JPS60240996A - Method of controlling surface temperature of heat transfer tube of evaporator in waste heat recovering device - Google Patents

Method of controlling surface temperature of heat transfer tube of evaporator in waste heat recovering device

Info

Publication number
JPS60240996A
JPS60240996A JP59095746A JP9574684A JPS60240996A JP S60240996 A JPS60240996 A JP S60240996A JP 59095746 A JP59095746 A JP 59095746A JP 9574684 A JP9574684 A JP 9574684A JP S60240996 A JPS60240996 A JP S60240996A
Authority
JP
Japan
Prior art keywords
heat transfer
temperature
evaporator
condenser
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59095746A
Other languages
Japanese (ja)
Inventor
Akira Shiga
志賀 陽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP59095746A priority Critical patent/JPS60240996A/en
Publication of JPS60240996A publication Critical patent/JPS60240996A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Abstract

PURPOSE:To continuously change in available heat transfer area to improve the heat recovery ratio by controlling a liquid level within a condenser. CONSTITUTION:A liquid level control valve 19 is interposed in a condensate tube 8 between an outlet side header 18a of a condenser 6 and a liquid tank 16. With the lowering of the temperature of waste gas, when the temperature of a lower temperature side heat transfer tube 9a within an evaporator 3 or the temperature of steam is lowered to draw near to a dew point temperature, a valve opening contracting signal is generated from controller 20 to operate a liquid level control valve 19 to the closed side by an actuator. As a result, the flow quantity of a liquid heat medium is throttled to raise the liquid level of the heat transfer tube 9 within the condenser 6 and to reduce the available heat transfer area for steam condensation of the heat transfer tube 9. That is, when the height (h) of the liquid level becomes high, the available heat transfer area is reduced. As a result, the condensation quantity of steam is reduced. Hence, the reduction of the load of the evaporator is prevented and the lowering of the surface temperature of the heat transfer tube within the evaporator 3 to a temperature less than the dew point is also prevented, and is maintained at a temperature more than the dew point of acid or the like.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、分離型ヒートパイプ式排熱回収装置にお【ノ
る蒸発器内伝熱管の表面温度制御方法に係り、特に、加
熱側流体の温度が低下し、蒸発器内伝熱管の表面温度が
排ガスの露点温度以下になる恐れが生じた場合、常に蒸
発器の表面温度を露点温度以上に保つことができる蒸発
器内伝熱管の表面温度制御方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for controlling the surface temperature of a heat transfer tube in an evaporator in a separated heat pipe type waste heat recovery device, and particularly relates to a method for controlling the surface temperature of a heat transfer tube in a heating side. The surface temperature of the heat exchanger tube in the evaporator can always keep the surface temperature of the evaporator above the dew point temperature when the temperature decreases and there is a risk that the surface temperature of the heat exchanger tube in the evaporator will fall below the dew point temperature of the exhaust gas. Regarding control method.

[発明の技術的背景とその問題点] 一般に、溶鉱炉などに並設される熱風炉においては、排
ガスの顕熱を有効に回収するために例えば分離型ヒート
パイプ式排熱回収装置が設けられている。
[Technical background of the invention and its problems] Generally, in a hot blast furnace installed in parallel with a blast furnace, etc., a separate heat pipe type exhaust heat recovery device, for example, is installed in order to effectively recover the sensible heat of exhaust gas. There is.

この−例を第3図に基づいて説明すると、この排熱回収
装置は、熱風炉1からのびる排ガス通路2に介設された
蒸発器と、燃わ1ガス配管4及び燃焼用空気管5にそれ
ぞれ介設された凝縮器6とにより構成されており、これ
らの中にはそれぞれ例えば1000本はどの伝熱管が収
納されている。蒸発器3にて排ガス顕熱により蒸気化し
た熱媒体(蒸気)を蒸気管7を介して各凝縮器6へ送り
、ここで燃焼用空気と燃料ガスとを加熱する。この加熱
により凝縮液化した熱媒体(水)を凝縮液管8を介して
再度蒸発器3へ戻し、循環使用することにより排ガスの
熱回収を行なう。
To explain this example based on FIG. 3, this exhaust heat recovery device includes an evaporator installed in an exhaust gas passage 2 extending from a hot air stove 1, a combustion air pipe 4, and a combustion air pipe 5. Each of them is composed of an interposed condenser 6, and each of them houses, for example, 1000 heat exchanger tubes. The heat medium (steam) vaporized by the sensible heat of the exhaust gas in the evaporator 3 is sent to each condenser 6 via the steam pipe 7, where the combustion air and fuel gas are heated. The heat medium (water) condensed and liquefied by this heating is returned to the evaporator 3 via the condensate pipe 8 and used for circulation to recover heat from the exhaust gas.

