JPS60239816A - Power supply failure signal output circuit of measuring instrument - Google Patents

Power supply failure signal output circuit of measuring instrument

Info

Publication number
JPS60239816A
JPS60239816A JP9591084A JP9591084A JPS60239816A JP S60239816 A JPS60239816 A JP S60239816A JP 9591084 A JP9591084 A JP 9591084A JP 9591084 A JP9591084 A JP 9591084A JP S60239816 A JPS60239816 A JP S60239816A
Authority
JP
Japan
Prior art keywords
power supply
output
voltage
relay
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9591084A
Other languages
Japanese (ja)
Other versions
JPH0477326B2 (en
Inventor
Shigeru Horii
滋 堀井
Yoshihiro Ono
義弘 大野
Masayoshi Sakamoto
正悦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9591084A priority Critical patent/JPS60239816A/en
Publication of JPS60239816A publication Critical patent/JPS60239816A/en
Publication of JPH0477326B2 publication Critical patent/JPH0477326B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices
    • G05F1/565Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor
    • G05F1/569Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection
    • G05F1/571Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices sensing a condition of the system or its load in addition to means responsive to deviations in the output of the system, e.g. current, voltage, power factor for protection with overvoltage detector

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Control Of Voltage And Current In General (AREA)

Abstract

PURPOSE:To prevent a power supply failure signal from misoutput at the disconnection of the input of the power supply by forming a voltage dropping means for turning the output of a DC power supply for failure output suddenly to zero at the OFF of the input of the power supply. CONSTITUTION:At the disconnection of the input of the power supply, the output of the measuring DC constant voltage power supply 1a is suddenly dropped and applied to a power supply failure detecting circuit 2. When the input voltage reaches an open voltage, a relay 2a in the circuit 2 is actuated, so that a relay contact 3c is closed with the delay of time t2 from the OFF of the power supply input. On the other hand, a relay 7a in the voltage dropping means 7 is turned off simultaneously with the OFF of the power supply input, a relay contact 7b is closed and a load resistor RL1 is connected to the DC power supply 4 for failure output. The value of the resistor RL1 is set to a low value so that the output voltage dropping speed of the power supply 4 is higher than the voltage dropping speed of the power supply 1a. The output of the power supply 4 is applied to a failure signal connecting circuit 3 and a relay 3a is actuated with the delay of time t4 from the OFF of the power supply input. Consequently, t2- t4 is formed, and after opening a relay contact 3b, the contact 3c is short-circuited. Therefore, no failure signal is outputted even at the disconnection of the power supply input.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は輝度や照度など自然現象のデータを長期間連続
に記録するデータ収録装置などの計測器の計測用電源故
障信号出力回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a measurement power supply failure signal output circuit for a measuring instrument such as a data recording device that continuously records data on natural phenomena such as brightness and illuminance over a long period of time.

従来例の構成とその問題点 近年、トンネル照明設計を実施するにあたり、トンネル
入口部の野外輝度値や鉛直面照度値を長期間にわたシ連
続記録する必要が生じてきている。
Conventional configuration and its problems In recent years, when designing tunnel lighting, it has become necessary to continuously record outdoor brightness values and vertical illuminance values at the tunnel entrance over a long period of time.

このような信号を記録する装置として停電補償形のデー
タ収録装置が使用される。このデータ収録装置では無人
による動作が要求され、このだめ、遠方監視制御による
データ収録装置の動作状況監視が行なわれていることが
多い。したがって、データ収録装置としては、装置の故
障状態を外部に確実に知らせる機能が要求されている。
A power failure compensation type data recording device is used as a device for recording such signals. This data recording device requires unattended operation, and as a result, the operating status of the data recording device is often monitored by remote monitoring and control. Therefore, data recording devices are required to have a function that reliably informs the outside of the failure state of the device.

以下、従来のデータ収録装置などの計測器の電源故障出
力回路について説明する。
A conventional power failure output circuit for a measuring instrument such as a data recording device will be described below.

第4図は、従来のデータ収録装置の電源部および電源故
障出力回路を示すものであり、1は計測用電源部、2は
電源故障検出回路、3は故障信号出力制御回路、4は故
障出力用直流電源である。
Fig. 4 shows the power supply unit and power failure output circuit of a conventional data recording device, where 1 is the measurement power supply unit, 2 is the power failure detection circuit, 3 is the failure signal output control circuit, and 4 is the failure output. It is a DC power supply for use.

