JPS629107A - Moisture separating heater - Google Patents

Moisture separating heater

Info

Publication number
JPS629107A
JPS629107A JP14802285A JP14802285A JPS629107A JP S629107 A JPS629107 A JP S629107A JP 14802285 A JP14802285 A JP 14802285A JP 14802285 A JP14802285 A JP 14802285A JP S629107 A JPS629107 A JP S629107A
Authority
JP
Japan
Prior art keywords
steam
heater
vent
pressure
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14802285A
Other languages
Japanese (ja)
Inventor
健二 佐藤
尾関 敏明
戸塚 正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14802285A priority Critical patent/JPS629107A/en
Publication of JPS629107A publication Critical patent/JPS629107A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/06Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits having a single U-bend

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、蒸気タービンプラントにおける湿分分離加熱
器にr311する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to moisture separation heaters in steam turbine plants.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、沸騰水型或は加圧木型の軽水炉を用いた原子力
発電プラント等におい、では、高圧ターピンに導かれる
主蒸気が飽和蒸気であるため、高圧タービン内で仕事を
して低温低圧となった高圧タービン排気蒸気(以下サイ
クル蒸気という)は、定格負荷条件において14ata
、196℃、湿り度12〜13%の湿り蒸気となる。し
たがって、この湿り蒸気を低圧タービンにそのまま導入
すると、低圧蒸気タービンの内部効率の低下や羽根車の
浸食による不具合の原因となるばかりでなく、プラント
の熱効率の低下を来す等の問題がある。
Generally, in nuclear power plants using boiling water type or pressurized wood type light water reactors, the main steam led to the high pressure turpin is saturated steam, so it performs work in the high pressure turbine and becomes low temperature and low pressure. The high-pressure turbine exhaust steam (hereinafter referred to as cycle steam) is 14ata under rated load conditions.
, 196°C and humidity of 12-13%. Therefore, if this wet steam is directly introduced into the low-pressure turbine, it not only causes problems such as a decrease in the internal efficiency of the low-pressure steam turbine and erosion of the impeller, but also causes problems such as a decrease in the thermal efficiency of the plant.

そこで、高圧蒸気タービンと低圧蒸気タービンの間に湿
分分離加熱器を設け、サイクル蒸気中の湿分を除去する
と同時に加熱し、低圧蒸気タービンの内部効率の向上を
図ることが行なわれており、上記湿分分離加熱器として
は特公昭53−1889号公報記載のようなものが知ら
れている。
Therefore, a moisture separation heater is installed between the high-pressure steam turbine and the low-pressure steam turbine, and the moisture in the cycle steam is removed and heated at the same time, in order to improve the internal efficiency of the low-pressure steam turbine. As the above-mentioned moisture separating heater, the one described in Japanese Patent Publication No. 1889/1989 is known.

第5図は、上述の如き湿分分離加熱器を設けた蒸気ター
ビンプラントの概略系統図であって、高圧蒸気タービン
1には、図示しない原子炉または蒸気発生器から約65
〜6 B ataの飽和蒸気が主蒸気管2を介して供給
され、そこで仕事を行なう。
FIG. 5 is a schematic system diagram of a steam turbine plant equipped with a moisture separation heater as described above.
Saturated steam of ~6 B ata is supplied via the main steam pipe 2 and performs work therein.

上記高圧蒸気タービン1で仕事を終えた蒸気は、定格に
おいて約14ata、196℃、湿り度12〜13%の
蒸気となって、導管3を経て湿分分離加熱器4に導かれ
る。
The steam that has completed its work in the high-pressure steam turbine 1 becomes steam with a rating of approximately 14 ata, 196° C., and a humidity of 12 to 13%, and is led to a moisture separation heater 4 through a conduit 3.

湿分分離加熱器4は、普通水平円筒形状の外観を有し、
内部に湿分分離器5および加熱器6.7が収容された熱
交換器であり、サイクル蒸気の加熱を1段の加熱器で行
なう1段加熱方式と2段の加熱器で行なう2段加熱方式
とがある。
The moisture separation heater 4 usually has a horizontal cylindrical appearance,
It is a heat exchanger that houses a moisture separator 5 and a heater 6.7 inside, and has a one-stage heating method in which cycle steam is heated with a single-stage heater, and a two-stage heating method in which cycle steam is heated with a two-stage heater. There is a method.

しかして、上記高圧クービン1から排出されたサイクル
蒸気は、湿分分離加熱器4の下部に設けられた流入口8
から湿分分離加熱器4内に流入し、波状の板を多数並設
した湿分分離器5を通過する際に、その蒸気内に含んで
いる湿分の内の大部分が除去され、湿り度が約1%の蒸
気となる。そして、この湿分分離器5で分離された湿分
はドレン排出管9を経て図示しない給水加熱器へ送られ
て熱回収に利用される。
Thus, the cycle steam discharged from the high-pressure cuben 1 is transferred to an inlet 8 provided at the lower part of the moisture separation heater 4.
When the steam flows into the moisture separating heater 4 and passes through the moisture separator 5, which has a large number of corrugated plates arranged in parallel, most of the moisture contained in the steam is removed and the moisture is It becomes steam with a concentration of about 1%. The moisture separated by the moisture separator 5 is sent to a feed water heater (not shown) via a drain discharge pipe 9 and used for heat recovery.

一方、湿分が約1%となったサイクル蒸気は、第1段の
加熱器6および第2段の加熱器7の各管束の管外側を順
次その管束に直交する方向に流れ、その間管内を流れる
高温の加熱蒸気と熱交換することにより加熱され、定格
負荷条件において約70℃過熱した熱気となって本体胴
の上部に、設けられたサイクル蒸気流出口10より流出
し、導管11を経て低圧タービン12に供給される。
On the other hand, cycle steam with a moisture content of approximately 1% flows sequentially on the outside of each tube bundle of the first-stage heater 6 and the second-stage heater 7 in a direction perpendicular to the tube bundle, while flowing inside the tube. It is heated by exchanging heat with the flowing high-temperature heating steam, becomes hot air that is superheated by about 70 degrees Celsius under rated load conditions, flows out from the cycle steam outlet 10 provided in the upper part of the main body shell, and passes through the conduit 11 to low pressure. is supplied to the turbine 12.

