JPS60239742A - Recording medium - Google Patents

Recording medium

Info

Publication number
JPS60239742A
JPS60239742A JP59095579A JP9557984A JPS60239742A JP S60239742 A JPS60239742 A JP S60239742A JP 59095579 A JP59095579 A JP 59095579A JP 9557984 A JP9557984 A JP 9557984A JP S60239742 A JPS60239742 A JP S60239742A
Authority
JP
Japan
Prior art keywords
molecule
film
molecules
host
guest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59095579A
Other languages
Japanese (ja)
Inventor
Hiroshi Matsuda
宏 松田
Masahiro Haruta
春田 昌宏
Yutaka Hirai
裕 平井
Yukio Nishimura
征生 西村
Takeshi Eguchi
健 江口
Takashi Nakagiri
孝志 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59095579A priority Critical patent/JPS60239742A/en
Publication of JPS60239742A publication Critical patent/JPS60239742A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To obtain a high-density recording medium inducible to cause chemical change in a molecular unit by external factor by forming a monomolecular film or built-up monomolecular film of clathrate complexes composed of polymerizable host molecules each having a hydrophilic part, a hydrophobic part, and a clathrating part and guest molecules each to be clathrated with the host molecules on a carrier to form a recording layer. CONSTITUTION:As the host molecule, any molecule having a hydrophilic part and a hydrophobic part and at least one part capable of forming a clathrate complex with another molecule in proper positions, respectively, can be widely used. As the guest molecule capable of forming a clathrate complex with the host molecule, it is desirable for the host molecule to be able to form a strong hydrogen bond in general. Therefore, when the host molecule has a hydroxyl group as mentioned above at the part to clathrate the guest molecule, the guest molecule has aldehyde, ketone, amino, sulfoxide, etc., and in addition, halogen compds, or pi electron type compds., such as alkene, alkyne, and arene. can be selected for the guest molecule.

Description

【発明の詳細な説明】 (1)技術分野 本発明は、包接錯体の単分子膜、乃至単分子層累積膜の
化学変化を利用して記録を行なう記録媒体に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a recording medium that performs recording using chemical changes in a monomolecular film or a cumulative monomolecular layer of an inclusion complex.

(2)背景技術 従来、有機化合物を記録層とする記録媒体としては種々
のものが知られている。
(2) Background Art Conventionally, various recording media having recording layers made of organic compounds are known.

例えば、有機化合物を薄膜にして記録層として用いる光
記録媒体については1例えば特開昭58−18948号
公報、特開昭58−125248号公報にも開示されて
いる。いずれも有機色素を記録層とし、レーザビームに
より記録再生を行なうレーザ記録媒体に関するものであ
る。特に、特開昭58−125248号公報に開示され
た媒体は、一般式(I) で表わされるシアニン系色素の薄膜を記録層とするもの
である。(I)式で1表わされるシアニン系色素溶液を
回転塗布機などを用いて、100OA以下の厚さ0例え
ば約300Aの厚さにプラスチック基板上に塗布し薄膜
を形成する。膜内の分子分布配向がランダムであると、
光照射に伴って膜内で光の散乱が生じ、微視的にみた場
合各党照射の度に′生ずる化学反応の度合が異なってく
る。そこで記録媒体としては、膜内の分子分布、配向が
一様になっていることが望ましく、またできる限り膜厚
が薄いことが、記録の高密度化のために要請される。し
かしながら、塗布法による場合、膜厚においては300
A程度が限界であり、膜内の分子分布、配向がランダム
であることは解決しがたいことであった。
For example, optical recording media in which a thin film of an organic compound is used as a recording layer are disclosed in, for example, Japanese Patent Laid-Open Nos. 58-18948 and 1982-125248. All of them relate to laser recording media in which recording layers are made of organic dyes and recording and reproduction are performed using laser beams. In particular, the medium disclosed in JP-A-58-125248 uses a thin film of a cyanine dye represented by the general formula (I) as a recording layer. A cyanine dye solution represented by formula (I) is coated on a plastic substrate to a thickness of 100 OA or less, for example, about 300 Å, using a spin coater or the like to form a thin film. If the molecular distribution orientation within the film is random,
Light scattering occurs within the film with light irradiation, and when viewed microscopically, the degree of chemical reaction that occurs differs each time the film is irradiated. Therefore, as a recording medium, it is desirable that the molecular distribution and orientation within the film be uniform, and the film thickness is required to be as thin as possible in order to achieve high density recording. However, when using the coating method, the film thickness is 300
Grade A is the limit, and it is difficult to solve the problem that the molecular distribution and orientation within the film are random.

レジスト材料の一つとして光量子効率が大でかつ優れた
解像力を有するものとして提案されていたジアセチレン
化合物累積膜が、レジスト材料のみならず、薄膜電気−
光学デバイス、電気−音響デバイス、圧・焦電デバイス
等にも応用されることが、特開昭58−42229号公
報、特開昭58−43220号公報などに示されている
A diacetylene compound cumulative film, which has been proposed as a resist material with high photon efficiency and excellent resolution, has been used not only as a resist material but also as a thin film electrical
JP-A-58-42229, JP-A-58-43220, etc. show that it can be applied to optical devices, electro-acoustic devices, piezo-pyroelectric devices, etc.

近時においては、ジアセチレン化合物累積膜の製造方法
の改良について特開昭58−111029号公報に示さ
れている。かかる発明にて製造された基板上のジアセチ
レン化合物累積膜は紫外線を照射することにより重合さ
せてジアセチレン化合物重合体膜を作り、或はマスキン
グして紫外線を照射し部分的に重合させ、未重合部分を
除去して図形を作り、薄膜光学デバイスや集積回路素子
として使用される。
Recently, Japanese Patent Application Laid-Open No. 111029/1983 discloses an improvement in the method for producing a diacetylene compound cumulative film. The diacetylene compound cumulative film on the substrate produced according to the invention can be polymerized by irradiation with ultraviolet rays to form a diacetylene compound polymer film, or masked and irradiated with ultraviolet rays to partially polymerize and remove the unused material. The overlapping portions are removed to create shapes, which are used as thin film optical devices and integrated circuit elements.

しかし、これらはいずれもジアセチレン化合物に限るも
のであり、薄膜光学デバイスとして使用するときに、一
度記録したものの消去の可能性については述べられてい
ない。
However, all of these are limited to diacetylene compounds, and there is no mention of the possibility of erasing once recorded data when used as a thin film optical device.