計測用電源1はさらに、計測用直流定電圧電源1a、充
電側−御回路1b、充電可能なバッチ1J1c、すレー
接点(a接点)1d、逆流阻止ダイオード1f、電圧変
換器1e、電源検出回路’q−,リレー1hより構成さ
れる。電源故障検出回路2は、リレー28で構成した例
を示している。寸だ故障信号出力制御回路3はリレー3
aとリレー接点3b、3cとから構成した例である。
The measurement power supply 1 further includes a measurement DC constant voltage power supply 1a, a charging side control circuit 1b, a chargeable batch 1J1c, a straddle contact (A contact) 1d, a backflow blocking diode 1f, a voltage converter 1e, and a power supply detection circuit. 'q-, relay 1h. The power failure detection circuit 2 is shown as an example configured with a relay 28. The fault signal output control circuit 3 is the relay 3.
This is an example in which the relay contacts 3b and 3c are used.

以上のように構成された従来の電源故障検出回路の動作
について以下その動作を第5図の各部の波形を参考にし
て説明する。
The operation of the conventional power failure detection circuit configured as described above will be described below with reference to waveforms at various parts in FIG.

電源入力(一般に商用周波AC1ooVが用いられる)
は計測用電源部1と、故障出力用直流電源4とに並列に
印加される。計測用電源部1では計測用直流定電圧電源
1aでデータ収録装置の計測動作に必要な直流電圧v1
 に変換される。計測用直流定電圧電源1aの出力は3
つに分岐され、1つは充電制御回路1bに供給される。
Power input (commercial frequency AC1ooV is generally used)
is applied in parallel to the measurement power supply section 1 and the failure output DC power supply 4. In the measurement power supply unit 1, the measurement DC constant voltage power supply 1a supplies the DC voltage v1 necessary for the measurement operation of the data recording device.
is converted to The output of the measurement DC constant voltage power supply 1a is 3
One is supplied to the charging control circuit 1b.

充電制御回路1bは、電流制限抵抗R1と、逆流阻止ダ
イオードD1 から構成され、バッチIJ 1 cへの
充電電流を制御するとともに、バッテリ動作時バッテリ
の電荷が計測用直流定電圧電源1aへ逆流するのを阻止
する。計測用直流定電圧電源1aの第2のは通常バッテ
リ1 cを充電するため開側回路として必要な電圧v2
よりも高く設定され、電圧変換器1eでは電圧v2に変
換する。第4図においては電圧変換器として整流用ダイ
オードD2の順方向電圧降下を用いた例を示しているが
これが一般的な形である。充電制御回路1bの出力はリ
レー接点(リレー1hのa接点)を通じてバッテリ1c
に接続される。また充電制御回路1bの出力と電圧変換
器1eの出力間に充電制御回路1b側がアノードとなる
ように逆流阻止ダイオード1fが接続される。この逆流
阻止ダイオード1fはバッテリ動作時計側回路系ヘバッ
テIJ 1 cからの電荷を供給するとともに、電源入
力(Ac1ooV)動作中はバッチ]1cの充電動作と
計測回路、系への電源供給を分離し、計測用直流定電圧
電源1aから電圧変換器1eを通じて計測回路系への電
源供給路を確保する。計測回路系の電圧■2は電圧検出
回路1qに印加され、電圧■2が定電圧ダイオードD3
で決定される電圧以上のとき、トランジスタQをONに
し、リレー1hを動作させリレー接点1dを閉じる。こ
の結果、電源入力がある時はバッテリの充電を可能とし
、バッテリ動作の時はバッテリからの電源供給を可能と
する。電圧v2が定電圧ダイオードD3で決定される電
圧以下になると抵抗R2でトランジスタQのベース電流
を制限し、この結果トランジスタQがOFF となシ、
リレー1hをOFF、リレー接点1dを開とし、バッチ
1J1cを電源回路から切りはなす。このように電圧検
出回路1qはバッテリ1Cの過放電防止と計測回路系へ
の供給電圧■2が低下しすぎないように動作する。
The charging control circuit 1b is composed of a current limiting resistor R1 and a reverse current blocking diode D1, and controls the charging current to the batch IJ1c, and also causes the charge of the battery to flow back to the measurement DC constant voltage power supply 1a when the battery is operated. to prevent The second voltage of the DC constant voltage power supply 1a for measurement is normally the voltage v2 required as an open circuit to charge the battery 1c.
The voltage converter 1e converts it into a voltage v2. FIG. 4 shows an example in which a forward voltage drop of a rectifying diode D2 is used as a voltage converter, but this is a general form. The output of the charging control circuit 1b is connected to the battery 1c through the relay contact (A contact of the relay 1h).
connected to. Further, a backflow blocking diode 1f is connected between the output of the charging control circuit 1b and the output of the voltage converter 1e so that the charging control circuit 1b side serves as an anode. This backflow blocking diode 1f supplies charge from the battery IJ1c to the battery-operated clock side circuit system, and during power input (Ac1ooV) operation, separates the charging operation of the batch]1c from the power supply to the measurement circuit and system. , a power supply path is secured from the measurement DC constant voltage power supply 1a to the measurement circuit system through the voltage converter 1e. The voltage ■2 of the measurement circuit system is applied to the voltage detection circuit 1q, and the voltage ■2 is applied to the constant voltage diode D3.
When the voltage is higher than the voltage determined by , transistor Q is turned on, relay 1h is operated, and relay contact 1d is closed. As a result, it is possible to charge the battery when there is power input, and it is possible to supply power from the battery when the battery is operating. When the voltage v2 becomes lower than the voltage determined by the constant voltage diode D3, the base current of the transistor Q is limited by the resistor R2, and as a result, the transistor Q is turned off.
Turn off relay 1h, open relay contact 1d, and disconnect batch 1J1c from the power supply circuit. In this manner, the voltage detection circuit 1q operates to prevent over-discharge of the battery 1C and to prevent the supply voltage (2) to the measurement circuit system from dropping too much.