上記第1段および第2段の加熱器6,7は、ともに多数
のU字状伝熱管によって構成されており、第1段の加熱
器6の加熱蒸気ヘッダ13には高圧タービン1からの油
気蒸気が導管14を経て供給され、第2段の加熱器7の
加熱蒸気ヘッダ15には主蒸気の一部が導管16を介し
て供給される。
The first and second stage heaters 6 and 7 are both composed of a large number of U-shaped heat exchanger tubes, and the heated steam header 13 of the first stage heater 6 receives oil from the high pressure turbine 1. Steam is supplied via conduit 14 and a portion of the main steam is supplied via conduit 16 to the heated steam header 15 of the second stage heater 7 .

ところが、上記加熱器6,7は、第6図に示すように、
適当な間隔をもって配設された支え板20によって支持
された多数のU字状伝熱管21を有し、そのU字状伝熱
管21の両端部が加熱蒸気ヘッダ22の管板23に固着
されている。すなわち、上記U字状伝熱管21の一端部
は加熱蒸気ヘッダ22内に区劃形成された加熱蒸気入口
ヘッダ22aに開口せしめられ、他端部は加熱蒸気出口
ヘッダ22bに接続されている。
However, the heaters 6 and 7, as shown in FIG.
It has a large number of U-shaped heat exchanger tubes 21 supported by support plates 20 arranged at appropriate intervals, and both ends of the U-shaped heat exchanger tubes 21 are fixed to the tube plate 23 of the heating steam header 22. There is. That is, one end of the U-shaped heat transfer tube 21 is opened to a heated steam inlet header 22a formed in a section in the heated steam header 22, and the other end is connected to a heated steam outlet header 22b.

したがって、高圧タービンからの抽気蒸気或は主蒸気か
らなる加熱蒸気は、加熱蒸気入口ヘッダ22aに流入し
、U字状伝熱管21内を流れ、その間管外を下から上へ
その伝熱管に直交する方向に流れる低温、低圧のナイク
ル蒸気と熱交換して徐々に凝縮し、その後加熱蒸気出口
へラダ22bに流入し、ざらにドレン排出管24から排
出される。
Therefore, the heated steam consisting of extracted steam or main steam from the high pressure turbine enters the heated steam inlet header 22a and flows inside the U-shaped heat exchanger tube 21, while passing outside the tube orthogonally from the bottom to the top. It gradually condenses by exchanging heat with the low-temperature, low-pressure Nycle steam flowing in that direction, and then flows into the ladder 22b to the heated steam outlet and is roughly discharged from the drain discharge pipe 24.

ところが、上記伝熱管内で凝縮したドレンは、その伝熱
管の下脚部を流れる際に、低温の被加熱蒸気との熱交換
によって加熱蒸気の飽和温度よりも低温の過冷却の状態
となることがあり、U字状伝熱管21の出口においては
上記過冷却した凝縮ドレンおよび飽和蒸気が同時に或は
交互に流出し、その飽和温度と過冷却した凝縮ドレン瀉
瓜の間の温度変動を受けることになる。しかして、この
温度変動によりU字状伝熱管21の出口側の管板23と
の溶接部等に熱疲労による伯傷が発生するという問題が
ある。
However, when the condensate condensed in the heat transfer tube flows through the lower leg of the heat transfer tube, it may become supercooled to a temperature lower than the saturation temperature of the heated steam due to heat exchange with the low-temperature heated steam. At the outlet of the U-shaped heat transfer tube 21, the supercooled condensate and saturated steam flow out simultaneously or alternately, and the temperature changes between the saturation temperature and the supercooled condensate. Become. However, due to this temperature fluctuation, there is a problem that scratches due to thermal fatigue occur in the welded portion of the U-shaped heat exchanger tube 21 with the tube plate 23 on the outlet side.

そこで、上記凝縮ドレンの過冷却を防止するために、加
熱蒸気出口ヘッダ22bに、第6図に示すように、ベン
ト蒸気排出管25を設け、そのベント蒸気排出管25か
ら加熱蒸気の一部を未凝縮のまま抽出するようにしたも
のも提案されている。
Therefore, in order to prevent overcooling of the condensate drain, a vent steam exhaust pipe 25 is provided in the heated steam outlet header 22b as shown in FIG. 6, and a part of the heated steam is discharged from the vent steam exhaust pipe 25. There have also been proposals for extraction in an uncondensed state.

すなわち、加熱蒸気の一部を未凝縮のまま抽出するよう
にすることによって、そのベント蒸気がU字状伝熱管2
1の管内を通過する際に、管内の凝縮ドレンを混合し、
飽和蒸気であるベント蒸気との接触によって上記凝縮ド
レンの過冷却を抑制する。
That is, by extracting a portion of the heated steam without condensing, the vent steam is transferred to the U-shaped heat exchanger tube 2.
When passing through the pipe of No. 1, the condensed condensate in the pipe is mixed,
Supercooling of the condensate drain is suppressed by contact with vent steam, which is saturated steam.

ところで、このベント蒸気による過冷却抑制効果を得る
ためには、定格運転時ばかりでなく低負荷時においても
全加熱蒸気流量の10%以上のベント蒸気を確保する必
要がある。しかし、このベント蒸気は加熱蒸気出口ヘッ
ダ22bと図示しない給水加熱器の胴側とを接続するベ
ント蒸気排出管25の途中に設けられた固定式の減庁オ
リフィスによって流量が設定されるので、ベント蒸気の
流量は加熱蒸気出口ヘッダと給水加熱器との胴側の圧力
差により自ずと決定される。
By the way, in order to obtain the effect of suppressing supercooling by this vent steam, it is necessary to ensure vent steam of 10% or more of the total heating steam flow rate not only during rated operation but also during low load. However, the flow rate of this vent steam is set by a fixed flow rate orifice provided in the middle of the vent steam exhaust pipe 25 that connects the heating steam outlet header 22b and the shell side of the feed water heater (not shown). The flow rate of steam is naturally determined by the pressure difference between the heated steam outlet header and the feed water heater on the shell side.