一方、上述欠点を解決すべく、分子内に親木基、疎水基
及び少なくとも1個の不飽和結合を有する1種類の光重
合性上ツマ−の単分子膜又は単分子層累積膜を基板上に
形成して記録層としたことを特徴とする、反復使用可能
な光記録媒体が特願昭58−190!132号の光記録
媒体に示されている。
On the other hand, in order to solve the above-mentioned drawbacks, a monomolecular film or a monomolecular layer stack of one type of photopolymerizable polymer having a parent group, a hydrophobic group, and at least one unsaturated bond in the molecule was deposited on a substrate. An optical recording medium which can be used repeatedly is disclosed in Japanese Patent Application No. 58-190!132, which is characterized in that a recording layer is formed by forming a recording layer.

これらのジアセチレン化合物累積膜にしても、光重合性
オレフィンモノマーの単分子膜若しくは単分子層累積膜
にしても、光反応性化合物に親木基、疎水基を導入して
、直接基板上に担持させる製法を採用している。従って
、種々の機能性膜を簡単に作製することが困難なのに・
加えて、親木基、疎水基の導入に伴う光反応性の低下の
恐れがあった。更には、非常に高度な高密度記録を行う
際に重要となる、膜面内の分子配向の制御についても、
極めて複雑な操作が要求される問題があった。
Whether it is a cumulative film of these diacetylene compounds, a monomolecular film or a monomolecular layer cumulative film of photopolymerizable olefin monomers, a parent group or a hydrophobic group is introduced into a photoreactive compound and the film is directly deposited on a substrate. Adopts a manufacturing method that allows it to be supported. Therefore, although it is difficult to easily produce various functional membranes,
In addition, there was a fear that photoreactivity would decrease due to the introduction of parent wood groups and hydrophobic groups. Furthermore, we are also concerned with the control of molecular orientation within the film plane, which is important when performing extremely advanced high-density recording.
There was a problem that required extremely complicated operations.

かかる従来例の欠点を解消し、1)各種の機能性膜を比
較的簡単に作製する方法、2)その際、機能性分子の持
つ各種機能が、薄膜化した場合に於いても、損失若しく
は低下されることなく発現する様に膜化する方法、更に
は、3)上記の薄膜化に於いて、特別な操作を行うこと
なしに、膜構成分子が膜面内方向に対して、高度の秩序
構造を持って配向される方法を種々検討した結果、本発
明を成すに至った。又、かかる成膜法を用いて、高感度
、高解像度の記録媒体を、容易にかつ高品質に提供でき
るに至った。
We have solved the drawbacks of such conventional examples by providing 1) a method for producing various functional films relatively easily, and 2) a method that eliminates the loss or loss of various functions possessed by functional molecules even when the film is made thin. 3) A method for forming a film in such a way that the film can be expressed without being degraded; As a result of various studies on methods for orientation with an ordered structure, the present invention was accomplished. Furthermore, by using such a film forming method, it has become possible to easily provide a high-sensitivity, high-resolution recording medium with high quality.

(3)発明の開示 本発明の目的は、外因により分子単位での化学変化を起
こす様な高密度記録媒体を提供することにある。
(3) Disclosure of the Invention An object of the present invention is to provide a high-density recording medium in which chemical changes occur in molecular units due to external factors.

また、この様な分子単位での高密度記録を行うのに際し
て重要な因子となる媒体面内での分子配向に関して、従
来例よりも秀逸な媒体を提供することにある。更には、
上述記録媒体を製造するに当って、比較的簡単な操作変
更により、様々な性質を有する媒体を提供することにあ
る。
Another object of the present invention is to provide a medium that is superior to conventional examples in terms of molecular orientation within the medium plane, which is an important factor when performing high-density recording on a molecular basis. Furthermore,
In manufacturing the above-mentioned recording medium, it is an object of the present invention to provide a medium having various properties through relatively simple operational changes.

本発明の上記目的は、以下の本発明によって達成される
The above objects of the present invention are achieved by the present invention as follows.

その分子内に親水性部位、疎水性部位及び他分子との包
接が可能な部位(包接部位)を有する重合性分子(ホス
ト分子)と該ホスト分子に包接される別種の分子(ゲス
ト分子)とからなる包接錯体の単分子膜又は単分子層累
積膜を担体上に形成して記録層としたことを特徴とする
記録媒体。
A polymerizable molecule (host molecule) that has a hydrophilic site, a hydrophobic site, and a site that can be included with other molecules (inclusion site) in its molecule, and another type of molecule (guest molecule) that is included in the host molecule. 1. A recording medium comprising, as a recording layer, a monomolecular film or a cumulative monomolecular layer of an inclusion complex consisting of molecules) formed on a carrier.

本発明の記録層を構成する物質は、分子内に親水性部位
、疎水性部位及び他分子との包接が可能な部位を少なく
共1ケ所有する分子(これをホスト分子と呼ぶ)と該ホ
スト分子に包接される別種の分子(これをゲスト分子と
呼ぶ)の二種の分子からなる。かかるホスト分子とゲス
ト分子とからなる包接錯体の単分子膜、乃至単分子層累
積膜を担体上に形成することにより、本発明の記録媒体
が形成される。但し、これら二種類の分子の内、ホスト
分子が、光、熱、電気、磁気等の外因により、化学変化
若しくは物理変化を起こすことが必要である。即ち、本
発明に於ける記録媒体は、前述の化学変化を利用して記
録を行なう。
The substance constituting the recording layer of the present invention is a molecule that has at least one hydrophilic site, one hydrophobic site, and at least one site that can be included with other molecules (this is called a host molecule). It consists of two types of molecules: a different type of molecule (called a guest molecule) that is included in a host molecule. The recording medium of the present invention is formed by forming a monomolecular film or a monomolecular layer cumulative film of an inclusion complex consisting of such a host molecule and a guest molecule on a carrier. However, among these two types of molecules, it is necessary that the host molecule undergoes a chemical or physical change due to an external cause such as light, heat, electricity, or magnetism. That is, the recording medium according to the present invention performs recording using the above-mentioned chemical change.

本発明に用いられるホスト分子としては、上述の如く、
分子内の適当な位置に親水性部位、疎水性部位及び少な
く共1ケ所の他種分子との包接錯体を形成可能な部位を
有する重合性分子であれば広く使用することができる。
As the host molecules used in the present invention, as mentioned above,
A wide range of polymerizable molecules can be used as long as they have a hydrophilic site, a hydrophobic site, and at least one site capable of forming an inclusion complex with other species molecules at appropriate positions within the molecule.

具体的には、下記一般式で示される化合物が適している
Specifically, compounds represented by the following general formula are suitable.