次に、計測用直流定電圧電源1aの第3の出力は電源故
障検出回路2に印加される。第4図では電源故障検出回
路2が電圧■1 をもとに動作するリレー2aで構成し
た例を示す。電源入力ON時(第5図(イ)参照)計測
用直流定電圧電源1aの出力、すなわち電圧が低下した
時、時間t1経過後電圧■3でリレー2aがONとなる
。これは計測用直流定電圧電源1aの出力電圧変化が第
6図波形(ロ)に示すように遅れ動作となることと、リ
レー2aの開放電圧■ が感動電圧■3よりも低くヒス
テリシス動作をするためである。同様に電源入力OFF
 時(第5図(イ)参照)は、時間t2経過後、電圧■
4でリレー2aがOFF となる。、リレーの動作状態
は第5図波形(ハ)に示す。ここでtl およびt2は
計測用直流定電圧電源の特性やリレーの特性により一般
には等しくならないことが多い。
Next, the third output of the measurement DC constant voltage power supply 1a is applied to the power supply failure detection circuit 2. FIG. 4 shows an example in which the power failure detection circuit 2 is constituted by a relay 2a that operates based on the voltage 1. When the power supply input is turned on (see FIG. 5(a)), when the output of the measurement DC constant voltage power supply 1a, that is, the voltage drops, the relay 2a is turned on at voltage 3 after time t1 has elapsed. This is because the change in the output voltage of the measurement DC constant voltage power supply 1a is delayed as shown in the waveform (b) in Figure 6, and the open circuit voltage of the relay 2a is lower than the sensing voltage ■3 and operates with hysteresis. It's for a reason. Similarly, turn off the power input
After time t2 (see Figure 5 (a)), the voltage ■
4, the relay 2a is turned off. , the operating state of the relay is shown in the waveform (c) of Figure 5. Here, tl and t2 are generally not equal in many cases due to the characteristics of the DC constant voltage power source for measurement and the characteristics of the relay.