ところで、燃焼室1aでの燃焼熱は蓄熱室1bに蓄えら
れることとなり、蓄熱した後の排ガスは次のごときこの
種熱交換器の特性を示す。すなわち、この排ガスは燃焼
初期には温度が低く燃焼末期になる従い湿度が高くなる
傾向にある。そして、蒸発器3、凝縮器6のそれぞれの
伝熱面積はこの温度変化のうち最も効率のよい所で決定
されるが、熱風炉の操業方法によっては蒸発器出口側の
排ガス温度が低くなる。その結果、蒸発器低温側伝熱管
の伝熱面湿度が排ガス中の酸の露点温度になる惧れもあ
るので、伝熱管腐食対策の見地より伝熱面湿度を露点温
度以上に維持する必要が生ずる。
Incidentally, the combustion heat in the combustion chamber 1a is stored in the heat storage chamber 1b, and the exhaust gas after storing the heat exhibits the following characteristics of this type of heat exchanger. That is, the temperature of this exhaust gas tends to be low at the beginning of combustion, and the humidity tends to increase toward the end of combustion. The heat transfer area of each of the evaporator 3 and condenser 6 is determined by the most efficient part of this temperature change, but depending on the operating method of the hot air stove, the exhaust gas temperature on the evaporator outlet side becomes low. As a result, there is a risk that the humidity on the heat transfer surface of the heat transfer tube on the low temperature side of the evaporator will reach the dew point temperature of the acid in the exhaust gas, so it is necessary to maintain the humidity on the heat transfer surface above the dew point temperature from the perspective of preventing corrosion of the heat transfer tube. arise.

そこで、この要請に応えるべ〈従来においては代表的に
第4図及び第5図に示すごとき方法が採用されていた。
Therefore, in order to meet this demand, in the past, methods such as those shown in FIGS. 4 and 5 have been typically adopted.

尚、第3図と同一部分については同一符号を付して説明
を省略する。
Incidentally, the same parts as in FIG. 3 are given the same reference numerals and the description thereof will be omitted.

第4図に示す如く排ガスから熱回収を図る蒸発器3及び
回収した熱で被加熱ガス(燃焼用空気等)を加熱する凝
縮器6(簡単なため1基のみ記載する)内にはそれぞれ
縦方向に配設された伝熱管9゜10が多数列設けられて
おり(図示例においては3列)、蒸発器3の低温側伝熱
管(排ガスの下流側>98の温度が露点温度近くになる
と、凝縮器6の有効伝熱面積を減少させて負荷を軽減す
るため、多数列設けた伝熱管群のうち必要列数をストッ
プ弁11により閉状態とし、凝縮器として作動しないよ
うにすることにより上記蒸発器3の低温側伝熱管温度を
露点温度以上に保持するようにしていた。
As shown in Figure 4, the evaporator 3 that recovers heat from exhaust gas and the condenser 6 that heats the gas to be heated (combustion air, etc.) with the recovered heat (only one unit is shown for simplicity) are vertically connected. A large number of rows (three rows in the illustrated example) of heat transfer tubes 9 and 10 arranged in the direction of In order to reduce the effective heat transfer area of the condenser 6 and reduce the load, a required number of rows of the heat transfer tube group provided in multiple rows are closed by the stop valve 11 so that they do not operate as a condenser. The temperature of the heat exchanger tube on the low temperature side of the evaporator 3 was kept at or above the dew point temperature.

しかしながら、この種従来方法にあっては、ストップ弁
11が0N10FF作動のため凝縮器6の有効伝熱面積
を段階的にしか増減することができず、この結果本来回
収できるはずの排ガスの熱量を有効に回収し1qない場
合があった。
However, in this type of conventional method, the effective heat transfer area of the condenser 6 can only be increased or decreased in stages because the stop valve 11 operates in a 0N10FF manner. There were cases where 1q was not collected effectively.

また、ストップ弁11も多数必要となり構造もml化す
るばかりか、弁の開閉によりスチームハンマリングが生
じやすい問題もあった。
In addition, a large number of stop valves 11 are required, and the structure becomes ml-sized, and there is also the problem that steam hammering tends to occur when the valves are opened and closed.

第5図に示す従来方法は、燃料ガス或いは燃焼用空気を
流す被加熱ガス通路12(燃料ガス配管や燃焼用空気管
を含む)に、これに介設される凝縮器6を迂回するため
のバイパス管13を設けておき、蒸発器3内の低温側伝
熱管(図示せず)の温度が露点温度になると上記バイパ
ス管13に設けたバイパス弁14を開き、被加熱ガスの
一部を凝縮器6を迂回させて流し、凝縮器の負荷を減す
る。これにより、負荷が減少した分だけ蒸発器3の低温
側伝熱管の温度が上昇し、これを露点温度以上に維持す
る。
In the conventional method shown in FIG. 5, a heating gas passage 12 (including a fuel gas pipe and a combustion air pipe) through which fuel gas or combustion air flows, bypasses a condenser 6 installed therein. A bypass pipe 13 is provided, and when the temperature of the low temperature side heat transfer pipe (not shown) in the evaporator 3 reaches the dew point temperature, the bypass valve 14 provided in the bypass pipe 13 is opened and a part of the gas to be heated is condensed. By bypassing vessel 6, the load on the condenser is reduced. As a result, the temperature of the low-temperature side heat exchanger tube of the evaporator 3 increases by the amount that the load decreases, and this temperature is maintained above the dew point temperature.

