JPS60240804A - Moving blade - Google Patents

Moving blade

Info

Publication number
JPS60240804A
JPS60240804A JP9650784A JP9650784A JPS60240804A JP S60240804 A JPS60240804 A JP S60240804A JP 9650784 A JP9650784 A JP 9650784A JP 9650784 A JP9650784 A JP 9650784A JP S60240804 A JPS60240804 A JP S60240804A
Authority
JP
Japan
Prior art keywords
blade
blades
rotor
disc
moving blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9650784A
Other languages
Japanese (ja)
Inventor
Hajime Toritani
初 鳥谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9650784A priority Critical patent/JPS60240804A/en
Publication of JPS60240804A publication Critical patent/JPS60240804A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3023Fixing blades to rotors; Blade roots ; Blade spacers of radial insertion type, e.g. in individual recesses
    • F01D5/3046Fixing blades to rotors; Blade roots ; Blade spacers of radial insertion type, e.g. in individual recesses the rotor having ribs around the circumference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/22Blade-to-blade connections, e.g. for damping vibrations

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To securely fix a predetermined blade in a moving blade having a columnar structure where each blade is inserted into an outer circumferential portion of a disc of a rotor, by arranging blades made of materials having a coefficient of thermal expansion greater than that of the disc at a suitable position of the moving blade. CONSTITUTION:A moving blade 3 has a columnar structure where each of blades 3a-3c is inserted into an outer circumferential portion of a disc of a rotor. A stopper blade 3a to be finally inserted is fixed by striking pins 5 between the same and adjacent blades 3b. Similarly, the pins 5 are struck between the blades 3b and adjacent blades 3c. The stopper blade 3a that is apt to be unstably fixed and the blades 3b and 3c that are subject to severe conditions in the viewpoint of strength are made of materials having a coefficient of thermal expansion greater than that of the disc. Thus, each of the blades 3a-3c is stably fixed, thereby achieving improvement in earthquake resistance and improvement in reliability.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明のタービンにおける動翼の耐振性の向上に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to improving the vibration resistance of rotor blades in a turbine.

〔発明の背景〕[Background of the invention]

第1図ないし第3図はタービンロータのディスクに動翼
を固定する構造の一例を示す。第1図に示すように、ロ
ータのディスク1には外周部にダブテール2が円周方向
に設けられる。第2図に示す動翼3の脚部は溝2の形状
と一致する形状とされ、これらは通常は全周一個所だけ
に設けられる挿入部4より溝内に入れられ、順に円周方
向に送られ、翼列を構成する。従って、溝2の円周方向
に動翼3が全周完全に満されると、それらは円周方向の
運動に関して互いに隣接する動翼により拘束され、また
半径方向には溝2と嵌合する形状により拘束されるため
、特に、独立した固定手段を必要としない。
1 to 3 show an example of a structure for fixing rotor blades to a disk of a turbine rotor. As shown in FIG. 1, a rotor disk 1 is provided with a dovetail 2 in the circumferential direction on the outer periphery thereof. The legs of the rotor blade 3 shown in FIG. 2 have a shape that matches the shape of the groove 2, and these are inserted into the groove through an insertion part 4 that is normally provided only at one location around the circumference, and are sequentially inserted in the circumferential direction. sent to form a wing row. Therefore, when the grooves 2 are circumferentially filled with rotor blades 3 completely around the entire circumference, they are constrained with respect to movement in the circumferential direction by mutually adjacent rotor blades, and radially they fit into the grooves 2. Since it is constrained by its shape, it does not particularly require independent fixing means.

しかし、挿入部4に最後に植込まれるべき動翼3aはそ
のまま挿入した状態のみでは半径方向に固定されないた
め、第4図に示すように隣接する翼3bとの間にビン5
を打込みこれを動翼3aおよびそれに隣接する動翼3b
の脚部にある牢円溝6に係合させ、それにより動翼3a
を固定する。
However, since the rotor blade 3a to be inserted last into the insertion section 4 cannot be fixed in the radial direction just by inserting it as it is, as shown in FIG.
and drive it into the rotor blade 3a and the adjacent rotor blade 3b.
is engaged with the circular groove 6 in the leg of the moving blade 3a.
to be fixed.