一方、電源入力(AClooV)は故障出力用直流電源
4に印加され、第5図に)に示すように故障出力用直流
電源4の動作遅れが生ずる。故障出力用直流電源4の出
力(電圧V5)は故障信号出力制御回路3に送られ、リ
レー3aを駆動する。このときリレー38の動作特性に
よシ、リレー3aの出力は第2図(へ)に示すように電
源入力9N時t3および電源入力OFF 時t4の遅れ
を生ずる。リレー3aはリレー接点3b(a接点)に、
リレー2aはリレー接点3c(b接点)に接続される。
On the other hand, the power input (AClooV) is applied to the fault output DC power supply 4, causing a delay in the operation of the fault output DC power supply 4 as shown in FIG. The output (voltage V5) of the fault output DC power supply 4 is sent to the fault signal output control circuit 3 and drives the relay 3a. At this time, depending on the operating characteristics of the relay 38, the output of the relay 3a is delayed by t3 when the power input is 9N and t4 when the power input is OFF, as shown in FIG. Relay 3a has relay contact 3b (a contact),
Relay 2a is connected to relay contact 3c (b contact).

さらにリレー接点3bと30は直列に接続され故障信号
を出力する。
Furthermore, relay contacts 3b and 30 are connected in series and output a fault signal.

ここで計測用直流定電圧電源1aが故障し、その出力電
圧v1 が零になると、リレー接点3Cは閉となる。こ
のとき電源入力が存在するとリレー接点3bは閉となり
故障信号を出力する。一方、電源入力がOFF となる
とリレー接点3bが開。
If the measurement DC constant voltage power supply 1a fails and its output voltage v1 becomes zero, the relay contact 3C is closed. At this time, if there is a power input, the relay contact 3b closes and outputs a failure signal. On the other hand, when the power input is turned off, relay contact 3b opens.

3Cが閉となり故障信号を出力しない。まだ正常動作の
時はリレー接点3bが閉、3cが開となって同様に故障
信号は出力されない。このように、電源入力の状態を考
慮し、計測用直流定電圧電源が故障した時のみ電流入力
が存在する時に故障信号を出力する。
3C is closed and no fault signal is output. When the relay is still operating normally, the relay contact 3b is closed and the relay contact 3c is open, and similarly no failure signal is output. In this way, the state of the power supply input is taken into consideration, and a failure signal is output only when the DC constant voltage power supply for measurement has failed and when there is a current input.

しかしながら上記のような構成では、計測用直流定電圧
電源1aの負荷抵抗が小さく、故障出力用直流電源4の
負荷抵抗が大きくなるとき、電源入力のON 、OFF
動作に対し、計測用直流定電圧電源1aの出力変化に対
し故障出力用直流電源4の出力変化が遅れるため第6図
に示す遅れ時間がtlくt3.t2くt4となる。この
結果、電源入力OFF 時に(14−12)時間、故障
信号が出力され(第4図で示す波形(ト))遠方監視制
御などにおいて誤検出の原因となるという問題点があっ
た。
However, in the above configuration, when the load resistance of the measurement DC constant voltage power supply 1a is small and the load resistance of the fault output DC power supply 4 becomes large, the power supply input is turned on and off.
In operation, the output change of the failure output DC power supply 4 is delayed with respect to the output change of the measurement DC constant voltage power supply 1a, so the delay time shown in FIG. t2 becomes t4. As a result, a problem arises in that a failure signal is output for (14-12) hours when the power input is turned off (waveform (g) shown in FIG. 4), causing false detection in remote monitoring control and the like.

発明の目的 本発明は上記問題点を解消するもので電源入力断時の瞬
間的な故障信号出力を防止する電源故障信号出力回路を
提供することを目的とする。
OBJECTS OF THE INVENTION The present invention solves the above-mentioned problems, and it is an object of the present invention to provide a power supply failure signal output circuit that prevents instantaneous failure signal output when power input is cut off.

発明の構成 本発明は、計測用直流定電圧電源の故障を検出する電源
故障検出回路と、故障出力用直流電源と、故障出力用直
流電源に接続され電源入力断にのみ故障出力用直流電源
の出力電圧を急速に零とする電圧低下手段と、故障出力
用直流電源の出力と電源故障検出回路出力とから故障信
号を出力する故障信号出力制御回路とを備えた電源故障
信号出力回路であり、故障出力用直流電源とこれに並列
に接続された電圧低下手段により電源投入時の故障信号
の誤出力を防止するものである。
Structure of the Invention The present invention includes a power supply failure detection circuit that detects a failure in a DC constant voltage power supply for measurement, a DC power supply for failure output, and a DC power supply for failure output that is connected to the DC power supply for failure output and only when the power supply is cut off. A power supply failure signal output circuit comprising a voltage reduction means for rapidly reducing the output voltage to zero, and a failure signal output control circuit for outputting a failure signal from the output of a DC power supply for failure output and the output of a power supply failure detection circuit, A fault output DC power supply and a voltage reduction means connected in parallel to the fault output DC power supply prevent erroneous output of a fault signal when the power is turned on.