〔ジアセチレンジオール誘導体の例〕[Example of diacetylene diol derivative]

HH 1 CH3−(CH2) m−C−G: = C−CミC−
C−(CHz)n−COOH(K )I OH’0H 30≧薦+n≧8.n≧0 上記化合物はそれ自体既知の化合物であ′す、又、長釦
アルキル基等で修飾されていないホスト分子が、種々の
ゲスト分子と結晶性の包接錯体を形成する点に関しても
、日本化学会誌No、2239頁−242頁(1118
3年)に述べられている。
HH 1 CH3-(CH2) m-C-G: = C-CmiC-
C-(CHz)n-COOH(K)I OH'0H 30≧Recommended+n≧8. n≧0 The above compound is a known compound per se. Also, regarding the point that the host molecule which is not modified with a long button alkyl group etc. forms crystalline inclusion complexes with various guest molecules, Journal of the Chemical Society of Japan No. 2239-242 (1118
3rd year).

ホスト分子と包接錯体を作り得るゲスト分子としては、
一般に、ホスト分子と強い水素結合を形成し得る分子が
望ましい。従って、先に述べた如く、ホスト分子が包接
部位として水酸基を有する場合には、ゲスト分子として
、アルデヒド、ケトン、アミン、スルフオキシド等を挙
げることができる。また、ゲスト分子としては他に、各
種ハロゲン化合物、或いはπ−電子系化合物、即ちアル
ケン、アルキン、及びアレーン等を選ぶ事もできる。何
れにせよ、形成される包接錯体が所望の像形成機能を示
す構造を有する分子が選ばれる。
Guest molecules that can form inclusion complexes with host molecules include:
Generally, molecules that can form strong hydrogen bonds with host molecules are desirable. Therefore, as mentioned above, when the host molecule has a hydroxyl group as an inclusion site, examples of the guest molecule include aldehydes, ketones, amines, sulfoxides, and the like. In addition, various halogen compounds or π-electron compounds such as alkenes, alkynes, and arenes can also be selected as guest molecules. In any event, molecules are chosen whose structure the inclusion complex formed exhibits the desired imaging function.

以下、各種機能別に利用可能なゲスト分子の具体例を示
す。
Specific examples of guest molecules that can be used for various functions are shown below.

(1)ゲスト分子の二重化反応を用いた光記録媒体に利
用し得るゲスト分子の具体例としては、オレフィン化合
物(No、31〜No、34)、ジオレフィン化合物(
1’&)、35〜No、38)、アントラセン誘導体(
Ilb 、313)、2−7ミノピリジニウム(No、
41)等、 隘81 R−−H,−〇、馬、−OH,−0CI(、)隘8B 階88 NC−CI−CH−CN 184 R,OOC−CM−CM−COOR,(RI−R,−C
MIl またはヘー−CM、 、R,−−H) 〔ジオレフィン化合物の例〕 階85 Ar ’−CH−CH−Ar−CH−CH−Ar ’n
86 陽87 〔アントラセン誘導体の例〕 隘89 (R−−CH,、−CHo 、 −COOC,H,、−
Br)〔アクリジニクム誘導体の例〕 n40 R + (R−−He−C)I3.−C,H,、X−−I 、 
Br 、CI三〔2−アミノビリジニクム〕 階41 (2) ゲスト分子の昇華を利用した記録媒体に利用し
得るゲスト分子の具体例としては、ケトン(階48)、
IJ−エポキシプロパンなどのエポキシ)’(1m4B
)、エチレンイミン(Nn44)、ベンゼン(Nn45
)、ジクロルメタン、クロロホルムなどの塩化物(1m
46 、Nn4? )、臭化メンルなどの臭化物(+1
kL48)等、 1 tk 4S R−C−R(R−−CH,、−C,H,)
陽、46 082C1Z 陽、47 CMCl3 No、48 CH3Br が挙げられる。
(1) Specific examples of guest molecules that can be used in optical recording media using duplication reactions of guest molecules include olefin compounds (No. 31 to No. 34), diolefin compounds (
1'&), 35-No, 38), anthracene derivatives (
Ilb, 313), 2-7 minopyridinium (No,
41), etc., 81 R--H, -〇, horse, -OH, -0CI (,) 8B floor 88 NC-CI-CH-CN 184 R,OOC-CM-CM-COOR, (RI-R ,-C
MIl or He-CM, , R, --H) [Example of diolefin compound] Floor 85 Ar'-CH-CH-Ar-CH-CH-Ar'n
86 Positive 87 [Example of anthracene derivative] 隘89 (R--CH,,-CHO, -COOC,H,,-
Br) [Example of aclidinicum derivative] n40 R + (R--He-C)I3. -C,H,,X--I,
Br, CI3 [2-aminoviridinicum] Floor 41 (2) Specific examples of guest molecules that can be used in recording media that utilize sublimation of guest molecules include ketones (Level 48),
IJ-epoxy (epoxy such as propane)' (1m4B
), ethyleneimine (Nn44), benzene (Nn45
), dichloromethane, chloroform, and other chlorides (1 m
46, Nn4? ), bromides (+1
kL48) etc., 1 tk 4S R-C-R (R--CH,, -C,H,)
positive, 46 082C1Z positive, 47 CMCl3 No, and 48 CH3Br.

このようなホスト分子およびゲスト分子から成る包接錯
体の単分子膜または単分子層累積膜を作成する方法とし
ては、例えばエルangmuirらの開発したラングミ
ュア・プロジェット法(LB法)を用いる。LB法は、
例えば分子内に親木基と疎水基を有する構造の分子にお
いて、両者のバランス(両親媒性のバランス)が適度に
保たれているとき、分子は水面上で親木基を下に向けて
単分子の層になることを利用して単分子膜または単分子
層の累積膜を作成する方法である。水面上の単分子層は
二次元系の特徴をもつ。分子がまばらに散開していると
きは、一分子当り面積Aと表面圧■との間に二次元理想
気体の式。
For example, the Langmuir-Prodgett method (LB method) developed by El Angmuir et al. is used as a method for creating a monomolecular film or a monomolecular stacked film of an inclusion complex consisting of a host molecule and a guest molecule. The LB method is
For example, in a molecule with a structure that has a parent wood group and a hydrophobic group in the molecule, when the balance between the two (amphiphilic balance) is maintained appropriately, the molecule will stand alone on the water surface with the parent wood group facing down. This method utilizes the layering of molecules to create a monomolecular film or a cumulative film of monomolecular layers. A monolayer on the water surface has the characteristics of a two-dimensional system. When the molecules are sparsely dispersed, the equation for a two-dimensional ideal gas exists between the area per molecule A and the surface pressure ■.