第7図は、第1段の加熱器6の加熱蒸気出口ヘッダ22
b内の圧力および給水加熱器の胴側の蒸気圧力を縦軸に
、ターどン負荷を横軸に取ったグラフであり、加熱蒸気
出口ヘッダ22b内の圧力は図中a−bで示され、定格
負荷時には約35ataであり、給水加熱器用側の圧力
は図中a−Cで表わされ、定格負荷時においては約24
 ataである。ここで、加熱蒸気出口ヘッダ22bと
給水加熱器胴側の圧力差は、図中a−bとa−Cの線間
の差で表わされ、定格運転時では約11Kg/cdであ
り、この圧力差は第1段加熱器の場合タービン負荷が低
下するに伴って小さくなる。したがって、ベント蒸気流
量は負荷の低下に伴って小さくなってくる。
FIG. 7 shows the heated steam outlet header 22 of the first stage heater 6.
This is a graph in which the vertical axis is the pressure in b and the steam pressure on the shell side of the feed water heater, and the horizontal axis is the turbine load, and the pressure in the heating steam outlet header 22b is indicated by a-b in the figure. , is approximately 35 ata at rated load, and the pressure on the feed water heater side is represented by a-C in the figure, and is approximately 24 ata at rated load.
It is ata. Here, the pressure difference between the heating steam outlet header 22b and the feed water heater body side is represented by the difference between lines a-b and a-c in the figure, and is approximately 11 kg/cd during rated operation. The pressure difference decreases in the case of the first stage heater as the turbine load decreases. Therefore, the vent steam flow rate becomes smaller as the load decreases.

第8図は、第1段の加熱器における、定格負荷時の加熱
蒸気流量およびベント蒸気流量に対する各部分負荷時の
加熱蒸気流量およびベント蒸気の比を縦軸にとって示し
たものであり、加熱蒸気流量比はa−d−eの線で表わ
され、ベント蒸気流m比はa−c−bの線で表わされる
。このように加熱蒸気流量比およびベント蒸気流m比は
ともにタービン負荷の低下に伴い減少する。ただし、ベ
ント蒸気は、50%負荷以下ではベント蒸気の排出側が
給水加熱器胴側からより圧力が低い復水器へ切替るので
、ベント蒸気流量の低下が緩やかとなる。ここで、加熱
蒸気流量に対するベント蒸気流量の割合は、前述のよう
に定格負荷時において10%に設定され、かつ部分負荷
時においてもベント蒸気流m比a−c−bは加熱蒸気流
量比a−d−eの上方にある。つまり部分負荷時におい
てもベント蒸気流mの加熱蒸気流量に対する割合は常に
10%以上確保されている。
Figure 8 shows, on the vertical axis, the ratio of the heating steam flow rate and vent steam flow rate at each partial load to the heating steam flow rate and vent steam flow rate at the rated load in the first stage heater. The flow rate ratio is represented by the line a-de and the vent vapor flow m ratio is represented by the line a-c-b. In this way, both the heating steam flow rate ratio and the vent steam flow m ratio decrease as the turbine load decreases. However, when the vent steam is under 50% load, the discharge side of the vent steam is switched from the feedwater heater shell side to the condenser with lower pressure, so the decrease in the vent steam flow rate becomes gradual. Here, the ratio of the vent steam flow rate to the heating steam flow rate is set to 10% at rated load as described above, and even at partial load, the vent steam flow m ratio a-c-b is the heating steam flow rate ratio a -de above. In other words, even during partial load, the ratio of the vent steam flow m to the heating steam flow rate is always maintained at 10% or more.

ところが、このようにタービン負荷が50%以下の場合
には、第1段の加熱器のベント蒸気は復水器へ排出され
るため、給水の加熱等目的のためには全く利用できない
However, when the turbine load is less than 50%, the vent steam of the first stage heater is discharged to the condenser, so it cannot be used at all for purposes such as heating feed water.

一方、第9図は第2段の加熱器の加熱蒸気出口ヘッダお
よび第1給水加熱器胴側の蒸気圧力を縦軸に、タービン
負荷を横軸に取ったグラフであり、加熱蒸気出口ヘッダ
の圧力は図中a−b−cで示され、定格負荷から50%
負荷までは約67ataであり、それ以後は急激に低下
する。また第1給水加熱器用側の圧力は図中d−eで表
わされる。
On the other hand, Figure 9 is a graph in which the vertical axis represents the steam pressure at the heated steam outlet header of the second stage heater and the first feed water heater shell side, and the horizontal axis represents the turbine load. The pressure is shown as a-b-c in the diagram, and is 50% from the rated load.
The load is about 67 ata, and after that it drops rapidly. Moreover, the pressure on the side for the first feed water heater is represented by de in the figure.

第10図は、第2段の加熱器における、定格負荷時の加
熱蒸気流量およびベント蒸気流化に対する各部分負荷時
における加熱蒸気流量比J3よびベント蒸気流量比を縦
軸に、タービン負荷を横軸に取ったグラフである。図中
、加熱蒸気流量比は実線で示すa−e−bで示され。定
格負荷から50%負荷までは徐々に減少し、50%負荷
以下ではやや急に減少する。一方、ベント蒸気流団は図
中a−C−dで示され、定格負荷から50%負荷までは
、ベント蒸気流量比は1.0であり、定格負荷時のベン
ト蒸気流量が保たれる。すなわち、第2段の加熱器の加
熱蒸気出口ヘッダの蒸気圧力が定格負荷から50%負荷
まで一定であり、かつベント蒸気オリフィス前後での圧
力比が臨界状態どなり、ベント然気流量は一定となる。
Figure 10 shows the heating steam flow rate at rated load and the heating steam flow rate ratio J3 and vent steam flow rate ratio at each partial load with respect to vent steam flow in the second stage heater on the vertical axis, and the turbine load on the horizontal axis. This is a graph with an axis. In the figure, the heating steam flow rate ratio is indicated by solid lines ae-b. It gradually decreases from the rated load to 50% load, and decreases somewhat suddenly below 50% load. On the other hand, the vent steam flow group is indicated by a-C-d in the figure, and from the rated load to 50% load, the vent steam flow rate ratio is 1.0, and the vent steam flow rate at the rated load is maintained. In other words, the steam pressure at the heated steam outlet header of the second stage heater is constant from the rated load to 50% load, and the pressure ratio before and after the vent steam orifice is in a critical state, and the vent natural air flow rate is constant. .

ところが、タービン負荷が50%以下となると、ベント
蒸気1ffiは第10図中c−dで示されるように急に
減少する。これは、第9図のb−cに示すように、ター
ビン負荷が50%以下になると、急激に第2段の加熱器
の加熱蒸気出口ヘッダの圧力が低下することにより、ベ
ント蒸気オリフィス前後の圧力差が減少するためである
However, when the turbine load becomes 50% or less, the vent steam 1ffi suddenly decreases as shown by c-d in FIG. As shown in Figure 9 b-c, when the turbine load falls below 50%, the pressure at the heated steam outlet header of the second stage heater suddenly decreases, causing This is because the pressure difference decreases.