実施例の説明 第1図は本発明の実施例における電源故障信号出力回路
の構成図を示すものである。第1図において、1は計測
用電源部、2は電源故障検出回路、4は故障出力用直流
電源、3は故障信号出力制御回路、7は電圧低下手段で
ある。ここで計測用電源部1、電源故障検出回路2、故
障出力用直流電源4、故障信号出力制御回路3は第4図
と同じ構成であシ、開側用電源部1の詳細は省略する。
DESCRIPTION OF THE EMBODIMENTS FIG. 1 shows a configuration diagram of a power failure signal output circuit in an embodiment of the present invention. In FIG. 1, reference numeral 1 designates a power supply unit for measurement, 2 a power supply failure detection circuit, 4 a DC power supply for failure output, 3 a failure signal output control circuit, and 7 voltage reduction means. Here, the measurement power supply section 1, the power supply failure detection circuit 2, the fault output DC power supply 4, and the fault signal output control circuit 3 have the same configuration as in FIG. 4, and the details of the open side power supply section 1 will be omitted.

第1図は電圧低下手段7の1実施例を示すもので電圧低
下手段7は故障出力用直流電源4に並列に接続され、電
源入力で動作するリレー7aと、故障出力用直流電源4
の出力に接続された負荷抵抗RL1 とリレー接点7b
(リレー7aのb接点)から構成される。さらに負荷抵
抗RL1とリレー接点7bは直列に接続されている。
FIG. 1 shows one embodiment of the voltage reduction means 7. The voltage reduction means 7 is connected in parallel to the fault output DC power supply 4, and includes a relay 7a operated by power input, and a fault output DC power supply 4.
Load resistor RL1 and relay contact 7b connected to the output of
(b contact of relay 7a). Furthermore, load resistor RL1 and relay contact 7b are connected in series.

以上のように構成された本実施例の電源故障信号出力回
路についてその動作を第2図の各部の波形を参考に説明
する。
The operation of the power failure signal output circuit of this embodiment configured as described above will be explained with reference to the waveforms of each part in FIG. 2.

まず、電源入力がOFFからON K fLつた時の動
作について説明する。電源入力が第2図(イ)に示すよ
うにOFFからONになると、計測用電源部1内の計測
用直流定電圧電源1aの出力は第2図(ロ)に示すよう
に速い速度で上昇し電圧v1 に達する0計測用直流定
電圧電源1aの出力は電源故障検出回路2に送られる。
First, the operation when the power input goes from OFF to ON will be described. When the power input turns from OFF to ON as shown in Figure 2 (a), the output of the measurement DC constant voltage power supply 1a in the measurement power supply section 1 increases at a rapid rate as shown in Figure 2 (b). The output of the DC constant voltage power supply 1a for zero measurement, which reaches the voltage v1, is sent to the power supply failure detection circuit 2.

電源故障検出回路2では入力電圧が■3に達した時リレ
ー2aが動作する。これは、リレー2aの開放電圧v4
が感動電圧v3にくらべて低いためである。したがって
リレー2aの接点3Cはb接点であるため、第2図P今
に示すように電源入力ON時よシt1 だけ遅れた動作
をする。一方、故障出力用直流電源4は電源入力ON時
、その出力電圧■6の上昇速度が計測用直流定電圧電源
1aの出力電圧■1の上昇速度より遅い。
In the power failure detection circuit 2, the relay 2a operates when the input voltage reaches 3. This is the open circuit voltage v4 of relay 2a.
This is because the voltage is lower than the emotional voltage v3. Therefore, since the contact 3C of the relay 2a is a B contact, it operates with a delay of t1 from when the power is inputted, as shown in FIG. 2P. On the other hand, when the power supply input to the fault output DC power supply 4 is turned on, the rising speed of its output voltage (6) is slower than the rising speed of the output voltage (1) of the measurement DC constant voltage power supply 1a.