しかしながら、この方法にあっては、別途バイパス管1
3及びバイパス弁14を設けなければならないばかりか
、被加熱ガスを流す必要からこれらの口径も800〜1
200w+mと大きくしなければならず、設備費の高騰
を余儀なくされる。
However, in this method, a separate bypass pipe 1
3 and a bypass valve 14 must be provided, and the diameter of these must also be 800 to 14 mm due to the need to flow the heated gas.
The power must be increased to 200w+m, which necessitates a rise in equipment costs.

[発明の目的] 本発明は、以上のような問題点に着目し、これを有効に
解決すべく創案されたものである。
[Object of the Invention] The present invention focuses on the above-mentioned problems and has been devised to effectively solve the problems.

5一 本発明の目的は、凝縮器内の伝熱管群の液面を制御する
ことにより、或いはこの伝熱管群に非凝縮性ガスを導入
することにより、構造を複雑化させることなく伝熱管の
有効伝熱面積を連続的に増減するようにし、もって排ガ
スからの熱回収効率を向上させることができる排熱回収
装置における蒸発器内伝熱管の表面温度制御方法を提供
するにある。
5. An object of the present invention is to improve the temperature of the heat exchanger tubes without complicating the structure by controlling the liquid level of the heat exchanger tubes in the condenser or by introducing non-condensable gas into the heat exchanger tubes. It is an object of the present invention to provide a method for controlling the surface temperature of a heat transfer tube in an evaporator in an exhaust heat recovery device, which can continuously increase and decrease the effective heat transfer area, thereby improving the efficiency of heat recovery from exhaust gas.

[発明の概要] 本発明は、凝縮器内の液面レベルを制御することにより
有効伝熱面積を連続的に変え得るという知見を得ること
によりなされたものであり、蒸発器の伝熱管の温度又は
熱媒体の蒸気温度を検出し、こ検出温度値と予め設定さ
れた露点温度値とを比較して温度差をめ、この温度差に
基づいて上記検出温度値が上記露点温度値を上回るよう
に凝縮器内の伝熱管の有効伝熱面積を連続的に増減する
ようにし、もって熱回収効率の向上を図るようにしたこ
とを要旨とするものである。
[Summary of the invention] The present invention was made based on the finding that the effective heat transfer area can be changed continuously by controlling the liquid level in the condenser, and the temperature of the heat transfer tubes of the evaporator Alternatively, the vapor temperature of the heat medium is detected, the detected temperature value is compared with a preset dew point temperature value to calculate the temperature difference, and the detected temperature value is made to exceed the dew point temperature value based on this temperature difference. The main idea is to continuously increase and decrease the effective heat transfer area of the heat transfer tubes in the condenser, thereby improving heat recovery efficiency.

6一 [発明の実施例] 以下に、本発明方法を添付図面に基づいて詳述する。61 [Embodiments of the invention] The method of the present invention will be explained in detail below based on the accompanying drawings.

第1図は本発明方法を実施するための排熱回収装置の一
例を示す概略斜視図である。
FIG. 1 is a schematic perspective view showing an example of an exhaust heat recovery apparatus for carrying out the method of the present invention.

図示する如く、この排熱回収装置は、熱風炉などからの
排ガス通路2内に設けられて排熱回収を行なうための蒸
発器3と、燃IIガス或いは燃焼用空気などの被加熱ガ
スを流す被加熱ガス通路12内に設けられ上記回収熱に
より被加熱ガスを加熱する凝縮器6とにより主に構成さ
れている(第3図及び第4図参照)。これら蒸発器3及
び凝縮器6は水のごとき熱媒体を循環させる循環系15
に介設されており、この循環系15は蒸発器3側から凝
縮器6側へ蒸気を送る蒸気管7と、逆に凝縮器6側から
蒸発器3側へ凝縮液を送る凝縮液管8とにより主に構成
されている。
As shown in the figure, this exhaust heat recovery device includes an evaporator 3 installed in an exhaust gas passage 2 from a hot air stove, etc., for recovering exhaust heat, and an evaporator 3 through which heated gas such as combustion II gas or combustion air flows. The condenser 6 is provided in the heated gas passage 12 and heats the heated gas using the recovered heat (see FIGS. 3 and 4). These evaporator 3 and condenser 6 are connected to a circulation system 15 that circulates a heat medium such as water.
This circulation system 15 includes a steam pipe 7 that sends steam from the evaporator 3 side to the condenser 6 side, and a condensate pipe 8 that sends condensed liquid from the condenser 6 side to the evaporator 3 side. It is mainly composed of.