この動翼3aは比翼と呼ばれている。This moving blade 3a is called a ratio blade.

又、動翼3bとその隣接する翼3cとの間にも同様にピ
ン5が打込まれている。
Further, a pin 5 is similarly driven between the rotor blade 3b and the adjacent blade 3c.

従来、一般に使用されている材料は、動翼に12%クロ
ム鋼をディスク材に1%クロム鋼及び12%クロム鋼を
配しているが、それらは高温でも熱膨張率が小さく、又
、互いに似ているため、熱による伸び差は少なかった。
Conventionally, the materials commonly used are 12% chromium steel for the rotor blades and 1% chromium steel and 12% chromium steel for the disk materials, but these have a small coefficient of thermal expansion even at high temperatures, and Since they were similar, there was little difference in elongation due to heat.

一方、ロータは高速で回転するため、ディスク1及び動
翼3,3a、3b、3cには遠心力が作用するためディ
スク1の外周にあるダブテール溝2の円周方向には、大
きな引張応力が作用する。
On the other hand, since the rotor rotates at high speed, centrifugal force acts on the disk 1 and the rotor blades 3, 3a, 3b, and 3c, so a large tensile stress is generated in the circumferential direction of the dovetail groove 2 on the outer periphery of the disk 1. act.

このため、ダブテール溝2は円周方向に伸びる。For this reason, the dovetail groove 2 extends in the circumferential direction.

又、動翼2は半径方向に伸びようとするため、動翼1本
当りで考えると円周方向に縮む。
Further, since the rotor blade 2 tends to expand in the radial direction, when one rotor blade is considered, it contracts in the circumferential direction.

高速回転中は第5図に示すように、動翼間にすき間7が
発生し、固定が完全ではなくなる。
During high-speed rotation, as shown in FIG. 5, a gap 7 is generated between the rotor blades, and the fixation is not complete.

又、動翼の挿入溝部では、比翼3aの遠心力CFは隣接
する動翼3bで受けもつため、3b翼の脚部に受けもつ
遠心力は1.5倍CFとなりこの付近は強度的に一段と
きびしくなっている。
In addition, in the insertion groove of the rotor blade, the centrifugal force CF of the specific blade 3a is received by the adjacent rotor blade 3b, so the centrifugal force received by the leg of the blade 3b is 1.5 times CF, and the strength in this area is further increased. It's getting tougher.

このため、比翼3aの遠心力を軽減させて強度を確保さ
せる方法がある。
For this reason, there is a method of reducing the centrifugal force of the ratio blade 3a to ensure strength.

第6図は比翼3aの脚部を矩形状に削り取った翼3 a
 /を示し、又、第7図は動翼のプロフィル部を全て無
くして止金3a’にしたものである。
Figure 6 shows a wing 3a with the legs of the wing 3a cut into a rectangular shape.
/ is shown in FIG. 7, and the profile part of the rotor blade is completely removed to form a catch 3a'.

しかし、これらの対策では加工工数が付加される他、止
金38#では一枚の動翼が無いため性能が悪くなるとい
う問題がある。
However, these countermeasures have the problem that not only the number of processing steps is added, but also that the performance deteriorates because the stopper 38# does not have one rotor blade.

このように、翼の固定が完全でないと種々の問題が生じ
る。特に、翼挿入部近傍は応力的にもきびしく、かつ、
不安定なために、フレッチング腐食の発生の危険性があ
る。
As described above, various problems occur if the wings are not completely fixed. In particular, the stress is severe near the blade insertion part, and
Due to instability there is a risk of fretting corrosion occurring.

又、タービンの調速段では蒸気等の作動媒体は部分噴射
されるため、各動翼は間欠的に力を受けることになり、
従って、比翼3aの脚部はこの間欠的な力を受けると同
時に前述した不完全な固定のためディスクに対し変位し
、このため、ダブテール溝2などにはフリツチング腐食
や、疲労破壊の危険性が生じる。
In addition, since the working medium such as steam is partially injected at the governing stage of the turbine, each rotor blade is intermittently subjected to force.
Therefore, at the same time as receiving this intermittent force, the legs of the ratio blades 3a are displaced with respect to the disk due to the incomplete fixation mentioned above, and as a result, there is a risk of fritting corrosion and fatigue failure in the dovetail grooves 2, etc. arise.