ここで、第10図のタービン負荷50%以下のベント蒸
気流量比c−dは、加熱蒸気流は比を表わすa−bと約
35%負荷である点eにおいて交差し、それ以下のター
ビン負荷の運転では加熱蒸気流量比よりも低い値となる
Here, the vent steam flow rate ratio c-d at a turbine load of 50% or less in FIG. In operation, the value is lower than the heating steam flow rate ratio.

しかして、このようにベント蒸気流■比が加熱蒸気流量
比よりも低くなると、前述のように、定格負荷において
、加熱蒸気流量に対しベント蒸気流旦は10%となるよ
うにベント蒸気オリフィスが設計されているので、加熱
蒸気流量に対するベント蒸気流量の割合は10%未満と
なってしまい、前述の加熱蒸気凝縮ドレンに発生する痛
冷却の抑制効果が得られず、伝熱管出口部と、管板との
溶接部に熱疲労による損傷を生ずる恐れがある等の問題
がある。
However, when the vent steam flow ratio becomes lower than the heating steam flow rate ratio, the vent steam orifice is adjusted so that the vent steam flow rate is 10% of the heating steam flow rate at the rated load, as described above. Because of the design, the ratio of the vent steam flow rate to the heated steam flow rate is less than 10%, and the effect of suppressing the cooling that occurs in the heated steam condensation drain described above cannot be obtained, and the There are problems such as the possibility of damage due to thermal fatigue at the welded part with the plate.

〔発明の目的〕[Purpose of the invention]

本発明はこのような点に鑑み、湿分分離加熱器の第1段
加熱器においては、低負荷時におけるベント蒸気の熱回
収の向上、および第2段加熱器においては、低負荷時に
加熱蒸気流量に対するベント蒸気流量の割合が10%未
満になることによる加熱蒸気凝縮ドレンの過冷却により
、伝熱管出口部と管板との溶接部が熱疲労で損傷を生じ
ないようにして、機器の性能および信頼性を向上し得る
ようにした湿分分離加熱器を得ることを目的とする。
In view of these points, the present invention aims to improve the heat recovery of vent steam during low loads in the first stage heater of a moisture separation heater, and to improve the heat recovery of vent steam during low loads in the second stage heater. By supercooling the heated steam condensate drain due to the ratio of the vent steam flow rate to the flow rate being less than 10%, the welded part between the heat exchanger tube outlet and the tube plate is prevented from being damaged due to thermal fatigue, and the performance of the equipment is improved. The present invention also aims to provide a moisture separating heater that can improve reliability.

〔発明の概要〕[Summary of the invention]

本発明は、多数本のU字状伝熱管の端部をそれぞれ加熱
蒸気入口ヘッダおよび加熱蒸気出口ヘッダに連接した、
第1段加熱器と第2段加熱器とを有する湿分分離加熱器
において、上記加熱蒸気出口ヘッダにはベント蒸気排出
管が接続されるとともに、そのベント蒸気排出管は減圧
オリフィスおよび選択的に開閉制御される弁を介して互
いに圧力が異なる高圧給水加熱器および復水器に接続さ
れており、ベント蒸気排出管が、第1段加熱器において
は、タービン負荷が5%以下では復水器に連通され、5
%以上では高圧給水加熱器に連通され、第2段加熱器に
おいては、タービン負荷が40%以下では復水器に連通
され、40%以上では高圧給水加熱器に連通されること
を特徴とするものである。
The present invention provides a method in which the ends of a large number of U-shaped heat exchanger tubes are connected to a heating steam inlet header and a heating steam outlet header, respectively.
In the moisture separation heater having a first stage heater and a second stage heater, a vent steam exhaust pipe is connected to the heated steam outlet header, and the vent steam exhaust pipe is connected to a vacuum orifice and a selectively It is connected to a high-pressure feed water heater and a condenser with different pressures through valves that are controlled to open and close. communicated with 5
% or more, it is communicated with a high-pressure feedwater heater, and in the second stage heater, when the turbine load is 40% or less, it is communicated with a condenser, and when it is 40% or more, it is communicated with a high-pressure feedwater heater. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下、第1図乃至第4図を参照して本発明の実施例につ
いて説明する。
Embodiments of the present invention will be described below with reference to FIGS. 1 to 4.

第1図において、符号30aは湿分分離加熱器の第1段
加熱器、30bは第2段加熱器であって、両加熱器30
a、30bにおいてはともに、多数のU字状伝熱管31
a、31bの一端が加熱蒸気入口ヘッダ32a、32b
に接続され、他端が加熱蒸気出口ヘッダ33a、33b
に接続されている。
In FIG. 1, reference numeral 30a is the first stage heater of the moisture separation heater, 30b is the second stage heater, and both heaters 30
In both a and 30b, a large number of U-shaped heat exchanger tubes 31
One end of a, 31b is heated steam inlet header 32a, 32b
The other end is connected to the heating steam outlet header 33a, 33b.
It is connected to the.

ところで、上記加熱蒸気出口ヘッダ33a。By the way, the heating steam outlet header 33a.

33bにはそれぞれベント蒸気排出管34a。33b has a vent steam exhaust pipe 34a, respectively.

34bが接続されており、その両ベント熱気排出管34
a、34bは途中で2つの系統35a。
34b is connected, and both vent hot air exhaust pipes 34
a, 34b are two lines 35a on the way.

36aおよび35b、36bにそれぞれ分けられ、各系
統には減圧、オリフィス37a、37b、37c、37
d、および仕切弁38a、38b、38c、38dが直
列に接続されている。そして、上記各2つの系統のうち
一方の系統35a、35bは高圧給水加熱器用側39に
導かれ、他方の系統36a、36bは復水器40へと導
かれている。
36a, 35b, and 36b, and each system has a vacuum, orifice 37a, 37b, 37c, and 37
d, and gate valves 38a, 38b, 38c, and 38d are connected in series. One of the two systems 35a and 35b is led to the high-pressure feed water heater side 39, and the other system 36a and 36b is led to the condenser 40.

しかして、両加熱器30a、30bにおいて、加熱蒸気
はそれぞれ加熱蒸気入口ヘッダ32a。
Thus, in both heaters 30a and 30b, the heating steam is supplied to the heating steam inlet header 32a, respectively.