上記凝縮器6の下流側凝縮液管8には凝縮液を貯留する
液タンク16及びこの液を系内に循環させる循環ポンプ
17が順次介設されている。
A liquid tank 16 for storing condensed liquid and a circulation pump 17 for circulating this liquid within the system are successively installed in the condensed liquid pipe 8 on the downstream side of the condenser 6.

上記蒸発器3及び凝縮器6内にはそれぞれ縦方向に配列
された伝熱管9が多数列設けられており、各伝熱管9の
端部に接続される各ヘッダ部18・・・は蒸気管7及び
凝縮液管8に連結されている。
Inside the evaporator 3 and condenser 6, there are provided a large number of rows of heat transfer tubes 9 arranged in the vertical direction, and each header section 18 connected to the end of each heat transfer tube 9 is a steam pipe. 7 and condensate pipe 8.

特にこの装置にあっては凝縮器6の出口側ヘッダ部18
aと上記液タンク16との間の凝縮液管8には、これに
流れる凝縮液の流量制御を行なうことにより凝縮器内伝
熱管9の液面の高さhを増減する液面制御弁19が介設
されている。この制御弁19は制御器20からの指令信
号に基づいて全開状態から全開状態まで任意の弁開度を
採り得るようになされている。また、循環系15には、
この制御弁19の上下流の圧力バランスを保つために凝
縮器6の上流側と弁19の下流側を連絡する圧力バラン
ス管21が設けられている。
In particular, in this device, the outlet side header section 18 of the condenser 6
The condensate pipe 8 between the liquid tank 16 and the liquid tank 16 is provided with a liquid level control valve 19 that increases or decreases the height h of the liquid level in the heat transfer tube 9 in the condenser by controlling the flow rate of the condensate flowing into the condensate pipe 8. is interposed. The control valve 19 is configured to be able to take any valve opening degree from a fully open state to a fully open state based on a command signal from a controller 20. In addition, in the circulatory system 15,
In order to maintain a pressure balance between the upstream and downstream sides of the control valve 19, a pressure balance pipe 21 is provided that connects the upstream side of the condenser 6 and the downstream side of the valve 19.

前記蒸発器3の低温側伝熱管(排ガスの最も下流側)9
aにはこの温度を検出する温度センサ22が、また、前
記蒸気管7にもこの中を流れる熱媒体の蒸気温度を検出
するための温度センサ23がそれぞれ設けられ、各検出
温度値を電気信号として上記制御器20へ入力するよう
になっている。
Low-temperature side heat transfer tube of the evaporator 3 (the most downstream side of the exhaust gas) 9
A is provided with a temperature sensor 22 for detecting this temperature, and the steam pipe 7 is also provided with a temperature sensor 23 for detecting the steam temperature of the heat medium flowing therein, and each detected temperature value is sent as an electric signal. The signal is input to the controller 20 as follows.

この制御器20においては、予め露点温度値が入力設定
されており、この設定値と上記検出温度値(低い方の温
度値)とが比較演算処即されて濃度差をめ、この温度差
に基づいて検出温度値が予め設定された設定温度値を上
回るように液面制御弁19への指令信号を発することに
なる。尚、露点温度値は任意の値に設定可能となってい
る。
In this controller 20, a dew point temperature value is input and set in advance, and this set value and the above-mentioned detected temperature value (lower temperature value) are compared and calculated to calculate the concentration difference. Based on this, a command signal is issued to the liquid level control valve 19 so that the detected temperature value exceeds a preset temperature value. Note that the dew point temperature value can be set to any value.

また、上述の如く2基の温度センサ23.24を設けな
(でもいずれか一方の温度センサのみを設けるようにし
てもよい。
Further, as described above, the two temperature sensors 23 and 24 may not be provided (although only one of the temperature sensors may be provided).

以上のような構成に基づき、本発明方法を具体的に説明
する。
The method of the present invention will be specifically explained based on the above configuration.

まず、通常運転時においては、排ガス通路2内を流れる
排ガスの顕熱は、蒸発器3にて熱媒体を加熱気化するこ
とにより回収され、この蒸気は循環系15を流れて凝縮
器6へ導入され、被加熱ガスを加熱する。この熱交換に
より蒸気は再液化し、液タンク16及び循環ポンプ17
を介して再度蒸発器3側へ移送される。
First, during normal operation, the sensible heat of the exhaust gas flowing in the exhaust gas passage 2 is recovered by heating and vaporizing the heat medium in the evaporator 3, and this steam flows through the circulation system 15 and is introduced into the condenser 6. and heats the gas to be heated. Through this heat exchange, the steam is re-liquefied, and the liquid tank 16 and circulation pump 17
The liquid is transferred to the evaporator 3 again via the .

