JPS60239435A - Production of trifluoroacetic acid - Google Patents

Production of trifluoroacetic acid

Info

Publication number
JPS60239435A
JPS60239435A JP9553784A JP9553784A JPS60239435A JP S60239435 A JPS60239435 A JP S60239435A JP 9553784 A JP9553784 A JP 9553784A JP 9553784 A JP9553784 A JP 9553784A JP S60239435 A JPS60239435 A JP S60239435A
Authority
JP
Japan
Prior art keywords
reaction
product
trifluoroacetic acid
stage
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9553784A
Other languages
Japanese (ja)
Inventor
Isao Goto
勲 後藤
So Yoneda
米田 創
Seisaku Kumai
清作 熊井
Toru Ueno
徹 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9553784A priority Critical patent/JPS60239435A/en
Priority to DE8585105653T priority patent/DE3564257D1/en
Priority to EP85105653A priority patent/EP0163975B1/en
Publication of JPS60239435A publication Critical patent/JPS60239435A/en
Priority to US06/930,056 priority patent/US5041647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:The oxidation of 1,1-dichloro-2,2,2-trifluoroethane with O2 is effected in the presence of a small amount of water and the product is hydrolyzed with a large amount of water to collect the titled compound formed in individual process simultaneously. CONSTITUTION:In the production of trifluoroacetic acid from 1,1-dichloro-2,2,2- trifluoroethane, oxygen and water, the reaction between CF3CHCl2 and O2 is carried out in the presence of a small amount of water, preferably 0.01-0.5mol per mol of CF3CHCl2 to form a reaction mixture containing CF3COCl as a major product and CF3COOH as a by-product, then the resultant the reaction mixture is subjected to hydrolysis with a large amount of water to convert CF3COCl into CF3COOH, which is collected together with the above-stated by- product whereby trifluoroacetic acid is obtained. EFFECT:The combination of these two reactions increases the yield of the product.

Description

【発明の詳細な説明】 本発明はトリフルオロ酢酸の製法に関し、更に詳しく言
えば、GFsOHC12,Ox及びagoの原料として
特定の前段酸化反応及び後段加水分解反応の組合せによ
り高収率で(JsoooHを円滑有利に製造し得る0F
3000FIの新規な製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing trifluoroacetic acid, and more specifically, the present invention relates to a method for producing trifluoroacetic acid. 0F that can be manufactured smoothly and advantageously
Concerning a new manufacturing method for 3000FI.

トリフルオロ酢酸(cFxcooa)は、農医薬の製造
原料の他、反応溶媒として、あるいはエステル化触媒、
縮合触媒などの各種触媒として有用な化合物である。従
来、OFI C0OHの製法とじては、酢酸フルオリド
の電解フッ素化による方法(米国特許第4022824
号明細書などを参照)が知られているが、この方法にお
いては、中間生成物とl1mの分離に経費がかかるなど
の難点が認められる。而して、0FsOO13,0FJ
CHO1*。
Trifluoroacetic acid (cFxcooa) is used as a raw material for producing agricultural medicines, as a reaction solvent, or as an esterification catalyst.
It is a compound useful as various catalysts such as condensation catalysts. Conventionally, OFI C0OH has been produced by electrolytic fluorination of acetic acid fluoride (U.S. Pat. No. 4,022,824).
However, this method has drawbacks such as the high cost of separating the intermediate product and l1m. Therefore, 0FsOO13,0FJ
CHO1*.