32bに流入し、U字状伝熱管31a、31bを流れ、
その間管外を流れる低温のサイクル蒸気と熱交換するこ
とにより凝縮し、大部分がドレンとなってU字状伝熱管
31a、’31bの他端から加熱蒸気入口ヘッダ33a
、33bへと流出する。
32b, flows through U-shaped heat exchanger tubes 31a and 31b,
During that time, it condenses by exchanging heat with the low-temperature cycle steam flowing outside the tube, and most of it becomes a drain, which flows from the other end of the U-shaped heat exchanger tubes 31a and 31b to the heating steam inlet header 33a.
, 33b.

そこで、上記熱交換によって凝縮したドレンは図示しな
い凝縮ドレン出口座より湿分弁111器の容器外へ導出
され、−月未凝縮のまま加熱蒸気入口ヘッダ33a、3
.3bに流入したベント蒸気は、べント蒸気排出管34
a、34bを通り、それぞれ減圧オリフィス37a、3
7b、37c、37dおよび仕切弁38a、38b、3
8c、38dを介して、高圧給水加熱器39或は復水器
40へ排出される。
Therefore, the condensate condensed by the above heat exchange is led out of the container of the moisture valve 111 from a condensate drain outlet (not shown), and remains uncondensed through the heated steam inlet headers 33a, 3.
.. The vent steam that has flowed into the vent steam exhaust pipe 34
a, 34b, and vacuum orifices 37a, 3, respectively.
7b, 37c, 37d and gate valves 38a, 38b, 3
The water is discharged to the high pressure feed water heater 39 or condenser 40 via 8c and 38d.

ところで、第1段加熱器30aにおいては、5%負荷以
上では仕切弁38aが開けられるとともに仕切弁38b
が閉じられ、ベント蒸気は減圧オリフィス37aおよび
上記仕切弁38aを経″c高圧給水加熱器39に導出さ
れる。一方、無負荷から5%負荷範囲においては、加熱
蒸気ヘッダおよび伝熱管内の真空引きのため、仕切弁3
8bが開らかれ、他方の仕切弁38aが閉じられ、この
場合にはベント蒸気は上記仕切弁38b等を介して復水
器40に導出される。
By the way, in the first stage heater 30a, when the load is 5% or more, the gate valve 38a is opened and the gate valve 38b is opened.
is closed, and the vent steam is led out to the high-pressure feed water heater 39 through the pressure reducing orifice 37a and the gate valve 38a.On the other hand, in the no-load to 5% load range, the vacuum in the heating steam header and heat transfer tubes is For pulling, gate valve 3
8b is opened, and the other gate valve 38a is closed, and in this case, vent steam is led out to the condenser 40 via the gate valve 38b and the like.

しかして、上記実施例においては、50%負荷以下にお
いても5%負荷まではベント蒸気排出管34aが高圧給
水加熱器39の胴側に連通されるので、定格負荷時に対
する部分負荷時のベント蒸気流量比は、第8図において
a−c−fで表わされるように変化Jるが、加熱蒸気流
量比a−d−eよりは人きい値となる。一方、定格負荷
においては、加熱蒸気流量に対するベント蒸気流量の割
合は10%となるように減圧オリフィス37aが設定さ
れている。したがって、上述のように部分9荷において
もベント蒸気流量比が加熱蒸気流量比より大きいことか
ら、部分負荷時における加熱蒸気流量に対するベント蒸
気流量の割合も10%以上となり、過冷却抑制効果を得
るに必要なベント然気は十分確保される。
In the above embodiment, even when the load is below 50%, the vent steam discharge pipe 34a is communicated with the shell side of the high pressure feed water heater 39 up to 5% load, so that the vent steam discharge pipe 34a is connected to the shell side of the high pressure feed water heater 39, so that the vent steam at partial load with respect to the rated load is Although the flow rate ratio changes as shown by a-c-f in FIG. 8, it becomes a threshold value rather than the heating steam flow rate ratio a-de. On the other hand, at the rated load, the decompression orifice 37a is set so that the ratio of the vent steam flow rate to the heating steam flow rate is 10%. Therefore, as mentioned above, since the vent steam flow rate ratio is larger than the heating steam flow rate ratio even in partial load, the ratio of the vent steam flow rate to the heating steam flow rate during partial load is also 10% or more, and the supercooling suppressing effect is obtained. Sufficient ventilation will be ensured.

一方、第2段加熱器30bにおいては、定格負荷より5
0%負荷までは加熱蒸気の圧力が一定しているため、ベ
ント蒸気流mは、第10図のa−Cに示すように一定と
なる。しかし、タービン負荷が50%以下となると、加
熱蒸気の圧力は急酒に低下し、ベント蒸気流量も減少し
始める。ところが、上記のように部分負荷時においても
加熱蒸気流量に対するベント蒸気流間の割合は10%以
上確保する必要があるが、タービン負荷が約35%以下
である図中e−dの範囲では、ベント蒸気流最北e−d
が加熱蒸気流は比e−bより下回っており、この範囲で
は加熱蒸気流量に対するベント蒸気流量の01合は10
%未満となる。
On the other hand, in the second stage heater 30b, 5
Since the pressure of the heating steam is constant up to 0% load, the vent steam flow m is constant as shown in a-C in FIG. 10. However, when the turbine load becomes 50% or less, the pressure of the heating steam drops rapidly and the vent steam flow rate also begins to decrease. However, as mentioned above, even at partial load, it is necessary to maintain a ratio of 10% or more between the vent steam flow and the heating steam flow, but in the range e-d in the figure where the turbine load is about 35% or less, Vent steam flow northernmost e-d
However, the heating steam flow is below the ratio e-b, and in this range, the ratio of the vent steam flow rate to the heating steam flow rate is 10
less than %.