nA= kT が成り立ち、“気体膜′°となる。ここに、kはポルツ
マン定数、Tは絶対温度である。Aを十分小さくすれば
分子間相互作用が強まり二次元固体の“凝縮膜(または
固体膜)”°になる。凝縮膜はガラス基板などの種々の
材質や形状を有する担体の表面へ一層ずつ移すことがで
きる。この方法を用いて、本発明のゲスト分子を包接す
るホスト分子の単分子膜(これを単錯体分子膜と呼ぶこ
とにする)、若しくは単錯体分子層累積膜の具体的な製
法としては、例えば以下に示すA−Hの5法を挙げるこ
とができる [A] 目的とする包接錯体のホスト分子とゲスト分子
とを溶剤に溶解し、これを水相上に展開させて包接錯体
を膜状に析出させる。ホスト分子の構造が式lに示した
ような分子の両端に親水性部位(カルボキシル基)と疎
水性部位(アルキル基)を併有するものであれば、水相
上に析出する包接錯体はゲスト分子の親水性および疎水
性のいかんにかかわらず、ホスト分子の親水性部位を水
相に向けた状態で水相上に展開する。
nA = kT holds true, resulting in a "gas film'°. Here, k is Portzmann's constant and T is the absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes strong and a two-dimensional solid "condensed film (or The condensed film can be transferred layer by layer to the surface of a carrier having various materials and shapes, such as a glass substrate. Using this method, the host molecules that include the guest molecules of the present invention can be transferred layer by layer. Specific methods for producing a monolayer film (hereinafter referred to as a single complex molecular film) or a single complex molecular layer stacked film include, for example, the following five methods A to H [A] The host molecule and guest molecule of the desired inclusion complex are dissolved in a solvent, and this is spread on an aqueous phase to precipitate the inclusion complex in the form of a film.When the structure of the host molecule is as shown in formula l, If the molecule has both a hydrophilic site (carboxyl group) and a hydrophobic site (alkyl group) at both ends, the inclusion complex that precipitates on the aqueous phase will be formed regardless of the hydrophilicity and hydrophobicity of the guest molecule. , the host molecule is spread on the aqueous phase with its hydrophilic site facing toward the aqueous phase.

次にこの析出物が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)を設けて展開面積を制限
して膜物質の集合状態を制御し、その集合状態に比例し
た表面圧nを得る。この仕切板を動かし、展開面積を縮
少して膜物質の集合状態を制御し、表面圧を徐々に上昇
させ、累積膜の製造に適する表面圧nを設定することが
できる。この表面圧を維持しながら静かに清浄な担体を
垂直に上下させることにより単錯体分子膜が担体上に移
しとられる。単錯体分子膜は以上で製造されるが、単錯
体分子層累積膜は前記の操作を繰り返すことにより所望
の累積度の単鎖体分子層累積膜が形成される。
Next, to prevent this precipitate from freely diffusing on the aqueous phase and spreading too much, a partition plate (or float) is installed to limit the area of development and control the state of aggregation of the membrane material, and Obtain the surface pressure n. By moving this partition plate, the developed area can be reduced to control the aggregation state of the film material, and the surface pressure can be gradually increased to set a surface pressure n suitable for producing a cumulative film. By gently raising and lowering the clean carrier vertically while maintaining this surface pressure, the monocomplex molecular film is transferred onto the carrier. A single complex molecular layer film is produced in the above manner, but a single complex molecular layer cumulative film having a desired degree of accumulation is formed by repeating the above operations.

単鎖体分子層を担体上に移すには、上述した垂直浸せき
法の他、水平付着法、回転円筒法などの方法による。水
平付着法は担体を水面に水平に接触させて移しとる方法
で、回転円筒法は、円筒型の担体を水面上を回転させて
単鎖体分子層を担体表面に移しとる方法である。前述し
た垂直浸せき法では、表面が親水性である担体を水面を
横切る方向に水中から引き上げるとホスト分子の親木基
が担体側に向いた単錯体分子層が担体上に形成される。
In order to transfer the single chain molecular layer onto the carrier, in addition to the above-mentioned vertical dipping method, methods such as the horizontal deposition method and the rotating cylinder method can be used. The horizontal adhesion method is a method in which the carrier is transferred by bringing it into horizontal contact with the water surface, and the rotating cylinder method is a method in which a cylindrical carrier is rotated on the water surface to transfer a single-chain molecular layer onto the surface of the carrier. In the vertical immersion method described above, when a carrier with a hydrophilic surface is lifted out of water in a direction transverse to the water surface, a monocomplex molecule layer is formed on the carrier with the host molecules of the host molecules facing toward the carrier.

前述のように担体を上下させると、各行程ごとに1枚ず
つ単錯体分子層が積み重なっていく。成膜分子の向きが
引上げ行程と浸せき行程で逆になるので、この方法によ
ると各層間はホスト分子の親木基と親木基、ホスト分子
の疎水基と疎水基が向かい合うY型膜が形成される。そ
れに対し、水平付着法は、担体を水面に水平に接触させ
て移しとる方法で、ホスト分子の疎水基が担体側に向い
た単鎖体分子層が担体上に形成される。この方法では、
累積しても、成膜分子の向きの交代はなく全ての層にお
いて、疎水基が担体側に向いたxy11膜が形成される
0反対に全ての層において親木基が担体側に向いた累積
膜はY型膜と呼ばれる。
When the carrier is moved up and down as described above, one single complex molecule layer is stacked on top of the other with each step. Since the direction of the film-forming molecules is reversed between the pulling process and the dipping process, this method forms a Y-shaped film between each layer in which the parent wood groups of the host molecules face each other, and the hydrophobic groups of the host molecules face each other. be done. On the other hand, the horizontal adhesion method is a method in which the carrier is brought into horizontal contact with the water surface and transferred, and a single-chain molecular layer with the hydrophobic group of the host molecule facing the carrier is formed on the carrier. in this way,
Even when accumulated, there is no change in the direction of the film-forming molecules, and an xy11 film is formed in which the hydrophobic group faces the carrier side in all layers.On the contrary, in all layers, the parent group faces the carrier side. The membrane is called a Y-type membrane.

回転円筒法は、円筒型の担体を水面上を回転させて単分
子層を担体表面に移しとる方法である。
The rotating cylinder method is a method in which a cylindrical carrier is rotated on the water surface to transfer a monomolecular layer onto the carrier surface.

単分子層を担体上に移す方法は、これらに限定されるわ
けではなく、大面積担体を用いる時に仲、担体ロールか
ら水相中に担体を押し出していく方法などもとり得る。
The method of transferring the monomolecular layer onto the carrier is not limited to these methods, and when a large-area carrier is used, a method of extruding the carrier from a carrier roll into an aqueous phase may also be used.

また、前述した親木基、疎水基の担体への向きは原則で
あり、担体の表面処理等によって変えることもできる。
Furthermore, the orientation of the aforementioned parent wood group and hydrophobic group toward the carrier is a general rule, and can be changed by surface treatment of the carrier.