0FsOHx01などの原料として、水銀塩の存在下O
FN)Olgと三酸化硫黄との反応(特許出願公表昭5
6−501649号公報)、0.1重量%より少量の水
を含むQFsOHC12を紫外線の如き活性放射線の存
在下に酸素と反応させる方法(特公昭5B−24416
号公報、米国特許第3883407号明細書)、実質的
に無水の条件下に0F30H201、塩素及び酸素の混
合物に紫外線を照射する方法(米国特許第315105
1号明細書)などにより、トリフルオロ酢酸クロライド
(cirscoal)を製造する方法が提案されている
。この0F100OIは加水分解反応によりCFmoo
OHに転化せしめられるが、上記特公昭5B−2441
6号公報などにおいては、加水分解が多大になることを
防止するため、実質的に無水、即ち0.1重tチよりも
少量の水を含む原料を採用している。また、上記米国特
許第3151051号明細書においては、水の存在下に
上記混合物に紫外線を照射するとQFaOOOHが得ら
れることを開示している。
O as a raw material such as 0FsOHx01 in the presence of mercury salt.
FN) Reaction between Olg and sulfur trioxide (Patent application published in 1972)
6-501649), a method in which QFsOHC12 containing less than 0.1% by weight of water is reacted with oxygen in the presence of active radiation such as ultraviolet rays (Japanese Patent Publication No. 5B-24416)
(U.S. Pat. No. 3,883,407) and a method of irradiating a mixture of 0F30H201, chlorine and oxygen with ultraviolet light under substantially anhydrous conditions (U.S. Pat. No. 3,15105).
A method for producing trifluoroacetic acid chloride (circscoal) has been proposed. This 0F100OI becomes CFmoo due to hydrolysis reaction.
Although it is converted to OH, the above-mentioned Japanese Patent Publication No. 5B-2441
In Publication No. 6 and the like, in order to prevent excessive hydrolysis, a material that is substantially anhydrous, that is, a raw material containing less than 0.1 weight of water is used. Further, the above-mentioned US Pat. No. 3,151,051 discloses that QFaOOOH is obtained when the above mixture is irradiated with ultraviolet rays in the presence of water.

本出願人は、従来の水銀塩を用いる製法では、使用薬品
が取り扱い難く工業的に不利であり、紫外線の如き活性
放射線を用いる方法では、副生ずる微量のフッ酸により
線源のガラスが失透し長期間使用できないなど、従来法
には種々の難点があることから、これう難点を解決した
方法について先に提案した。即ち、特開昭58−159
440号公報に開示されている、0F80HO1!を少
量の水の存在下に熱酸化し、0FIOooHとQFaC
OOlとを併産製造する方法である。この方法において
は、はとんど水が存在しな〜・場合には酸化反応の進行
が著しく遅く、また、ayscooa及びQysOOO
lへの選択率が低くなるという知見に基づき、1モルの
0FaOHO’lに対し、通常は0.01〜1モルの範
囲から選ばれる水の存在下に反応を行なうことが好まし
いとされている。
The applicant believes that the conventional manufacturing method using mercury salts is industrially disadvantageous because the chemicals used are difficult to handle, and that the method using active radiation such as ultraviolet rays causes the source glass to devitrify due to trace amounts of hydrofluoric acid produced as a by-product. Conventional methods have various drawbacks, such as not being able to be used for a long period of time, so we have previously proposed a method that overcomes these drawbacks. That is, JP-A-58-159
0F80HO1! disclosed in Publication No. 440! was thermally oxidized in the presence of a small amount of water to form 0FIOooH and QFaC.
This is a method of co-manufacturing with OOl. In this method, if water is not present, the oxidation reaction progresses extremely slowly, and ayscooa and QysOOOO
Based on the knowledge that the selectivity to l becomes low, it is said that it is preferable to carry out the reaction in the presence of water, usually selected from the range of 0.01 to 1 mol per 1 mol of 0FaOHO'l. .