故障出力用直流電源4には並列に電圧低下手段7が接続
されているが、電源入力ONと同時にリレー7aが動作
し、リレー接点7b(リレー7aのb接点)が開放とな
り負荷抵抗RL1が故障出力用直流電源出力から切りは
なされる。この結果、故障信号出力制御回路3には故障
出力用直流電源出力がそのまま印加され、第2図に)に
示す電圧波形となる。そして故障信号出力制御回路3内
のりし−3aは第2図(へ)に示すように電源入力ON
時よシt3だけ遅れて動作する。このとき、t3〉tl
なる関係が成立している。したがって故障信号出力制御
回路3からは第2図(ト)に示すように電源ON時に故
障信号は出力されない。
A voltage reduction means 7 is connected in parallel to the fault output DC power supply 4, but the relay 7a operates at the same time as the power input is turned on, and the relay contact 7b (b contact of the relay 7a) is opened, causing the load resistor RL1 to fail. It is disconnected from the output DC power supply output. As a result, the fault output DC power supply output is directly applied to the fault signal output control circuit 3, resulting in a voltage waveform shown in FIG. Then, as shown in FIG.
It operates with a delay of t3. At this time, t3>tl
A relationship has been established. Therefore, the failure signal output control circuit 3 does not output a failure signal when the power is turned on, as shown in FIG. 2 (G).

次に電源入力断時の動作釦ついて説明する。電源人力断
時(電源入力OFF時)、計測用直流定電圧電源1aの
出力は第2図(ロ)に示すように急速に低下する。計測
用直流定電圧電源1aの出力は電源故障検出回路に接続
される。電源故障検出回路2内のリレー28は入力電圧
がv4(リレーの開放電圧)に達した時動作し、この結
果第2図(ハ)に示すように電源入力OFF 時よりt
2だけ遅れてリレー接点3c(b接点)を閉にする。一
方、電源入力がOFF と同時に電圧低下手段7内のり
レーアaがOFF となり、リレー接点7b(リレー7
aのb接点が閉となり、負荷抵抗RL、が故障出力用直
流電源4の出力に接続される。ここで、故障出力用直流
電源4の出力の電圧低下速度を計測用直流定電圧電源の
電圧低下速度よりも速くなるように負荷抵抗RL1の値
を小さく設定する。故障出力用直流電源4の出力は故障
信号制御回路3に印加され、リレー3aは第2図(へ)
に示すように電源入力がOFF 時よりt4だけ遅れて
動作する。この結果、t2〉t4となり、リレー接点3
b(a接点)が開放ののち、リレー接点3c(b接点)
が短絡となる。しだがって第2図(ト)に示すように電
源人力断時も故障信号は出力されない。
Next, the operation buttons when power input is cut off will be explained. When the power supply is cut off (when the power supply input is OFF), the output of the measurement DC constant voltage power supply 1a rapidly decreases as shown in FIG. 2 (b). The output of the measurement DC constant voltage power supply 1a is connected to a power supply failure detection circuit. The relay 28 in the power failure detection circuit 2 operates when the input voltage reaches v4 (open circuit voltage of the relay), and as a result, as shown in Fig. 2 (c), the voltage decreases from t to when the power supply input is OFF.
After a delay of 2, relay contact 3c (b contact) is closed. On the other hand, at the same time as the power input is turned OFF, the relay a in the voltage reducing means 7 is turned OFF, and the relay contact 7b (relay 7
The a and b contacts are closed, and the load resistor RL is connected to the output of the fault output DC power supply 4. Here, the value of the load resistor RL1 is set small so that the voltage drop rate of the output of the fault output DC power supply 4 is faster than the voltage drop rate of the measurement DC constant voltage power supply. The output of the fault output DC power supply 4 is applied to the fault signal control circuit 3, and the relay 3a is connected to the circuit shown in FIG.
As shown in Figure 2, it operates with a delay of t4 from when the power input is turned off. As a result, t2>t4, and relay contact 3
After b (contact A) is opened, relay contact 3c (contact B)
becomes a short circuit. Therefore, as shown in FIG. 2 (g), no failure signal is output even when the power supply is cut off.

第3図に電圧低下手段7の別の実施例を示す。Another embodiment of the voltage reduction means 7 is shown in FIG.