以上の成膜過程に於いて膜物質の面内方向の配向性制御
は従来、主として表面圧の制御に依って成されていた訳
であるが、膜物質が全稈単純な構造の化合物、例えば直
鎖脂肪酸等の場合を除き、高い秩序性を得ることは極め
て困難であった。然るに本発明に於いては、包接錯体を
膜物質に用いるので、高い秩序性を持つ膜を比較的簡単
に得ることができる。即ち、水相上に包接錯体が膜状に
析出した時点で、水素結合やファン・デル・ワールスカ
等に因ってホスト分子−ゲスト分子間、ホスト分子−ホ
スト分子間、ゲスト分子−ゲスト分子間の立体的配置は
固定され、各ホスト分子及びゲスト分子は結晶格子的秩
序性を持って配列する。
In the above film-forming process, the in-plane orientation control of the film material has conventionally been achieved mainly by controlling the surface pressure. Except in the case of straight-chain fatty acids, it has been extremely difficult to obtain high orderliness. However, in the present invention, since an inclusion complex is used as a membrane material, a highly ordered membrane can be obtained relatively easily. That is, when the inclusion complex precipitates in a film form on the aqueous phase, there are bonds between host molecules and guest molecules, between host molecules and host molecules, and between guest molecules and guest molecules due to hydrogen bonds, van der Waalska, etc. The steric configuration between them is fixed, and each host molecule and guest molecule are arranged with crystal lattice order.

[B]水溶性を示すゲスト分子を水相に溶解させる。次
にホスト分子を溶剤に溶解せしめてこれを水相上に展開
させる。この時同時にホスト分子−ゲスト分子間で包接
錯体形成が行われて膜状に析出する。ホスト分子とゲス
ト分子の組み合わせ及び以下の成膜操作については[A
]に示した方法に準する。
[B] A water-soluble guest molecule is dissolved in the aqueous phase. Next, host molecules are dissolved in a solvent and spread on the aqueous phase. At the same time, an inclusion complex is formed between the host molecule and the guest molecule, and the mixture is deposited in the form of a film. Regarding the combination of host molecules and guest molecules and the following film-forming operations, see [A
] According to the method shown in .

[C]水溶性を示すゲスト分子を水相に溶解させる0次
に、目的とする包接錯体のホスト分子とゲスト分子とを
溶剤に溶解し、これを水相上に展開させて包接錯体を膜
状に析出させる。ホスト分子とゲスト分子の組み合わせ
及び以下の成膜操作については[A]に示した方法に準
する。
[C] Dissolving water-soluble guest molecules in the water phase Next, the host molecules and guest molecules of the intended inclusion complex are dissolved in a solvent, and this is spread on the water phase to form the inclusion complex. is deposited in the form of a film. The combination of host molecules and guest molecules and the following film-forming operations are based on the method shown in [A].

[D]ホスト分子を溶剤に溶解しこれを水相中に展開さ
せる。その後、密閉系の装置を用いて気相側、即ち装置
内の空間をゲスト分子ガス雰囲気とする。この時、′同
時に気相側のゲスト分子を包接し、包接錯体が膜状に析
出する。この方法はゲスト分子が低沸点で気化し易い性
質を持つ化合物、例えばアセトン等の場合、特に有効で
ある。ホスト分子とゲスト分子の組み合わせ及び以下の
成膜操作については[A]に示した方法に順する。
[D] Dissolve the host molecule in a solvent and develop it in the aqueous phase. Thereafter, using a closed system device, the gas phase side, that is, the space inside the device, is made into a guest molecule gas atmosphere. At this time, the guest molecules on the gas phase side are simultaneously included, and an inclusion complex is precipitated in the form of a film. This method is particularly effective when the guest molecule is a compound with a low boiling point and easily vaporized, such as acetone. The combination of host molecules and guest molecules and the following film forming operations follow the method shown in [A].

[E] !閉系の装置を用いて気相側、即ち装置内の空
間をゲスト分子ガス雰囲気とする0次に目的とする包接
錯体のホスト分子とゲスト分子とを溶剤に溶解し、これ
を水相上に展開させて包接錯体を膜状に析出させる。ホ
スト分子とゲスト分子の組み合わせ及び以下の成膜操作
につし1てt±、[A]に示した方法に準する。
[E]! Using a closed system device, the gas phase side, that is, the space inside the device, is made into a guest molecule gas atmosphere.The host molecules and guest molecules of the zero-order inclusion complex are dissolved in a solvent, and this is poured onto the aqueous phase. to precipitate the inclusion complex in the form of a film. The combination of host molecules and guest molecules and the following film-forming operations were performed according to the method shown in [A].

上述の方法によって担体上に形成される単鎖体分子膜及
び単鎖体分子層累積膜は高密度でし力)も高度の秩序性
を有しており、これらの膜で記録層を構成することによ
って、包接錯体の機能に応じて光記録、熱的記録、電気
的記録あるし1は磁気的記録等の可能な高密度で高解像
度の記録機能を有する記録媒体を得ることができる。
The single chain molecular film and single chain molecular layer accumulation film formed on the carrier by the above method have high density and a high degree of order, and these films constitute the recording layer. By doing so, it is possible to obtain a recording medium having a high-density, high-resolution recording function capable of optical recording, thermal recording, electrical recording, or magnetic recording depending on the function of the inclusion complex.

作成した単鎖体分子膜及び単鎖体分子層累積膜を記録媒
体の記録層として用いる場合以下に示す様に記録が行な
われる。
When the produced single chain molecular film and single chain molecular layer cumulative film are used as a recording layer of a recording medium, recording is performed as shown below.

ホスト分子は、X線、ガンマ線、紫外線等の重合に必要
なエネルギーを供給し得る光を照射すると、照射部位に
於いてm式に示す様にホスト分子間で重合がおこり、ポ
リジアセチレンが形成される。
When host molecules are irradiated with light that can supply the energy necessary for polymerization, such as X-rays, gamma rays, and ultraviolet rays, polymerization occurs between the host molecules at the irradiated site as shown in formula m, forming polydiacetylene. Ru.

30≧m+n≧9.n≧0 従って、単錯体分子膜芳しくは単鎖体分子層累積膜に全
面露光することにより、基板との付着力を飛躍的に増大
せしめることが可能である。特に耐薬品(耐溶剤)性が
増大する。t)かる、全面露光により、ゲスト分子が光
三員性を示す場合にt±ゲスト分子も、二重化してしま
う力呪、これを光記録媒体として用いる際には、ノくタ
ーンに従って二量体の吸収波長に等しい波長の光(紫外
光)を照射して解重合させることによる記録、あるいは
、ホスト分子は一度重合すると解重合されない9で、二
量体の吸収波長に等しい波長の光で全面露光し、ゲスト
分子を解重合させた後、パターンに従ってガンマ線、X
線、紫外線などを照射して記録が出来る。記録法を以下
に説明する。
30≧m+n≧9. n≧0 Therefore, by exposing the entire surface of the single complex molecular film or the single chain molecular layer cumulative film, it is possible to dramatically increase the adhesive force with the substrate. In particular, chemical resistance (solvent resistance) is increased. t) When the guest molecule exhibits optical tri-membership due to full-surface exposure, the t± guest molecule also doubles, and when this is used as an optical recording medium, it becomes a dimer according to the Recording by irradiating light (ultraviolet light) with a wavelength equal to the absorption wavelength of the dimer to cause depolymerization, or because the host molecule is not depolymerized once it has been polymerized9, the entire surface is irradiated with light with a wavelength equal to the absorption wavelength of the dimer. After exposure to light and depolymerizing guest molecules, gamma rays,
Records can be made by irradiating with radiation, ultraviolet rays, etc. The recording method will be explained below.