9− ここで、排ガスの温度の低下にともない、蒸発器3内の
低温側伝熱@9aの温度或いは蒸気温度が低下して露点
湿度に近くなると、制御器20から弁開度縮小信号を発
して液面制御弁19を図示しないアクチュエータにより
閉側へ作動する。これにより、液体熱媒体の流量を絞っ
て凝縮器6内の伝熱管9の液面を上昇させ、伝熱管9の
蒸気凝縮のための有効伝熱面積を減少させる。すなわち
、液面の高さhが高くなると有効伝熱面積が減少する。
9- Here, as the temperature of the exhaust gas decreases, the temperature of the low temperature side heat transfer @ 9a in the evaporator 3 or the steam temperature decreases and approaches the dew point humidity, the controller 20 issues a valve opening reduction signal. Then, the liquid level control valve 19 is operated to the closed side by an actuator (not shown). This reduces the flow rate of the liquid heat medium to raise the liquid level in the heat transfer tubes 9 in the condenser 6, thereby reducing the effective heat transfer area of the heat transfer tubes 9 for vapor condensation. That is, as the height h of the liquid level increases, the effective heat transfer area decreases.

これにより、蒸気の凝縮液化量が減少することから上記
蒸発器3の角筒が減じ、蒸発器3内の伝熱管表面瀧麿が
露点温度以下になることが防止され、これを酸などの露
点温度以上に保持する。
As a result, the amount of condensed and liquefied steam is reduced, so the square tube of the evaporator 3 is reduced, and the surface of the heat exchanger tube in the evaporator 3 is prevented from falling below the dew point temperature, and the dew point of the acid etc. Hold above temperature.

制御器20には温度差と、これに対応する最適なすなわ
ち最も熱回収効率が良好となる液面の高さhとの相関関
係が予め記憶されており、これに基づいて弁開度を連続
的に変化させることになる。
The controller 20 stores in advance the correlation between the temperature difference and the corresponding optimal liquid level height h that provides the best heat recovery efficiency, and continuously adjusts the valve opening based on this. This will lead to a significant change.

従って、排ガス温度が連続的に変化した場合、従来にあ
っては有効伝熱面積を段階的にしか変化できなかったが
、本実施例によれば排ガス温度の変10− 化に対応させて液面制御弁19の弁開度を変えることに
より伝熱管9の有効伝熱面積を連続的に変化させること
ができ、この結果、蒸発器3内の伝熱管表面温度を露点
温度以上に保持しつつ熱回収効率を常時高くして有効な
熱回収が可能となる。
Therefore, when the exhaust gas temperature changes continuously, the effective heat transfer area could only be changed stepwise in the past, but according to this embodiment, the liquid By changing the opening degree of the surface control valve 19, the effective heat transfer area of the heat transfer tube 9 can be continuously changed, and as a result, the surface temperature of the heat transfer tube in the evaporator 3 can be maintained above the dew point temperature. Effective heat recovery is possible by constantly increasing heat recovery efficiency.

又、蒸発器3の低温側伝熱管9aの温度が急速に低下し
た場合液面制御弁19を急速に閉じても、液面は急速に
上昇しないことがある(凝縮液量が少ない場合)。この
様な場合を考慮して循環ポンプ17の出口側凝縮液管1
5より分岐管28を設け、液面制御弁19の上流側に常
に凝縮液の一部を流しておく。この様にすることにより
、液面制御弁19の上流側には凝縮器6で凝縮する以上
の凝縮液が流れ、蒸発器低温側伝熱管9aの温度が急速
に低下した場合であっても、液面制御弁19を閏にする
ことにより液面は急速に上昇し蒸発器低温側伝熱管9a
の温度に応じた凝縮器9の伝熱面積を得ることができる
Further, when the temperature of the low temperature side heat transfer tube 9a of the evaporator 3 rapidly decreases, the liquid level may not rise rapidly even if the liquid level control valve 19 is rapidly closed (if the amount of condensed liquid is small). In consideration of such a case, the condensate pipe 1 on the outlet side of the circulation pump 17 is
A branch pipe 28 is provided from 5 to allow a portion of the condensate to always flow upstream of the liquid level control valve 19. By doing this, more condensed liquid than can be condensed in the condenser 6 flows upstream of the liquid level control valve 19, and even when the temperature of the evaporator low temperature side heat transfer tube 9a rapidly decreases, By adjusting the liquid level control valve 19, the liquid level rises rapidly and the evaporator low temperature side heat transfer tube 9a
It is possible to obtain the heat transfer area of the condenser 9 depending on the temperature.

また、従来例にあっては、多数のストップ弁11(第4
図参照)を設けたり、或いは大口径のバイパス管13及
びバイパス弁14〈第5図参照)を設ける必要があった
が本実施例によれば、液面制御弁19は凝縮液の流量を
制御するだけであり、その口径は従来用いられている凝
縮液管8の口径だけあれば充分なので設備費も削減でき
る。
In addition, in the conventional example, a large number of stop valves 11 (fourth
However, according to this embodiment, the liquid level control valve 19 controls the flow rate of the condensate. The diameter of the condensate pipe 8, which is conventionally used, is sufficient, and the equipment cost can be reduced.

