御構成とすることにより、負荷追従運転時
、或いは、負荷没@時に原料改質器燃焼部4b出口圧力
が変動しても補助タンク(又rユ配管)23の圧力をそ
rLに追従させ、原料改質器燃焼部4b出口圧力の変動
が補助タンク(又は配管)23とを気@A9間の差圧に
整置を及−1さないようにすることが可能となり、負荷
追従運転時、或いに、負荷変動時に空気極9出ロ側圧力
調如弁16の負担を低減し、常に、安定動作範囲内に留
めることにより、補助タンク(又は配り23と空気極9
間の差圧を一定範囲内に抑えることが可能となる。又、
空気極9と燃料極11との差圧に、空気極9の圧力が比
較的安定にコントロールさiするため、一定範囲内に調
節されるように燃料極11の出口側圧力調節弁19でコ
ントロール可能となる。
With such a control configuration, even if the outlet pressure of the raw material reformer combustion section 4b fluctuates during load follow-up operation or when the load is down, the pressure in the auxiliary tank (or the r-pipe) 23 can be kept at the same level. This makes it possible to prevent fluctuations in the outlet pressure of the raw material reformer combustion section 4b from affecting the differential pressure between the auxiliary tank (or piping) 23 and the air @A9, and load tracking. During operation or during load fluctuations, the load on the air electrode 9 output side pressure regulating valve 16 is reduced, and by always staying within a stable operating range, the auxiliary tank (or distribution 23 and air electrode 9
It becomes possible to suppress the differential pressure between the two within a certain range. or,
In order to control the pressure of the air electrode 9 relatively stably due to the differential pressure between the air electrode 9 and the fuel electrode 11, the pressure at the outlet side of the fuel electrode 11 is controlled so that it is within a certain range. It becomes possible.

図中21rユタービンコンブレツサである。In the figure, it is a 21r turbine compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図に燃料電池発電システムブロック構成図、第2図
に従来型の燃料電池rltlj■構成フロー図、第3図
は本発明の燃料電池制御1tls成フロー図、第4図に
本発明の燃料電池側−構成ブロック図を示す。 20・・・圧力v14怖弁、21・・・タービンコンプ
レッサー、22・・・圧力構出器、23・・・補助タン
ク、24・・・差圧検出器、25・・・圧力調節升、2
6・・・演算機内蔵型調節劇、27・・・差圧検出器、
28・・・演算機内IIL型v14節ご1.29・・・
圧力!iM1節升、30・・・演算機。 代理人 弁理士 A檎明夫 乃 /詔
Fig. 1 is a block diagram of the fuel cell power generation system, Fig. 2 is a flow diagram of the conventional fuel cell rltlj configuration, Fig. 3 is a flow diagram of the fuel cell control 1tls configuration of the present invention, and Fig. 4 is a flow diagram of the fuel cell power generation system of the present invention. The battery side--configuration block diagram is shown. 20... Pressure v14 fear valve, 21... Turbine compressor, 22... Pressure generator, 23... Auxiliary tank, 24... Differential pressure detector, 25... Pressure adjustment box, 2
6... Calculator built-in adjustment device, 27... Differential pressure detector,
28...In-computer IIL type v14 Section 1.29...
pressure! iM1 set, 30...computing machine. Agent Patent Attorney Akio Agi/Edict

Claims (1)