また、不完全な固定になると動翼の固有振動数が低下し
て運転周波数などと共振する危険性が生じる。
In addition, if the rotor blades are incompletely fixed, the natural frequency of the rotor blades will decrease, creating a risk of resonance with the operating frequency.

〔発明の概要〕[Summary of the invention]

本発明は全周ある動翼のうちの適切な個所にディスクよ
りも熱膨張率の大きい材質で製作した動翼を配列して、
この問題を解消したものである。
The present invention arranges rotor blades made of a material with a higher coefficient of thermal expansion than the disk at appropriate locations among the rotor blades around the entire circumference,
This problem has been resolved.

即ち、このような材質の動翼を用いることにより、高温
域下で使用される動翼間には、ゆるみが生じることがな
くなる。一般に、熱伸びは、ΔQ、=α。・ΔT−Q0
 ・・・・・・ (1)ここで、Δ12D:ディスクの
周方向伸び量α0 :ディスクの熱膨張率 ΔT ニディスクの温度=動翼の温度 Qo :ディスク周長 ΔQg=Σ α6 ・ΔT−Qg+ ・・・ (2)Δ
Q11=動翼の周方向伸び量 αg =動翼の熱膨張率 UB、:動翼1本のピッチ 上式より、動翼材にディスクより熱膨張率の大きい材料
を用いればα8〉α0であり、ΔQg〉ΔQoとなるた
め1回転によるすきま6を無くすことができる。
That is, by using rotor blades made of such a material, loosening will not occur between the rotor blades when used in a high temperature range. Generally, thermal elongation is ΔQ,=α.・ΔT-Q0
...... (1) Here, Δ12D: Circumferential elongation of the disk α0: Coefficient of thermal expansion of the disk ΔT Temperature of the disk = Temperature of the rotor blade Qo: Disk circumference ΔQg=Σ α6 ・ΔT−Qg+ ... (2)Δ
Q11 = Amount of circumferential elongation αg of the rotor blade = Coefficient of thermal expansion of the rotor blade UB: From the above equation for the pitch of one rotor blade, if a material with a larger coefficient of thermal expansion than the disk is used for the rotor blade material, α8>α0. , ΔQg>ΔQo, so the gap 6 caused by one rotation can be eliminated.

〔発明の実施例〕[Embodiments of the invention]

第8図はこの熱膨張率が大きい動翼材を動翼挿入部に適
用した例である。一般にこの材料は高温強度も大である
ため、固定が不安定な比翼3a及び強度的にきびしい3
b、3cにこの材質を適用すれば一固常がtt?宙にか
番】−フレツ千ング腐食や疲労のみならず、止金を使用
する必要がなくなり性能が向上する。又、翼の固有振動
数も低下することがなく高信頼性の翼列構造となる。
FIG. 8 shows an example in which a rotor blade material having a large coefficient of thermal expansion is applied to a rotor blade insertion portion. In general, this material has high strength at high temperatures, so it is difficult to fix the fixed blade 3a and the rigid blade 3a is difficult to fix.
If this material is applied to b and 3c, it will be fixed tt? - In addition to corrosion and fatigue, there is no need to use clasps, which improves performance. Furthermore, the natural frequency of the blades does not decrease, resulting in a highly reliable blade cascade structure.

尚、この材料は動翼挿入部近傍のみならずディスク全周
の適切な個所に配置することにより翼の使用条件に合わ
せて設計すれば固定が安定化することはいうまでもない
It goes without saying that fixation can be stabilized by arranging this material not only in the vicinity of the rotor blade insertion portion but also at appropriate locations around the entire circumference of the disk and designed in accordance with the usage conditions of the blade.