そこで、本発明においては、加熱蒸気流量比a−e−b
とベント蒸気流は比a−c−dが等しくなるタービン負
荷的35%の点eよりも、やや負荷が大きいタービン負
荷40%である点fよりタービン負荷が小さい場合、第
1図に示す仕切弁38cを閉じ仕切弁38dが開放され
る。すなわち、タービン負荷が40%以下の場合には、
ベント蒸気は高圧給水加熱器39の胴側への供給から復
水器40への導入に切替えられる。したがって、上記復
水器40の器内がほぼ真空であることから、ベント蒸気
系統内の減圧オリフィス37dの上流側と下流側の圧力
差が大きくなり、ベント蒸気流岳が増加する。これをベ
ント蒸気流量比として第10図に示すとf−9で表わさ
れ、加熱蒸気流量比a−e−bを上回り、加熱蒸気流量
に対するベント蒸気流爪の割合は、低負荷においても1
0%以上確保され、加熱蒸気凝縮ドレンの過冷却による
伝熱管出口端の溶接部の損傷を防止することができる。
Therefore, in the present invention, the heating steam flow rate ratio a-e-b
When the turbine load is smaller than the point f where the turbine load is 40%, the load is slightly higher than the point e at 35% of the turbine load where the ratio a-c-d is equal. The valve 38c is closed and the gate valve 38d is opened. That is, when the turbine load is 40% or less,
The vent steam is switched from being supplied to the shell side of the high-pressure feedwater heater 39 to being introduced into the condenser 40 . Therefore, since the inside of the condenser 40 is almost vacuum, the pressure difference between the upstream side and the downstream side of the decompression orifice 37d in the vent steam system becomes large, and the amount of vent steam leakage increases. When this is shown in Figure 10 as a vent steam flow rate ratio, it is expressed as f-9, which exceeds the heating steam flow rate ratio ae-b, and the ratio of the vent steam flow claw to the heating steam flow rate is 1 even at low load.
0% or more, and it is possible to prevent damage to the welded portion at the outlet end of the heat exchanger tube due to supercooling of the heated steam condensate drain.

ところで、上記一実施例におけては、ベント蒸気排出管
34a、34bの2つに分岐された系統35a、36a
、35b−,36bにそれぞれ減圧オリフィスを設けた
ものを示したが、第2図に示ずようにベント蒸気排出管
34a、34bにおける2系統への分岐点より上流側に
、上記減圧オリフィス37a、37bを設けてもよい。
By the way, in the above embodiment, the vent steam exhaust pipes 34a and 34b are branched into two systems 35a and 36a.
, 35b-, and 36b are shown as having vacuum orifices, but as shown in FIG. 2, the vacuum orifices 37a, 37b may be provided.

また、第3図に示すように、各減圧オリフィス37a、
37b、37c、37dを各仕切弁38a、38b、3
8c、38dの下流側にそれぞれ設けるようにしてもよ
い。
Moreover, as shown in FIG. 3, each decompression orifice 37a,
37b, 37c, 37d to each gate valve 38a, 38b, 3
They may be provided on the downstream side of 8c and 38d, respectively.

ところで、一般に上記ベント蒸気量は100%負荷にお
ける各伝熱管での熱交換量を算出して各伝熱管に必要な
分だけ蒸気が流れるように設定されている。しかし、こ
のようなものにおいては低負荷運転時には入口、出口の
差圧が小さいため蒸気流量が少なく、外周伝熱管の下部
は熱交換量が大であるため、加熱蒸気出口ヘッダ近傍で
は過冷却となり流動不安定になる。すなわち、内周伝熱
管には十分な蒸気が流れるが、外周伝熱管下部では蒸気
流量が少なく当該部においては過冷却現象が発生し、ド
レンが滞留する。
Incidentally, the amount of vent steam is generally set so that the amount of heat exchanged in each heat exchanger tube at 100% load is calculated so that the required amount of steam flows through each heat exchanger tube. However, in such a device, during low-load operation, the differential pressure between the inlet and outlet is small, so the steam flow rate is small, and the lower part of the outer heat exchanger tube has a large amount of heat exchange, so the area near the heated steam outlet header becomes supercooled. Flow becomes unstable. That is, although sufficient steam flows through the inner circumferential heat exchanger tube, the steam flow rate is small in the lower part of the outer circumferential heat exchanger tube, and a supercooling phenomenon occurs in that section, causing condensate to accumulate.

したがって、これが進行すると内周伝熱管とアンバラン
スになり、ドレンが加熱蒸気出口ヘッダ側に吐き出され
、過冷却とドレン吐ぎ出しが繰り返されることによって
伝熱管と管板とのシール溶接部に損傷が生じたり、振動
発生の原因にもつながる等の問題がある。
Therefore, as this progresses, it becomes unbalanced with the inner heat exchanger tube, drain is discharged to the heated steam outlet header side, and the seal weld between the heat exchanger tube and tube sheet is damaged due to repeated supercooling and drain discharge. There are problems such as the occurrence of vibrations and vibrations.

第4図は、上述のような内周伝熱管と外周伝熱管下部と
の間における熱交換量の違いにもとずいて、上記外周伝
熱管下部における過冷却を防止するようにしたものであ
って、加熱蒸気出口ヘッダ33aが仕切板41によって
区劃され、比較的蒸気が流れ易い内周伝熱管が接続され
た内周伝熱管用出口ヘッダ42aとドレンが生成し易い
外周伝熱管に接続された外周伝熱管用出口ヘッダ42b
とが形成されている。
FIG. 4 shows a system in which supercooling in the lower part of the outer heat exchanger tube is prevented based on the difference in heat exchange between the inner heat exchanger tube and the lower part of the outer heat exchanger tube as described above. The heated steam outlet header 33a is separated by a partition plate 41, and is connected to an inner heat exchanger tube outlet header 42a connected to an inner heat exchanger tube through which steam flows relatively easily, and an outer heat exchanger tube through which condensate is easily generated. Outlet header 42b for outer peripheral heat exchanger tube
is formed.

上記内周伝熱管用出口ヘッダ42aおよび外周伝熱管用
用[]ヘッダ42bにはそれぞれベント蒸気排出管43
a、43bが連接され、各ベント蒸気排出管43a、4
3bにはそれぞれオリフィス44a、44bが設けられ
、各オリフィス44 a。
The outlet header 42a for the inner circumferential heat exchanger tubes and the header 42b for the outer circumferential heat exchanger tubes have vent steam exhaust pipes 43, respectively.
a, 43b are connected, and each vent steam exhaust pipe 43a, 4
3b is provided with an orifice 44a, 44b, respectively, and each orifice 44a.

44bに対して並列にそれぞれ圧力調節弁45a。Each pressure regulating valve 45a is in parallel with 44b.

45bが設けられている。45b is provided.

また、上記内周伝熱管用出口ヘッダ42aと外周伝熱管
出口ヘッダ42bには圧力検出器46a。
Further, pressure detectors 46a are provided at the inner heat exchanger tube outlet header 42a and the outer circumference heat exchanger tube outlet header 42b.