尚、有効伝熱面積を減少させるには、上記と逆に弁19
の開度を大きくして流量を増すことにより液面の高さh
を小さくする。
In addition, to reduce the effective heat transfer area, conversely to the above, the valve 19
By increasing the opening degree and increasing the flow rate, the height of the liquid level h
Make smaller.

上記装置例にあっては、有効伝熱面積を増減する方法と
して液面の高さhを制御する方法を採用したが、これに
限らず、第2図に示す如く凝縮器6内に非凝縮性ガスを
導入して制御するようにしてもよい。
In the above device example, a method of controlling the height h of the liquid level was adopted as a method of increasing/decreasing the effective heat transfer area, but the method is not limited to this, and as shown in FIG. It may also be controlled by introducing a toxic gas.

すなわち、図示する如く、凝縮器6の出口側ヘッダ部1
8aと液タンク16との間の凝縮液管8に、この中に非
凝縮性ガスを導入する非凝縮性ガス導入管24と、ガス
を排出する非凝縮性ガス排出管25とをそれぞれ接続す
ると共に、これら導入管24及び排出管25にそれぞれ
非凝縮性ガス封入制御弁26及び非凝縮性ガス排出制御
弁27を介設しておく。ここで使用する非凝縮性ガスと
しては例えばラドンやキセノンのようにその比重が熱媒
体の比重よりも大きいガスを使用する。
That is, as shown in the figure, the outlet side header section 1 of the condenser 6
A non-condensable gas introduction pipe 24 for introducing non-condensable gas into the condensate pipe 8 and a non-condensable gas discharge pipe 25 for discharging gas are connected to the condensate pipe 8 between 8a and the liquid tank 16, respectively. At the same time, a non-condensable gas injection control valve 26 and a non-condensable gas discharge control valve 27 are provided in the introduction pipe 24 and the discharge pipe 25, respectively. As the non-condensable gas used here, for example, a gas such as radon or xenon whose specific gravity is larger than the specific gravity of the heat medium is used.

これら8弁26.27は前述と同様な制御器(図示せず
)によりその開度が制御され非凝縮性ガスの封入量及び
排出量が決定される。尚、凝縮器6内の伝熱管のガス柱
の高さ(と制御器にて演算される温度差との相関関係は
制御器20において予め記憶設定されている。
The opening degrees of these eight valves 26 and 27 are controlled by a controller (not shown) similar to that described above to determine the amount of non-condensable gas to be filled in and the amount to be discharged. Note that the correlation between the height of the gas column of the heat transfer tube in the condenser 6 (and the temperature difference calculated by the controller) is stored and set in advance in the controller 20.

このような構成において、まず制御器20からの指令に
より、非凝縮性ガス封入制御弁26を開き、非凝縮性ガ
スを凝縮液管8内へ導入乃至封入する。封入された非凝
縮性ガスは熱媒体の蒸気より重いため、液タンク16内
の液面上よりたまり始め時間と共にその非凝縮性ガスは
凝縮器6の伝熱管下部のヘッダ部18aに到達する。そ
して、ヘッダ部18aまで非凝縮性ガスが到達したなら
ば封入制御弁26を閉にしてこのガス状態を維持する。
In such a configuration, first, the non-condensable gas filling control valve 26 is opened in response to a command from the controller 20, and the non-condensable gas is introduced into or sealed into the condensate pipe 8. Since the enclosed non-condensable gas is heavier than the heat medium vapor, it begins to accumulate above the liquid level in the liquid tank 16 and over time reaches the header portion 18a at the lower part of the heat transfer tube of the condenser 6. When the non-condensable gas reaches the header portion 18a, the enclosure control valve 26 is closed to maintain this gas state.

このような状態において、前述と同様に排ガス13一 温度の低下にともない、蒸発器3(第1図参照)の伝熱
管温度が低下してきて露点温度に近くなると、検出温度
値と予め設定された露点温度値との温度差が小さくなる
ため、この温度差に基づいて制御器20から弁開信号を
発し、封入制御弁26を開にする。これにより、凝縮器
6内の伝熱管9の下部に位置していた非凝縮性ガスが上
昇する。
In this state, as described above, as the temperature of the exhaust gas 13 decreases, the temperature of the heat exchanger tube of the evaporator 3 (see Figure 1) decreases and approaches the dew point temperature, and the detected temperature value and the preset temperature decrease. Since the temperature difference from the dew point temperature value becomes small, the controller 20 issues a valve open signal based on this temperature difference, and the enclosure control valve 26 is opened. As a result, the non-condensable gas located below the heat transfer tubes 9 in the condenser 6 rises.