第3図で、電源投入時はリレー78がただちに動作しリ
レー接点7C(!Jレーアaのa接点)が閉となり、故
障出力用直流電源出力をリレー3aに伝達する。したが
って、リレー3aには故障出力用直流電源の出力電圧の
電源投入時の増加特性がそのまま印加される。一方、電
源人力断時は、ただちにリレー7aがOFF となり、
リレー接点7Cが開となり故障出力用直流電源出力はり
、レー3aから切シ離される。この結果、リレー3aの
入力電圧は第2図に)に示す波形にほぼ等しくなり、第
2図(ト)に示すとおシ、電源人力断時も故障信号は出
力されない。
In FIG. 3, when the power is turned on, relay 78 immediately operates, relay contact 7C (!J layer a contact a) closes, and the fault output DC power output is transmitted to relay 3a. Therefore, the increase characteristic of the output voltage of the fault output DC power supply when the power is turned on is directly applied to the relay 3a. On the other hand, when the power supply is cut off, relay 7a immediately turns OFF.
The relay contact 7C is opened and the fault output DC power supply output beam is disconnected from the relay 3a. As a result, the input voltage of the relay 3a becomes approximately equal to the waveform shown in FIG. 2), and as shown in FIG. 2(g), no failure signal is output even when the power supply is cut off.

以上のように本実施例によれば、電源入力OFF時故障
出力用直流電源出力を急速に零とする電圧低下手段を設
けることにより、電源入力断時の電源故障信号の誤出力
を防止することができる。
As described above, according to this embodiment, by providing a voltage reduction means that quickly brings the DC power supply output for failure output to zero when the power supply input is OFF, it is possible to prevent the erroneous output of a power supply failure signal when the power supply input is OFF. I can do it.

上記実施例は、計測用直流定電圧電源出力v1を電源故
障検出回路への入力としたが、計測回路系の電圧■2を
電源故障検出回路への入力とすれば、バッテリ動作中は
故障信号の出力を防止できる。
In the above embodiment, the measurement DC constant voltage power supply output v1 is input to the power supply failure detection circuit, but if the measurement circuit voltage 2 is input to the power supply failure detection circuit, a failure signal is generated during battery operation. can be prevented from outputting.

発明の効果 本発明の電源故障出力回路は、計測用直流定電圧電源に
接続された電源故障検出回路と、故障出力用直流電源と
、故障出力用直流電源に接続され電源入力断時にのみ故
障出力用直流電源の出力電圧を急速に零とする電圧低下
手段と、故障出力用直流電源の出力と電源故障検出回路
の出力とから故障信号を出力する故障信号出力制御回路
とを設けることにより、電源入力(AC1ooV)断時
に誤った故障信号出力を防止することができ、その実用
的効果は大きい。
Effects of the Invention The power supply failure output circuit of the present invention includes a power supply failure detection circuit connected to a DC constant voltage power supply for measurement, a DC power supply for failure output, and a DC power supply for failure output, and outputs a failure only when power input is interrupted. By providing a voltage reduction means for rapidly reducing the output voltage of the DC power supply for use to zero, and a failure signal output control circuit for outputting a failure signal from the output of the DC power supply for failure output and the output of the power supply failure detection circuit, It is possible to prevent an erroneous failure signal from being output when the input (AC1ooV) is cut off, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の電源故障信号出力回路の構
成図、第2図は第1図の各部の波形、第3図は電圧低下
手段の別の実施例、第4図は従来の電源故障信号出力回
路の構成図、第5図は第4図の各部の波形である。 1・・・・−計測用電源部、2・・−電源故障検出回路
、3・−故障信号出力制御回路、4・ 故障出力用直流
電源、7・・・−電圧低下手段、1a−・・計測用直流
定電圧電源、1cm・バッテリ、1h、2a。 3a 、 7a ・・リレー。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 3図 7′−桓1M − 第5図
FIG. 1 is a block diagram of a power failure signal output circuit according to an embodiment of the present invention, FIG. 2 is a waveform of each part of FIG. 1, FIG. 3 is another embodiment of the voltage reduction means, and FIG. 4 is a conventional one. FIG. 5 is a block diagram of the power supply failure signal output circuit, and FIG. 5 shows waveforms of each part in FIG. DESCRIPTION OF SYMBOLS 1...-Measurement power supply unit, 2...-Power failure detection circuit, 3...-Failure signal output control circuit, 4. DC power supply for fault output, 7...-Voltage reduction means, 1a-... DC constant voltage power supply for measurement, 1cm/battery, 1h, 2a. 3a, 7a...Relay. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 7'-Han 1M- Figure 5