46bが設けられており、各「力検出器46a。46b are provided, each "force detector 46a.

46bで検出された信号と圧力設定関数発生器47a、
47bとの偏差信号が圧カニl!J節計488゜48b
にそれぞれ入力せしめられ、その各圧力調節計48a、
48bからの出力信号、すなわち出口ヘッダ内の圧力に
よって圧力調節弁45a。
the signal detected at 46b and a pressure setting function generator 47a;
The deviation signal from 47b is pressure crab l! J set meter 488°48b
are inputted into the respective pressure regulators 48a,
Pressure regulating valve 45a by the output signal from 48b, ie the pressure in the outlet header.

45bの開度が制御されるようにしである。The opening degree of 45b is controlled.

しかして、常時においては圧力調節弁45a。Therefore, at all times, the pressure regulating valve 45a.

45bは閉じた状態になっており、オリフィス44a、
44bにより一定のベント蒸気量が放出される。
45b is in a closed state, and the orifice 44a,
44b releases a constant amount of vent steam.

そこで、タービンの低負荷運転時などに、外周伝熱管下
部にドレンが滞留しそうになると、それが外周伝熱管用
出口ヘッダ42bの圧力と設定圧力との差に応じて圧力
調節弁45bが開方向に制御され、外周伝熱管用出口ヘ
ッダ42bの圧力が低く制御されて、伝熱管内の加熱蒸
気の流れをスムーズにし、過冷却にならないように制御
される。
Therefore, when the drain is likely to accumulate in the lower part of the outer heat exchanger tube during low load operation of the turbine, the pressure regulating valve 45b is moved in the opening direction according to the difference between the pressure of the outer heat exchanger tube outlet header 42b and the set pressure. The pressure at the outlet header 42b for the outer heat exchanger tubes is controlled to be low, so that the flow of heated steam within the heat exchanger tubes is made smooth and supercooling is prevented.

なお、同様にして内周伝熱管が過冷却状態になる場合に
も、上記圧力調節弁45aの開度制御によって上記伝熱
管の過冷却が防止され、高負荷時等に不必要にベント量
を増すこともない。
Similarly, even when the inner circumferential heat exchanger tube becomes overcooled, overcooling of the heat exchanger tube is prevented by controlling the opening degree of the pressure regulating valve 45a, and the amount of venting is not unnecessarily reduced during high loads. It will not increase.

〔発明の効果〕〔Effect of the invention〕

以上説明したよう゛に、本発明においては、湿分分離加
熱器における第1段加熱・器および第2段加熱器の両ベ
ント蒸気排出管を高圧給水加熱器および復水器に選択的
に接続し得るようにするとともに、第1段加熱器におい
てはベント蒸気排出管を5%負荷以下の場合にのみ復水
器に連通せしめるようにしたので、熱回収の上からは無
効となる復水器へのベント蒸気の流出が減少し、熱回収
効率を高くすることができる。さらに、第2段加熱器に
おいても、40%負荷以上では高圧給水加熱器にベント
蒸気排出管を接続し、40%負荷以下では復水器にベン
ト蒸気排出管を連通せしめるので、40%負荷以下の場
合でも常に加熱蒸気流ヱに対するベント蒸気流βの割合
が10%以上に確保され、加熱蒸気凝縮ドレンによる過
冷却が生ずることがなく、またそれによる熱疲労により
伝熱管出口と管板とのシール溶接部に損傷が生ずるよう
なことが確実に防止される。
As explained above, in the present invention, both the vent steam discharge pipes of the first stage heater and the second stage heater in the moisture separation heater are selectively connected to the high pressure feed water heater and the condenser. In addition, in the first stage heater, the vent steam exhaust pipe is connected to the condenser only when the load is 5% or less, so the condenser is ineffective in terms of heat recovery. The outflow of vent steam to the tank is reduced and the heat recovery efficiency can be increased. Furthermore, in the second stage heater, the vent steam exhaust pipe is connected to the high pressure feed water heater when the load is 40% or higher, and the vent steam exhaust pipe is connected to the condenser when the load is lower than 40%. Even when Damage to the seal weld is reliably prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の湿分分離加熱器の概略構成図、第2図
乃至第4図はそれぞれ本発明の他の実施例を示す概略構
成図、第5図は湿分分離加熱器を設けた蒸気タービンプ
ラントの蹴略系統図、第6図は加熱器の縦断面図、第7
図は第1段加熱器における加熱蒸気出口ヘッダ内の圧力
および給水加熱器の胴側の蒸気圧力のタービン負荷に対
する関係線図、第8図は第1段加熱器におけるタービン
負荷に対する加熱蒸気原石比およびベント蒸気流量比関
係を示す線図、第9図は第2段加熱器におけるタービン
負荷に対する加熱蒸気出口ヘッダ内の圧力および給水加
熱器の胴側の蒸気圧力の関係を示す図、第10図は第1
段加熱器におけるタービン負荷に対する加熱蒸気流量比
およびベント蒸気流量比の関係を示す線図である。 30a・・・第1段加熱器、30b・・・第2段加熱器
、31 a、 31 ’o・U字状伝熱管、32a、3
2b・・・加熱蒸気入口ヘッダ、33a、33b・・・
加熱蒸気出口ヘッダ、34a、34b・・・ベント蒸気
排出管、38a、38b、38c、38d−・・仕切弁
、39・・・高圧給水加熱器、40・・・復水器。 出願人代理人  佐  藤  −雄 蔓 l 図 第 2 図 $ 5 図 タービン負 荷  (2> 蔓7 図 0    25    50    75     f
qOタービン貴着  (X) 碧6図
FIG. 1 is a schematic diagram of a moisture separating heater according to the present invention, FIGS. 2 to 4 are schematic diagrams showing other embodiments of the present invention, and FIG. 5 is a diagram showing a moisture separating heater provided with a moisture separating heater. Figure 6 is a longitudinal sectional view of the heater, Figure 7 is a schematic system diagram of a steam turbine plant.
The figure shows the relationship between the pressure in the heated steam outlet header in the first stage heater and the steam pressure on the shell side of the feedwater heater with respect to the turbine load. Figure 8 shows the ratio of heated steam ore to the turbine load in the first stage heater. FIG. 9 is a diagram showing the relationship between the pressure in the heating steam outlet header and the steam pressure on the shell side of the feedwater heater with respect to the turbine load in the second stage heater, and FIG. is the first
FIG. 2 is a diagram showing the relationship between the heating steam flow rate ratio and the vent steam flow rate ratio with respect to the turbine load in the stage heater. 30a... 1st stage heater, 30b... 2nd stage heater, 31 a, 31 'o/U-shaped heat exchanger tube, 32a, 3
2b...Heating steam inlet header, 33a, 33b...
Heating steam outlet header, 34a, 34b...Vent steam discharge pipe, 38a, 38b, 38c, 38d--Gate valve, 39...High-pressure feed water heater, 40... Condenser. Applicant's Representative Sato - Yutsuri Figure 2 Figure $ 5 Figure Turbine Load (2> Tsuru 7 Figure 0 25 50 75 f
qO turbine Kikuchi (X) Aoi 6 figure