1、ゲスト分子が光三員性分子の場合、■ゲスト分子の
二量体の吸収波長に等しい波長を用いる方法 例えば、No、 31−38等の光三員性二重結合を有
するゲスト分子を組み合わせるとホスト分子対ゲスト分
子の組成比(mol比)が1=2の包接錯体が形成され
る。この単錯体分子膜、若しくは、単錯体分子累積膜に
ガンマ線、X線、紫外線など重合に必要なエネルギーを
供給しうる光を照射すると照射部位において■式に示す
ようにゲスト分子間でも二重化反応がおこる。
1. When the guest molecule is a phototri-membered molecule, (1) A method using a wavelength equal to the absorption wavelength of the dimer of the guest molecule. When combined, an inclusion complex is formed in which the composition ratio (molar ratio) of host molecules to guest molecules is 1=2. When this single complex molecular film or single complex molecular cumulative film is irradiated with light that can supply the energy necessary for polymerization, such as gamma rays, It happens.

これらの反応は互いに隣接する不飽和結合の距離が4A
以下のときおこり得るものであるが、先に述べた様な方
法で作成された単錯体分子膜又は、単鎖体分子層累積膜
では、二量化物が容易に得られるのみならず、二重化反
応に伴って生成が考えられる各種の異性仇若しくは構造
体の唯一種しか生成されない、即ち、包接錯体層に於け
るゲスト分子間の立体配列は、極めて整然としている。
In these reactions, the distance between adjacent unsaturated bonds is 4A.
This can occur in the following cases, but in a single complex molecular film or a single chain molecular layer stacked film prepared by the method described above, not only can dimerization products be easily obtained, but also the duplex reaction can occur. Only one kind of the various isomer compounds or structures that are thought to be produced with the inclusion complex layer is produced, that is, the steric arrangement between the guest molecules in the inclusion complex layer is extremely orderly.

二量体はシクロブタン環に基づく、波長2?Onmの吸
収を持つが、この波長2?Qn+sの紫外光を照射する
ことによって二量体は元の単量体二分子に戻る。従って
、波長270nmの紫外光を照射するとその部分のみ解
重合がおこり、成るパターンに従った記録が成される。
The dimer is based on a cyclobutane ring, wavelength 2? It has an absorption of Onm, but this wavelength 2? By irradiating with Qn+s ultraviolet light, the dimer returns to its original two monomer molecules. Therefore, when ultraviolet light with a wavelength of 270 nm is irradiated, depolymerization occurs only in that portion, and recording is made according to the pattern formed.

記録された情報の読み取りは例えば可視光の照射によっ
て行なう。すなわち、重合によって単量体時の共役系が
崩れるので、可視光の吸収波長に変化をきたす、最大吸
収波長は低波長側にシフトするので、吸収スペクトル変
化を読みとることにより情報の再生が行なわれる。
The recorded information is read, for example, by irradiation with visible light. In other words, as the conjugated system of the monomer is destroyed by polymerization, the absorption wavelength of visible light changes.The maximum absorption wavelength shifts to the lower wavelength side, so information can be reproduced by reading the change in the absorption spectrum. .

再生は、可視光による吸収スペクトル変化の読み取り以
外にも、単量体時と三員孔径の体積変化をシューリーレ
ン法により読みとることも可能である。この方法は、単
量体時と三員孔径の体積変化の大きい構造を有する化合
物の単命体分子膜または単錯体分子層累積膜のときには
特に適している。また、単鎖体分子膜または単鎖体分子
層累積膜を基板の上に直接ではなく、基板上にSs、 
Zn(1゜CdSなどの光導電体層を形成し、その上に
単錯体分子膜または単鎖体分子層累積膜を形成すること
により、単量体と二量体の吸光度の差を電気的に読み取
ることも可能である。
In addition to reading changes in absorption spectrum using visible light, regeneration can also be performed by reading changes in volume between monomer and three-membered pore diameter using the Schlieren method. This method is particularly suitable for a monomer molecular film or a monocomplex molecular layer stacked film of a compound having a structure in which the volume of the three-membered pore varies greatly compared to when it is a monomer. In addition, instead of depositing a single chain molecular film or a single chain molecular layer cumulative film directly on the substrate, Ss,
By forming a photoconductor layer such as Zn (1°CdS) and forming a single complex molecular film or a single chain molecular layer cumulative film on it, the difference in absorbance between the monomer and dimer can be electrically It is also possible to read the

■ゲスト分子の二量体の吸収波長に等しい波長で全面露
光後、ゲスト分子の二重化により記録を行なう方法。
■A method in which the entire surface is exposed to light at a wavelength equal to the absorption wavelength of the guest molecule dimer, and then recording is performed by doubling the guest molecule.

■式のように二重化されたゲスト分子をシクロブタン環
の吸収波長(27(ln+i)で照射し、解重合させ単
量体に戻す0次いで、あるパターンに従い、ガンマ線、
X線、紫外線など重合に必要なエネルギーを供給し、部
分的に再度二量化を行なうことにより記録を行なう。
■The double guest molecule as shown in the formula is irradiated with the absorption wavelength of the cyclobutane ring (27(ln+i), depolymerized and returned to the monomer.) Next, according to a certain pattern, gamma rays,
Recording is performed by supplying the energy necessary for polymerization, such as X-rays and ultraviolet rays, to partially dimerize again.

以上述べた光記録媒体に於いて膜厚は特に100〜30
00 Aのものが好ましい。
In the optical recording medium mentioned above, the film thickness is particularly 100 to 30
00 A is preferred.