Claims (1)

【特許請求の範囲】[Claims] 電源入力を受け計測回路に必要な直流電圧に変換する計
測用直流定電圧電源と、計測用直流定電圧電源の故障を
検出する電源故障検出回路と、電源入力に接続された故
障出力用直流電源と、故障出力用直流電源に接続され電
源入力断時に故障出力用直流電源の出力電圧を直ちに零
とする電圧低下手段と、前記故障出力用直流電源出力と
前記電源故障検出回路出力とを直列に接続し、前記計測
用直流定電圧電源の故障信号を出力する故障信号出力制
御回路とを備えた計測器の電源故障信号出力回路。
A DC constant voltage power supply for measurement that receives power input and converts it to the DC voltage necessary for the measurement circuit, a power supply failure detection circuit that detects a failure in the DC constant voltage power supply for measurement, and a DC power supply for failure output connected to the power supply input. and voltage reduction means that is connected to the fault output DC power supply and immediately reduces the output voltage of the fault output DC power supply to zero when the power supply is cut off, and the fault output DC power supply output and the power supply failure detection circuit output are connected in series. A power supply failure signal output circuit for a measuring instrument, comprising: a failure signal output control circuit connected to the measurement DC constant voltage power source and outputting a failure signal of the measurement DC constant voltage power supply.
JP9591084A 1984-05-14 1984-05-14 Power supply failure signal output circuit of measuring instrument Granted JPS60239816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9591084A JPS60239816A (en) 1984-05-14 1984-05-14 Power supply failure signal output circuit of measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9591084A JPS60239816A (en) 1984-05-14 1984-05-14 Power supply failure signal output circuit of measuring instrument

Publications (2)

Publication Number Publication Date
JPS60239816A true JPS60239816A (en) 1985-11-28
JPH0477326B2 JPH0477326B2 (en) 1992-12-08

Family

ID=14150444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9591084A Granted JPS60239816A (en) 1984-05-14 1984-05-14 Power supply failure signal output circuit of measuring instrument

Country Status (1)

Country Link
JP (1) JPS60239816A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578457A (en) * 1980-06-19 1982-01-16 Nec Corp Generating circuit for power source determination signal
JPS5755428A (en) * 1980-09-18 1982-04-02 Canon Inc Protection circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS578457A (en) * 1980-06-19 1982-01-16 Nec Corp Generating circuit for power source determination signal
JPS5755428A (en) * 1980-09-18 1982-04-02 Canon Inc Protection circuit

Also Published As

Publication number Publication date
JPH0477326B2 (en) 1992-12-08

Similar Documents

Publication Publication Date Title
US6987333B2 (en) Active circuit protection for switched power supply system
JPH07154924A (en) Battery usage system for portable electronic device
JP3863031B2 (en) Battery status monitoring circuit
JPH11265733A (en) Condition-monitoring device for battery group
JPH0984280A (en) Power supply monitor circuit
JPH08140281A (en) Charger
JPS60239816A (en) Power supply failure signal output circuit of measuring instrument
JPS60239815A (en) Power supply failure signal output circuit of measuring instrument
JPH0557806B2 (en)
JP2804339B2 (en) Transmission unit
JP3460233B2 (en) Battery device
JPH05297992A (en) Input circuit for programmable controller
JP3070715B2 (en) Wireless switch
JPH05276688A (en) Load circuit for secondary cell
JP2858843B2 (en) Charge / discharge device
JPH044308Y2 (en)
JPS60190127A (en) Battery charge/discharge controller
JPH0326025B2 (en)
JPH0238545Y2 (en)
KR870001479Y1 (en) Power source modulation circuit of video tape recorder
JPH089947Y2 (en) Line polarity detection circuit
JPS63246035A (en) Wireless equipment provided with battery status detecting means
JPH05152126A (en) Driving circuit for plunger solenoid
JP2510647Y2 (en) Fire alarm repeater
JPH06209567A (en) Circuit for preventing rush current of dc/dc converter