そして、必要とする伝熱管の有効伝熱面積に到達するま
で弁26を開き非凝縮性ガスを封入し続けてガス柱の高
さβを上昇させる。これにより、前述と同様に伝熱管9
の有効伝熱面積を連続的に減少させることができ、熱回
収効率を常時高く維持することができる。
Then, the height β of the gas column is raised by opening the valve 26 and continuing to fill in the non-condensable gas until the required effective heat transfer area of the heat transfer tube is reached. As a result, the heat exchanger tube 9
The effective heat transfer area can be continuously reduced, and the heat recovery efficiency can be maintained at a high level at all times.

また、伝熱管9の有効伝熱面積を増加させたい場合には
、非凝縮性ガス排出制御弁27を開状態にする。これに
より、凝縮器6内の非凝縮性ガスを排出する。
Furthermore, when it is desired to increase the effective heat transfer area of the heat transfer tubes 9, the non-condensable gas discharge control valve 27 is opened. As a result, the non-condensable gas in the condenser 6 is discharged.

以上述べた操作を繰り返寸ことにより有効伝熱面積を連
続的に増減させることができる。尚、上記実施例におい
ては、熱風炉からの排ガス熱回収14− に適用する場合について説明したが、これに限定されな
いのは勿論である。
By repeating the above-described operations, the effective heat transfer area can be continuously increased or decreased. Incidentally, in the above embodiment, a case where the present invention is applied to exhaust gas heat recovery 14- from a hot air stove has been described, but it is needless to say that the present invention is not limited to this.

[発明の効果] 以上要するに本発明によれば、次のような優れた効果を
発揮することができる。
[Effects of the Invention] In summary, according to the present invention, the following excellent effects can be achieved.

〔1) 凝縮器の凝縮液面を制御することにより或いは
非凝縮性ガスのガス柱の高さを制御することにより、有
効伝熱面積を連続的に変化させることができるので、蒸
発器の低温側伝熱管が露点温度近くなっても連続的に露
点温度以上にこの伝熱管温度を保持できる。
[1] By controlling the condensate level in the condenser or by controlling the height of the gas column of non-condensable gas, the effective heat transfer area can be continuously changed, so the low temperature of the evaporator can be changed. Even if the temperature of the side heat exchanger tube approaches the dew point temperature, the temperature of the heat exchanger tube can be continuously maintained above the dew point temperature.

(2) 従って、従来例の如く有効伝熱面積を段階的に
変えるのでなく連続的に変えるので、露点温度以上にて
有効伝熱面積を常時最大限に確保でき、熱回収効率を向
上させることができる。
(2) Therefore, since the effective heat transfer area is changed continuously instead of stepwise as in the conventional example, the effective heat transfer area can always be maximized at temperatures above the dew point temperature, improving heat recovery efficiency. I can do it.

(3) 従来例の如くストップ弁を多数設ける必要がな
(、凝縮器1台に対して1基で足り、また、非凝縮性ガ
スを用いる場合にも弁の個数が少なくて済み、全体とし
て設備費の削減に寄与できる。
(3) It is not necessary to provide many stop valves as in the conventional case (one is sufficient for one condenser, and even when non-condensable gas is used, the number of valves is small, and the overall It can contribute to reducing equipment costs.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を実施するための排熱回収装置の一
例を示す概略斜視図、第2図は他の実施例を示す部分斜
視図、第3図は熱風炉に設けた排熱回収装置を示す概略
平面図、第4図は従来の排熱回収装置を示す概略斜視図
、第5図は他の従来の排熱回収装置を示す概略斜視図で
ある。 尚、図中3は蒸発器、6は凝縮器、9は伝熱管、15は
循環系、19は液面制御弁、20は制御器、22.23
は温度センサである。 特許出願人 石川島播磨重工業株式会社代理人弁即士 
絹 谷 信 雄 槃Q6妹 へ刷 派 各駕彪ミ区
Fig. 1 is a schematic perspective view showing an example of an exhaust heat recovery device for carrying out the method of the present invention, Fig. 2 is a partial perspective view showing another embodiment, and Fig. 3 is an exhaust heat recovery device installed in a hot blast stove. FIG. 4 is a schematic plan view showing the device, FIG. 4 is a schematic perspective view showing a conventional waste heat recovery device, and FIG. 5 is a schematic perspective view showing another conventional waste heat recovery device. In addition, in the figure, 3 is an evaporator, 6 is a condenser, 9 is a heat exchanger tube, 15 is a circulation system, 19 is a liquid level control valve, 20 is a controller, 22.23
is a temperature sensor. Patent applicant: Ishikawajima-Harima Heavy Industries Co., Ltd. Attorney and Attorney
Kinu Tani Nobu Yuki Q6 My sister's printing group Gakbiomi district

Claims (1)