本発明者は、0FIHC12,、C++及びH2Oを原
料とする0FIC!OOHの製法について、種々の研究
、検討を重ねた結果、次の始き興味深い知見を得るに至
った。先ず、特開昭58−159440号公報にも指摘
されているように、0FsOHO:Lxと02との反応
は、水を存在させないとその進行が著しく遅く、また、
OFIHOlgの転化率を高めて目的物の選択率を有利
に保持するためには、水の存在が好ましい。しかしなが
ら、この酸化反応において、OFmOOOHの生成比率
を高めるべく水の添加量を増大させると、装置材料に対
する、副生HOIやHF等による腐食傾向を高めるとい
う齢点のみならず、反応槽壁が腐食する結果、金属塩化
物が生成し、この塩化物は負触媒となって酸化反応を停
止させ、反応率が低下し、さらには未反応の0FiOH
O1が一度に酸化反応し、爆発の危険すら存在する。従
って、水の添加量を増大させることのみでは高収率でo
FsooOHを得ることはできない。一方、多量の水の
存在下にC!FI 0HOI茸の酸化反応及び0FaO
OO1の加水分解反応を同時に行なうことも考えられる
が、前述の腐食の問題から実質的に不可能である。そこ
で、0FIOHOIJの酸化反応を少量の水の存在下に
行なう工程及び生成するCFlooOHを含むCF、0
001を加水分解し、0F100OIを0F8000H
に変換する工程を別々に実施し、結びつけることにより
、工業的に円滑有利な実施が可能であり、且つ好収率で
0FSOOOHを得ることができるという知見を得るに
至った。
The present inventor has developed 0FIC! which uses 0FIHC12, C++ and H2O as raw materials! As a result of various studies and examinations regarding the manufacturing method of OOH, we have come to the following interesting findings. First, as pointed out in JP-A-58-159440, the reaction between 0FsOHO:Lx and 02 proceeds extremely slowly in the absence of water;
The presence of water is preferred in order to increase the conversion of OFIHOlg and advantageously maintain the selectivity of the target product. However, in this oxidation reaction, when the amount of water added is increased to increase the generation ratio of OFmOOOH, not only does the corrosion tendency of the equipment materials due to by-product HOI and HF increase, but also the reaction tank wall corrodes. As a result, metal chloride is generated, and this chloride acts as a negative catalyst and stops the oxidation reaction, reducing the reaction rate and furthermore, unreacted 0FiOH.
O1 undergoes an oxidation reaction all at once, and there is even a danger of explosion. Therefore, increasing the amount of water added alone is not sufficient to achieve high yields.
It is not possible to obtain FsooOH. On the other hand, in the presence of a large amount of water, C! FI 0HOI mushroom oxidation reaction and 0FaO
Although it is conceivable to carry out the hydrolysis reaction of OO1 at the same time, it is practically impossible due to the above-mentioned corrosion problem. Therefore, the process of carrying out the oxidation reaction of 0FIOHOIJ in the presence of a small amount of water and the CF containing the generated CFlooOH, 0
Hydrolyze 001 and convert 0F100OI to 0F8000H
It has been found that by carrying out the conversion steps separately and combining them, it is possible to carry out the process industrially smoothly and advantageously, and to obtain 0FSOOOH in a good yield.

本発明は、前記のごとき知見に基づいて完成さnたもの
であり、0FIOHOI、 Ox及びHzOを原料とし
て0FII 0OOHを製造するに当り、前段において
原料Egoの少量部分の添加のもとにCFIHOliと
O!を反応せしめ、主生成物としてのays coal
及び随伴生成物としてのOFI C0OHを含む反応生
成混合物を得、没後において前記前段からの反応生成混
合物を分離操作にかけることなく、原料H20の多量部
分と反応せしめて、Cym(1001をOFmOOOH
に転化せしめ、次いで前段随伴生成物のOFJ 0OO
Hと後段生成物のays cooHを一緒に取り出すこ
とを特徴とするトリフルオロ酢酸の製法に関するもので
ある。
The present invention was completed based on the above knowledge, and when producing 0FII 0OOH using 0FIOHOI, Ox and HzO as raw materials, CFIHOli and CFIHOli are added in the first stage by adding a small portion of the raw material Ego. O! ays coal as the main product
A reaction product mixture containing OFI COOH as an accompanying product was obtained, and after the reaction product mixture from the previous stage was reacted with a large portion of the raw material H20 without subjecting it to a separation operation, Cym(1001 was converted into OFmOOOH
and then convert the former accompanying product OFJ 0OO
The present invention relates to a method for producing trifluoroacetic acid, which is characterized in that H and the subsequent product ays cooH are taken out together.

前段における0F30HO1x、 Qx及びH2Oの反
応は以下のごとく表わすことができる。
The reaction of 0F30HO1x, Qx and H2O in the first stage can be expressed as follows.