このような動翼材料の望ましい例は、ナイモニツク80
 A (Nimonic 80 A) 、ナイモニツク
90 A (Nimonic 90 A)やインコネル
X(Inconel X ) 、レフラクタロイ(Re
fractaloy)などである。
A desirable example of such a rotor blade material is Nimonik 80.
A (Nimonic 80 A), Nimonic 90 A (Nimonic 90 A), Inconel X (Inconel X), Refractalloy (Re
fractalloy), etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はディスク外周斜視図、第2図は動翼斜視図、第
3図は比翼斜視図、第4図ないし第6図は比翼取付後の
正面図、第7図は止金取付後の正面図、第8図は本発明
を比翼取付部に適用した場合の正面図である。 3・・・動翼、5・・・ビン、3a・・・比翼、3b、
3c・・・比翼の隣り翼。 第3 図 坏4 囚 #、5″ 用 7 7 茅6 目 3α′ 茅7 囚 30、、“ $8 目
Figure 1 is a perspective view of the outer periphery of the disk, Figure 2 is a perspective view of the moving blade, Figure 3 is a perspective view of the ratio blade, Figures 4 to 6 are front views after installation of the ratio blade, and Figure 7 is after the clasp is installed. A front view, FIG. 8 is a front view when the present invention is applied to the airfoil attachment part. 3... moving blade, 5... bottle, 3a... ratio blade, 3b,
3c...The wing next to Hiyoku. 3rd illustration 4 prisoner #, 5″ 7 7 grass 6 eyes 3 α′ grass 7 prisoner 30,, “ $8 eyes

Claims (1)

【特許請求の範囲】 1、翼を回転子のディスク外周部に挿入して列構造とし
た動翼において、 前記ディスクの材質より熱膨張率の大きい材質の前記翼
を配置したことを特徴とする動翼。
[Claims] 1. A rotor blade having a row structure in which blades are inserted into the outer circumference of a disk of a rotor, characterized in that the blade is made of a material having a higher coefficient of thermal expansion than the material of the disk. Moving blade.
JP9650784A 1984-05-16 1984-05-16 Moving blade Pending JPS60240804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9650784A JPS60240804A (en) 1984-05-16 1984-05-16 Moving blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9650784A JPS60240804A (en) 1984-05-16 1984-05-16 Moving blade

Publications (1)

Publication Number Publication Date
JPS60240804A true JPS60240804A (en) 1985-11-29

Family

ID=14167031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9650784A Pending JPS60240804A (en) 1984-05-16 1984-05-16 Moving blade

Country Status (1)

Country Link
JP (1) JPS60240804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730984A (en) * 1986-09-08 1988-03-15 Ortolano Ralph J Bladed rotor structure having bifurcated blade roots
EP1849963A3 (en) * 2006-04-25 2011-03-02 General Electric Company Nested turbine bucket closure group

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730984A (en) * 1986-09-08 1988-03-15 Ortolano Ralph J Bladed rotor structure having bifurcated blade roots
EP1849963A3 (en) * 2006-04-25 2011-03-02 General Electric Company Nested turbine bucket closure group

Similar Documents

Publication Publication Date Title
US4192633A (en) Counterweighted blade damper
US6354803B1 (en) Blade damper and method for making same
US5232344A (en) Internally damped blades
US4191509A (en) Rotor blade attachment
JP2601923B2 (en) Rotor
EP0702131B1 (en) Stable blade vibration damper for gas turbine engine
US8192166B2 (en) Tip shrouded turbine blade with sealing rail having non-uniform thickness
JP4991663B2 (en) Steam turbine blade assembly
US6588298B2 (en) Rotor balancing system for turbomachinery
US5720596A (en) Apparatus and method for locking blades into a rotor
RU2525363C2 (en) Turbine wheel and turbomachine with such wheel
US8596980B2 (en) Vibration damper assembly
CA2833376C (en) Axial turbomachine stator with segmented inner shell
JPS62111102A (en) Method of assembling bucket aggregate with tangential insertion type dovetail section to turbo machine impeller
JP2006083761A (en) Turbine moving blade and turbine facility
US3451654A (en) Blade vibration damping
AU2005325824B2 (en) Blade with covering strip
EP3477047B1 (en) Segmented structural links for coupled disk frequency tuning and corresponding gas turbine engine with such links
JPH0240841B2 (en)
JPS63227904A (en) Assembly method and device for steam turbine reducing relative motion
JP3933130B2 (en) Turbine blade
JPS60240804A (en) Moving blade
JPS63195301A (en) Relative motion reducer between adjacent blade section
JP6027224B2 (en) Trap balance weight and rotor assembly
JPH01203602A (en) Blade vibration reducer in steam turbine and blade vibration reducting method