【特許請求の範囲】[Claims] 熱媒体を循環させる循環系に、それぞれ伝熱管の内蔵さ
れた蒸発器と凝縮器とを設け、蒸発器で発生した熱媒体
蒸気を凝縮器で凝縮させて排ガス等から熱回収を図るよ
うになした排熱回収装置において、上記蒸発器の伝熱管
の温度又は熱媒体の蒸気温度を検出し、該検出温度値と
予め設定された露点温度値とを比較して温度差をめ、該
温度差に基づいて上記検出温度値が上記露点温度値を上
回るように上記凝縮器に内蔵された伝熱管の有効伝熱面
積を連続的に増減するようにしたことを特徴とする排熱
回収装置における蒸発器内伝熱管の表面温度制御方法。
The circulation system that circulates the heat medium is equipped with an evaporator and a condenser, each with a built-in heat transfer tube, and the heat medium vapor generated in the evaporator is condensed in the condenser to recover heat from exhaust gas, etc. In the waste heat recovery device, the temperature of the heat transfer tube of the evaporator or the vapor temperature of the heat medium is detected, the detected temperature value is compared with a preset dew point temperature value, the temperature difference is calculated, and the temperature difference is calculated. Evaporation in the exhaust heat recovery device, characterized in that the effective heat transfer area of the heat transfer tube built in the condenser is continuously increased or decreased so that the detected temperature value exceeds the dew point temperature value based on Method for controlling the surface temperature of heat transfer tubes inside the vessel.
JP59095746A 1984-05-15 1984-05-15 Method of controlling surface temperature of heat transfer tube of evaporator in waste heat recovering device Pending JPS60240996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59095746A JPS60240996A (en) 1984-05-15 1984-05-15 Method of controlling surface temperature of heat transfer tube of evaporator in waste heat recovering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59095746A JPS60240996A (en) 1984-05-15 1984-05-15 Method of controlling surface temperature of heat transfer tube of evaporator in waste heat recovering device

Publications (1)

Publication Number Publication Date
JPS60240996A true JPS60240996A (en) 1985-11-29

Family

ID=14146054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59095746A Pending JPS60240996A (en) 1984-05-15 1984-05-15 Method of controlling surface temperature of heat transfer tube of evaporator in waste heat recovering device

Country Status (1)

Country Link
JP (1) JPS60240996A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110036104A1 (en) * 2005-10-25 2011-02-17 Mitsubishi Electric Corporation Air conditioner, refrigerant filling method of air conditioner, method for judging refrigerant filling state of air conditioner as well as refrigerant filling and pipe cleaning method of air conditioner
CN102230753A (en) * 2011-06-09 2011-11-02 中国科学院过程工程研究所 High-efficiency, sub-control and phase-change heat exchange system and method
CN102435083A (en) * 2011-12-15 2012-05-02 大连熵立得传热技术有限公司 Split-type heat pipe heat exchanger capable of controlling wall temperature of heat pipe
JP2014098507A (en) * 2012-11-14 2014-05-29 Toshiba Corp Heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110036104A1 (en) * 2005-10-25 2011-02-17 Mitsubishi Electric Corporation Air conditioner, refrigerant filling method of air conditioner, method for judging refrigerant filling state of air conditioner as well as refrigerant filling and pipe cleaning method of air conditioner
US9103574B2 (en) * 2005-10-25 2015-08-11 Mitsubishi Electric Corporation Air conditioner, refrigerant filling method of air conditioner, method for judging refrigerant filling state of air conditioner as well as refrigerant filling and pipe cleaning method of air conditioner
CN102230753A (en) * 2011-06-09 2011-11-02 中国科学院过程工程研究所 High-efficiency, sub-control and phase-change heat exchange system and method
CN102435083A (en) * 2011-12-15 2012-05-02 大连熵立得传热技术有限公司 Split-type heat pipe heat exchanger capable of controlling wall temperature of heat pipe
JP2014098507A (en) * 2012-11-14 2014-05-29 Toshiba Corp Heat exchanger

Similar Documents

Publication Publication Date Title
JPS6222054B2 (en)
CN1696584A (en) Afterheat recovery apparatus of heat source furnace
JPS60240996A (en) Method of controlling surface temperature of heat transfer tube of evaporator in waste heat recovering device
JP2015206484A (en) Vacuum type water heater
CN209744357U (en) Heat exchange system
JPH0522828B2 (en)
CN109812795A (en) A kind of heat-exchange system
JPS60259892A (en) Heat transmission device
JP2920419B2 (en) Heat storage device and heat storage and evaporator
CN209857539U (en) Constant-power gas phase drying system
CN207119157U (en) A kind of peppermint oil dehydration device
JPH0423181B2 (en)
JPS6146847A (en) Solar heat type hot water feeding device
JPH0113963Y2 (en)
JPH0353544B2 (en)
JPH0243994B2 (en)
JPH0243993B2 (en)
JPS62182593A (en) Separate type heat pipe heat exchanger
JPS629107A (en) Moisture separating heater
JPS6146848A (en) Hot-water supplier utilizing solar heat
JPH0423179B2 (en)
JPS60164175A (en) Solar heat water heater
JPH0646122B2 (en) Control method for double-effect absorption refrigerator
JPS6138360A (en) Solar heat collector
JPS60129565A (en) Heat transfer device