2、ゲスト分子が昇華する場合 例えばNo、42−48等のゲスト分子を組合わせると
、ホスト分子対ゲスト分子の組成比(101比)がl:
1乃至1:2の包接錯体が形成される。この単鎖体分子
膜若しくは単鎖体分子層累積膜にあるパターンに従って
これらゲスト分子が包接錯体より解離して気化するに十
分なエネルギーを有するレーザ光や電子線等を照射する
と非照射部位に於いては、ゲスト分子はホスト分子に包
接されたままであるので上記パターンに従った記録が成
されたことになる。
2. When guest molecules sublimate For example, when guest molecules such as No. 42-48 are combined, the composition ratio (101 ratio) of host molecules to guest molecules is l:
A 1 to 1:2 inclusion complex is formed. When these guest molecules are irradiated with laser light, electron beam, etc. having sufficient energy to dissociate from the inclusion complex and vaporize according to the pattern on this single-chain molecular layer or single-chain molecular layer accumulation film, the non-irradiated areas are exposed. In this case, since the guest molecule remains included in the host molecule, recording was performed according to the above pattern.

記録された情報の読み取りは、ゲスト分子としてNo、
42、を用いた場合にはこ・れらの化合物が持つカルボ
ニル基に基づく紫外光吸収の有無を読みとることにより
成される。又、レーザ光や電子線照射前後の膜の構造変
化をシュリーレン法により読み取ることもでき、この方
法は、ゲスト分子としてNo、42〜4Bを用いた場合
にも有効である。
Reading of the recorded information is carried out using No.
42, this is done by reading the presence or absence of ultraviolet light absorption based on the carbonyl group of these compounds. Furthermore, structural changes in the film before and after irradiation with laser light or electron beam can be read by the Schlieren method, and this method is also effective when No. 42 to 4B are used as guest molecules.

又、No、42を含む単鎖体分子膜乃至単錯体分子層累
積膜をSe、 ZnO,CdS等の光導電体層上に形成
することにより包接錯体部とゲスト分子のみの部位との
吸光度の差を電気的に読み取ることも可能である。
In addition, by forming a single-chain molecular film or a single-complex molecular layer cumulative film containing No. It is also possible to read the difference electrically.

以上の記録媒体に於いて膜厚は、特に100〜1000
Aのものが好ましい。
In the above recording medium, the film thickness is particularly 100 to 1000.
A is preferred.

これら成膜方法はその原理からも分る通り、非常に簡易
な方法であり、上記のような優れた記録機能を有する記
録媒体を低コストで提供することができる。
As can be seen from their principles, these film-forming methods are very simple methods, and can provide recording media having the above-mentioned excellent recording function at low cost.

以上述べた、本発明における単鎖体分子膜または単分子
層累積膜を形成する担体は特に限定されないが、担体表
面に界面活性物質が付着していると、単錯体分子層を水
面から移しとる時に、単錯体分子膜が乱れ良好な単鎖体
分子膜または単鎖体分子層累積膜ができないので担体表
面が清浄なものを使用する必要がある。使用することの
できる担体の例としては、ガラス、アルミニウムなどの
金属、プラスチック、セラミックなどが挙げられる。
The carrier that forms the single-chain molecular film or the monolayer cumulative film in the present invention as described above is not particularly limited, but if a surfactant is attached to the surface of the carrier, the single-complex molecular layer will be transferred from the water surface. Sometimes, the single complex molecular film is disturbed and a good single chain molecular film or single chain molecular layer cumulative film cannot be formed, so it is necessary to use a carrier with a clean surface. Examples of carriers that can be used include glass, metals such as aluminum, plastics, ceramics, and the like.

担体上の単鎖体分子膜または単錯体分千層累積膜は、十
分に強く固定されており担体からの剥離、剥落を生じる
ことはほとんどないが、付着力を強化する目的で担体と
単錯体分子膜または単錯体分子層累積膜の間に接着層を
設けることもできる。ざらに単錯体分子層形成条件例え
ば水相の水素イオン濃度、イオン種、水温、担・体上げ
下げ速度あるいは表面圧の選択等によって付着力を強化
することもできる。
A single-chain molecular film or a 1,000-layer cumulative film of a single complex on a carrier is sufficiently strongly fixed and hardly peels off or peels off from the carrier. An adhesive layer can also be provided between the molecular films or the monocomplex molecular layer stack. The adhesion force can also be strengthened by selecting the conditions for forming a monocomplex molecular layer, such as the hydrogen ion concentration of the aqueous phase, the ion species, the water temperature, the rate of raising and lowering the carrier/body, or the surface pressure.

単分子膜または単分子層累積膜の上に保護膜を設けるこ
とは、単分子膜または単分子層累積膜の化学的安定性を
向上させるためには、好ましいことであるが、成膜分子
の選択によって保護膜は殿けても設けなくてもよい。
Providing a protective film on a monomolecular film or a monomolecular layer stack is preferable in order to improve the chemical stability of the monomolecular film or monolayer stack; Depending on selection, the protective film may or may not be provided.

以下に本発明の実施例を示して更に具体的に説明する。EXAMPLES The present invention will be explained in more detail by showing examples below.

実施例1 ゲスト分子の光二量化反応を用いた光記録媒体(3) ホスト分子としてVのジアセチレンジオール、ゲスト分
子としてケイ皮酸をモル比l:2の割合でクロロホルム
に溶かした後、pH8,5、塩化カドミウム濃度4 X
 10層4Mの水相上に展開させた。溶媒のクロロホル
ムを蒸発除去後、表面圧を35dynes/cmまで高
めて、包接錯体を膜状に析出させた。この後、表面圧を
一定に保ちながら、表面が十分に清浄で親水性となって
いるガラス基板を上下速度7cm/sinにて水面を横
切る方向に静かに上下させ、単錯体分子膜を基板上に移
し取り、単錯体分子膜及び3 、5 、9 、15.1
9層に累積した単鎖体分子層累積膜を記録層とする光記
録媒体を製造した0次に高圧水銀灯を用いて、これらの
膜を全面露光して、ゲスト分子を二重化(式■)、ホス
ト分子を重合(弐m)させた後、パターンに従って1.
波長270 nmの紫外光を照射して、ゲスト分゛子を
解重合させて情報を記録した0分子オーダーの記録が可
能であった。
Example 1 Optical recording medium using photodimerization reaction of guest molecules (3) V diacetylene diol as the host molecule and cinnamic acid as the guest molecule were dissolved in chloroform at a molar ratio of 1:2, and then dissolved at pH 8, 5. Cadmium chloride concentration 4
Ten layers were developed on a 4M aqueous phase. After the solvent chloroform was removed by evaporation, the surface pressure was increased to 35 dynes/cm to precipitate the inclusion complex in the form of a film. After this, while keeping the surface pressure constant, the glass substrate whose surface is sufficiently clean and hydrophilic is gently moved up and down in the direction across the water surface at a vertical speed of 7 cm/sin, and the single complex molecular film is deposited on the substrate. Transferred to a single complex molecular film and 3, 5, 9, 15.1
An optical recording medium having nine single-chain molecular layer cumulative films as a recording layer was manufactured. Using a zero-order high-pressure mercury lamp, the entire surface of these films was exposed to light to double the guest molecules (Formula ■). After polymerizing the host molecules (2), follow the pattern as shown in 1.
It was possible to record information on the order of 0 molecules by irradiating ultraviolet light with a wavelength of 270 nm to depolymerize guest molecules.