【特許請求の範囲】 1、燃料電池、原料改質器からなる燃料電池発電システ
ムに於いて、 前記燃料電池の電池容器−空気極間差圧、空気極−燃料
極間差圧を一定範囲内に調節するのに必要な制御構成要
素として、前記電池容器−9気極間差圧を検出し、信号
を伝送する差圧伝送器、及びこの差圧伝送器の出力信号
を取り込み空気極出口側に設けられ、圧力調節弁をコン
トロールする演算様内蔵型の調節計、又、前記窒気極−
黙料極間差圧を検出し、前記信号を伝送する差圧伝送器
、及びこの出力信号全取込み前記燃料極の出口側に設け
られ、前記原料改質器の燃焼部出口側に、圧力を検出し
信号を伝送する圧力伝送器、この圧力に追従して圧力調
節可能で前記電池容器より比較的小容量の補助タンクか
らなることを特徴とする、燃料゛電池制御装置。 2、特許請求の範囲第1項において、前記補助タンクに
望素ガス等の不活性ガス全供給し、前記補助タンクと前
記1!L池窒気極間の差圧全検出する差圧検出器を設け
、前記演算機内賦型調節計の入力信号として前記差圧検
出器の出力信号を取り込み、前記補助タンク、前記′W
L池容器の出口側に各々圧力調節弁を設け、更に前記原
料改質器の燃焼部出口圧力を検出して前記補助タンクの
圧力をそれに追従してコントロールする演算器金膜け、
又、酊I記電池容器の圧力を前記補助タンクの圧力に追
従させることを特徴とする燃料゛電池1til+御装置
[Claims] 1. In a fuel cell power generation system comprising a fuel cell and a raw material reformer, the differential pressure between the cell container and the air electrode and the differential pressure between the air electrode and the fuel electrode of the fuel cell are within a certain range. The necessary control components include a differential pressure transmitter that detects the differential pressure between the battery container and the air electrode and transmits the signal, and a differential pressure transmitter that receives the output signal of this differential pressure transmitter and transmits the air electrode outlet side. A built-in controller with a calculation function that controls the pressure regulating valve is installed in the nitrogen electrode.
A differential pressure transmitter that detects the differential pressure between the silent fuel electrodes and transmits the signal, and a differential pressure transmitter that takes in all the output signals and is installed on the outlet side of the fuel electrode, and transmits the pressure to the combustion section outlet side of the raw material reformer. A fuel battery control device comprising: a pressure transmitter that detects and transmits a signal; and an auxiliary tank that can adjust the pressure in accordance with the pressure and has a relatively smaller capacity than the battery container. 2. In claim 1, the auxiliary tank is fully supplied with an inert gas such as a desired gas, and the auxiliary tank and the 1! A differential pressure detector is provided to detect the entire differential pressure between the L pond nitrogen electrode, and the output signal of the differential pressure detector is taken in as an input signal of the controller built into the computer, and the auxiliary tank, the 'W
A pressure control valve is provided at each outlet side of the L pond container, and further a computing device for detecting the combustion section outlet pressure of the raw material reformer and controlling the pressure of the auxiliary tank accordingly;
Also, a fuel battery control device characterized in that the pressure in the battery container follows the pressure in the auxiliary tank.
JP59096477A 1984-05-16 1984-05-16 Fuel cell controller Pending JPS60241665A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59096477A JPS60241665A (en) 1984-05-16 1984-05-16 Fuel cell controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59096477A JPS60241665A (en) 1984-05-16 1984-05-16 Fuel cell controller

Publications (1)

Publication Number Publication Date
JPS60241665A true JPS60241665A (en) 1985-11-30

Family

ID=14166125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59096477A Pending JPS60241665A (en) 1984-05-16 1984-05-16 Fuel cell controller

Country Status (1)

Country Link
JP (1) JPS60241665A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374368A1 (en) 1988-12-22 1990-06-27 International Fuel Cells Corporation Fuel cell power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0374368A1 (en) 1988-12-22 1990-06-27 International Fuel Cells Corporation Fuel cell power plant
US5340663A (en) * 1988-12-22 1994-08-23 International Fuel Cells Corporation Fuel cell power plant

Similar Documents

Publication Publication Date Title
US6342316B1 (en) Fuel cell generation system
JPS5923066B2 (en) Fuel cell power generator equipped with fuel processing means
US5961928A (en) Gas generating system and method
US6504339B2 (en) Technique and apparatus to control the charging of a battery using a fuel cell
US7666535B2 (en) Fuel cell system and method of operating a fuel cell system
JP2007220462A (en) Fuel cell system
JPS6229869B2 (en)
JPS60241665A (en) Fuel cell controller
US20190207230A1 (en) Temperature control system and method for fuel cell system and fuel cell system
US9917314B2 (en) Mitigating electrode erosion in high temperature PEM fuel cell
JPS58128673A (en) Control of fuel cell power generating plant
JPS6229868B2 (en)
JPS61267273A (en) Control method for power generation plant of fuel cell and its apparatus
JPH09237634A (en) Fuel cell generating device
JP2814706B2 (en) Fuel cell generator
JP3358227B2 (en) Fuel cell power generation system
JP2000067894A (en) Fuel cell power generating system, and power generating system
JPS58133775A (en) Cooling method of fuel cell power generating system
JPH06103632B2 (en) Fuel cell power plant
JPS6246951B2 (en)
JPH03159071A (en) Fuel cell power generation system
JPS6345764A (en) Operating controller of fuel cell power generating plant
JPH0556628B2 (en)
JPH04267067A (en) Liquid fuel evaporator for fuel cell generating device
JPH0349161A (en) Fuel cell power generating system