Claims (1)

【特許請求の範囲】 1、多数本のU字状伝熱管の端部をそれぞれ加熱蒸気入
口ヘッダおよび加熱蒸気出口ヘッダに連接した、第1段
加熱器と第2段加熱器とを有する湿分分離加熱器におい
て、上記加熱蒸気出口ヘッダにはベント蒸気排出管が接
続されるとともに、そのベント蒸気排出管は減圧オリフ
ィスおよび選択的に開閉制御される弁を介して互いに圧
力が異なる高圧給水加熱器および復水器に接続されてお
り、ベント蒸気排出管が、第1段加熱器においては、タ
ービン負荷が5%以下では復水器に連通され、5%以上
では高圧給水加熱器に連通され、第2段加熱器において
は、タービン負荷が40%以下では復水器に連通され、
40%以上では高圧給水加熱器に連通されることを特徴
とする、湿分分離加熱器。 2、ベント蒸気排出管は、高圧給水加熱器或は、復水器
にそれぞれ接続される分岐導管を有し、その分岐導管に
減圧オリフィスおよび開閉弁が設けられていることを特
徴とする、特許請求の範囲第1項記載の湿分分離加熱器
。 3、加熱蒸気出口ヘッダは、伝熱管内周側と伝熱管外周
側とにそれぞれ連通する2つの区劃室に区画されており
、各区劃室にそれぞれ接続されたベント蒸気排出管に、
減圧オリフィスおよび圧力調節可能な制御弁が設けられ
ていることを特徴とする、特許請求の範囲第1項記載の
湿分分離加熱器。
[Scope of Claims] 1. A moisture vaporizer having a first-stage heater and a second-stage heater, each of which connects the ends of a large number of U-shaped heat exchanger tubes to a heated steam inlet header and a heated steam outlet header, respectively. In the separation heater, a vent steam exhaust pipe is connected to the heated steam outlet header, and the vent steam exhaust pipe is connected to the high pressure feed water heater having different pressures from each other through a pressure reducing orifice and a valve that is selectively controlled to open and close. and a condenser, and the vent steam exhaust pipe is connected to the condenser in the first stage heater when the turbine load is 5% or less, and to the high pressure feedwater heater when the turbine load is 5% or more; In the second stage heater, when the turbine load is 40% or less, it is communicated with the condenser,
A moisture separation heater, characterized in that when the moisture content exceeds 40%, the moisture separation heater is connected to a high-pressure feed water heater. 2. A patent characterized in that the vent steam discharge pipe has branch pipes each connected to a high-pressure feed water heater or a condenser, and the branch pipes are provided with a pressure reducing orifice and an on-off valve. A moisture separating heater according to claim 1. 3. The heating steam outlet header is divided into two compartments that communicate with the inner peripheral side of the heat exchanger tube and the outer peripheral side of the heat exchanger tube, respectively, and the vent steam exhaust pipe connected to each compartment,
Moisture separation heater according to claim 1, characterized in that a vacuum orifice and a pressure-adjustable control valve are provided.
JP14802285A 1985-07-05 1985-07-05 Moisture separating heater Pending JPS629107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14802285A JPS629107A (en) 1985-07-05 1985-07-05 Moisture separating heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14802285A JPS629107A (en) 1985-07-05 1985-07-05 Moisture separating heater

Publications (1)

Publication Number Publication Date
JPS629107A true JPS629107A (en) 1987-01-17

Family

ID=15443353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14802285A Pending JPS629107A (en) 1985-07-05 1985-07-05 Moisture separating heater

Country Status (1)

Country Link
JP (1) JPS629107A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902899A (en) * 1996-12-05 1999-05-11 Sumika Fine Chemicals Co., Ltd. Process for preparing 1, 3-disubstituted urea

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5902899A (en) * 1996-12-05 1999-05-11 Sumika Fine Chemicals Co., Ltd. Process for preparing 1, 3-disubstituted urea

Similar Documents

Publication Publication Date Title
US11066960B2 (en) Double-reheat power generator with an ultra high pressure cylinder and a high-intermediate pressure cylinder each having additional heat recovery turbine stages
US4223722A (en) Controllable inlet header partitioning
CN105473958A (en) A shell-and-plate heat exchanger and use of a shell-and-plate heat exchanger
US4738224A (en) Waste heat steam generator
CN202188481U (en) Pumpless direct-current furnace startup system capable of recycling work media and part of heat
US6128901A (en) Pressure control system to improve power plant efficiency
JP2002513881A (en) Gas / steam combined turbine equipment
US20130048245A1 (en) Heat Exchanger Having Improved Drain System
US11725856B2 (en) Refrigerant processing unit, a method for evaporating a refrigerant and use of a refrigerant processing unit
US4301650A (en) Pressure regulating apparatus for a closed water circuit
JPS629107A (en) Moisture separating heater
CN109812795A (en) A kind of heat-exchange system
CN109868514A (en) A kind of vapor-recovery system and control method of acrylic spinning production definition device
CN206897099U (en) A kind of combustion gas dehumidification system
JPS582403A (en) Control method and its equipment of steam separating reheater
US4386583A (en) Moisture separator reheater apparatus
CN218653053U (en) Environment-friendly system for recycling cold energy and solving temperature difference of equipment
JPH074208A (en) Steam turbine with steam-steam reheater and usage thereof
JPS6291706A (en) Moisture separating reheater
CN218544400U (en) Drying machine condensed water heat recovery system
CN221571067U (en) Countercurrent heater of paddle dryer
CN216790582U (en) Air-cooled condenser applied to refrigerating system
RU2775748C1 (en) Steam turbo plant
CN213272633U (en) Steam air preheater for household garbage incineration
CN216668355U (en) Air cooling island condensate treatment system