記録の再生は、二重化したゲスト分子の解重合に伴う波
長380〜42Onm付近の吸収変化を読み取る本によ
り行った。
The recording was reproduced using a book that reads the absorption change in the wavelength range of 380 to 42 Onm accompanying the depolymerization of the duplicated guest molecules.

更に再び高圧水銀灯を用いて上記録媒体を全面露光する
ことにより記録を消去することが可能であることを確認
した。なお一度高圧水銀灯で全面露光した本記録媒体を
、アルコール中に約30秒間授精した後、上記方法によ
り情報の記録/再生を行ったが、特に問題点はなかった
。即ち、ホスト分子を重合させる事により該記録i体の
化学的強度が大となることが確認された。
Furthermore, it was confirmed that the recording could be erased by exposing the entire surface of the upper recording medium to light using a high-pressure mercury lamp again. Note that this recording medium, which had been entirely exposed to light using a high-pressure mercury lamp, was fertilized in alcohol for about 30 seconds, and then information was recorded/reproduced using the above method, but no particular problems were found. That is, it was confirmed that the chemical strength of the recorded i-form was increased by polymerizing the host molecule.

実施例2〜8 ゲスト分子の昇華を利用した記録媒体 ホスト分子として(v)を用い、ゲスト分子にNo、4
2〜No、48を用いて単錯体分子膜乃至3゜5.9層
に累積した単錯体分子層累積膜を作成した。かかる単錯
体分子膜乃至単錯体分子層累積膜を高圧水銀灯を用いて
全面露光してホスト分子を重合させて記録媒体を製造し
た。
Examples 2 to 8 Recording medium using sublimation of guest molecules (v) was used as the host molecule, and No. 4 was used as the guest molecule.
Using Samples No. 2 to No. 48, a single complex molecular film to a single complex molecular layer cumulative film having a thickness of 3° and 5.9 layers was prepared. A recording medium was produced by exposing the entire surface of such a single complex molecular film or a cumulative film of single complex molecular layers to light using a high pressure mercury lamp to polymerize host molecules.

炭酸ガスレーザ又は赤外線レーザを用いて、作成した記
録媒体にパターンに従ってレーザ光を照射したところ、
照射部位だけゲスト分子が気化除去され、情報の記録が
成された0分子オーダーの記録が可能であった。ゲスト
分子の有無をシュリーレン法を用いて読みとることによ
り記録再生が可能であった。ゲスト分子としてNo、4
2を用いた記録媒体においては、ゲスト分子が気化除去
された部分の吸収スペクトル強度(入1161 =28
0n履)が減少し、 2Bon層における吸収スペクト
ルの測定によっても、記録再生が可能であった。
When the created recording medium was irradiated with laser light according to a pattern using a carbon dioxide laser or an infrared laser,
Guest molecules were vaporized and removed only at the irradiated site, and information could be recorded on the order of 0 molecules. Recording and reproduction was possible by reading the presence or absence of guest molecules using the Schlieren method. No. 4 as a guest molecule
In the recording medium using 2, the absorption spectrum intensity of the part where the guest molecules are vaporized and removed (input 1161 = 28
0n) decreased, and recording and reproduction was possible even by measuring the absorption spectrum in the 2Bon layer.

この記録媒体をそれぞれNo、42〜N’o’、 4 
Bの溶液に侵潰したところ、ゲスト分子が除去された部
位に再びゲスト分子が包接され、記録が消去されるとと
もに、再記録が可能であった。
These recording media are No., 42 to N'o', and 4, respectively.
When it was eroded into solution B, the guest molecules were included again in the site from which the guest molecules had been removed, erasing the recording and making it possible to rerecord.

本方法によれ′ばホスト分子の基板付着力が、増大する
。従って記録媒体の化学的強度が相対的に大となり、反
復使用回数を少なくとも100回まで増大できることが
わかった。
According to this method, the adhesion force of the host molecule to the substrate is increased. Therefore, it has been found that the chemical strength of the recording medium becomes relatively high, and the number of times of repeated use can be increased to at least 100 times.

特許出願人 キャノン株式会社Patent applicant: Canon Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] その分子内に親水性部位、疎水性部位及び包接部位を有
する重合性ホスト分子と該ホスト分子に包接されるゲス
ト分子とからなる包接錯体の単分子膜又は単分子層累積
膜を担体上に形成して記録層としたことを特徴とする記
録媒体。
Carries a monomolecular film or a monomolecular layer stack of an inclusion complex consisting of a polymerizable host molecule that has a hydrophilic site, a hydrophobic site, and an inclusion site in its molecule and a guest molecule that is included in the host molecule. A recording medium comprising a recording layer formed on top of the recording medium.
JP59095579A 1984-05-15 1984-05-15 Recording medium Pending JPS60239742A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59095579A JPS60239742A (en) 1984-05-15 1984-05-15 Recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59095579A JPS60239742A (en) 1984-05-15 1984-05-15 Recording medium

Publications (1)

Publication Number Publication Date
JPS60239742A true JPS60239742A (en) 1985-11-28

Family

ID=14141498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59095579A Pending JPS60239742A (en) 1984-05-15 1984-05-15 Recording medium

Country Status (1)

Country Link
JP (1) JPS60239742A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189990A (en) * 1985-02-20 1986-08-23 Ricoh Co Ltd Optical information recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189990A (en) * 1985-02-20 1986-08-23 Ricoh Co Ltd Optical information recording medium

Similar Documents

Publication Publication Date Title
US4693915A (en) Film forming method, recording medium formed thereby and recording method therewith
US4766047A (en) Optical recording medium and optical recording process using such medium
JPS60239742A (en) Recording medium
JPH0452934B2 (en)
JPS60239739A (en) Recording medium
JPS60239740A (en) Recording medium
JPS60239743A (en) Recording medium
JPS60239283A (en) Recording method
JPS60241928A (en) Film forming method
JPS60239282A (en) Recording medium
JPS61143190A (en) Recording medium
JPS60239741A (en) Recording medium
JPS63204531A (en) Reproducing device
JPH0427959B2 (en)
JPS61222790A (en) Recording medium
JPS61179791A (en) Recording medium
JPS61180237A (en) Recording medium
JPS61137775A (en) Recording medium
JPS60241929A (en) Film forming method
JPS61143186A (en) Recording medium
JPS61137779A (en) Recording medium
JPS61137774A (en) Recording medium
JPS61143185A (en) Recording medium
JPS61143189A (en) Recording medium
JPS61143187A (en) Recording medium