207sCI(C1z +Ox +H!O→0FsOO
OH+0FsOOffl+3HO1 反応は通常25〜a s Kg/cdの加圧下に、反応
温度250〜400℃、好ましくは260〜320℃の
気相反応を採用し得る。これ以下の温度では反応速度が
低下したり、反応が起らないこともあり、これ以上の温
度では熱分解反応等の副反応が起りやすいため好ましく
ない。常温で液体の水は、反応槽中で液化しやすく、未
反応のまま残存するような必要以上の水の添加は腐食の
問題から避けなければならない。前記反応において水は
触媒としての作用及び0F80HO1の酸化により生成
する0F30001の一部を加水分解して0F100O
Hに変換する作用があるものと考えられる。従って、水
の添加量は触媒としての最小限必要な素置上であるとと
もに、液化して反応槽壁に付着しないような素置下であ
ることが好ましい。通常は、0FllOHO121モA
/当りo、oi〜0.5モルの範囲から選定するのがよ
く、前段における0FBOOOHの選択率を高くするた
めには0.1モル以上が好ましい。
207sCI(C1z +Ox +H!O→0FsOO
The OH+0FsOOffl+3HO1 reaction can be carried out in a gas phase at a reaction temperature of 250 to 400°C, preferably 260 to 320°C, usually under a pressure of 25 to as Kg/cd. If the temperature is lower than this, the reaction rate may decrease or the reaction may not occur, and if the temperature is higher than this, side reactions such as thermal decomposition reactions are likely to occur, which is not preferable. Water, which is liquid at room temperature, easily liquefies in the reaction tank, and adding more water than necessary, which would remain unreacted, must be avoided due to corrosion problems. In the above reaction, water acts as a catalyst and hydrolyzes a part of 0F30001 produced by oxidation of 0F80HO1 to 0F100O.
It is thought that it has the effect of converting into H. Therefore, it is preferable that the amount of water added is the minimum required as a catalyst, and at a level that does not liquefy and adhere to the walls of the reaction tank. Usually 0FllOHO121moA
It is preferable to select from the range of o, oi to 0.5 mol per /, and 0.1 mol or more is preferable in order to increase the selectivity of 0FBOOOH in the first stage.

原料の0F30HC!12.02及びI(toの混合が
不完全宅あると、未反応の0FsOHC1が蓄積し、一
度に大量の酸化反応が起り爆発の危険があるため、攪拌
機等による充分な混合操作を採用するとよい。(!FI
IQ)(C12が未反応、となって蓄積しないためにも
、OFgOHO]、zに対する。2の反応モル比は埋%
1ilt以上とすることが好ましく、又、爆発限界の問
題から2倍モル以下程度とすることが好ましい。従って
、C2の反応モル比は、ayrsaHclt 1モル当
り0.5〜2−11=#、好ましくは1〜2モルの範囲
から選定される。
Raw material 0F30HC! 12. If 02 and I(to) are incompletely mixed, unreacted 0FsOHC1 will accumulate and a large amount of oxidation reaction will occur at once, creating a risk of explosion. Therefore, it is recommended to use a stirrer, etc. to thoroughly mix the mixture. (!FI
IQ) (In order to prevent C12 from unreacting and accumulating, the reaction molar ratio of 2 to OFgOHO] and z should be
It is preferable to set it to 1 ilt or more, and from the viewpoint of explosion limit, it is preferable to set it to about 2 times the mole or less. Therefore, the reaction molar ratio of C2 is selected from the range of 0.5 to 2-11=#, preferably 1 to 2 moles per mole of ayrsaHclt.

前段において得られるCF3000H及びC!FJOO
C!1の反応生成混合物は、分離操作にかけることなく
、原料H!00多量部分と反応せしめて、0FICOO
Iを0F100Hに転化せしめ、この□FsooOHと
前段で得られたOF 3000Hと一緒に取り出すこと
により円滑有利に0F3000Hを得ることができる。
CF3000H and C! obtained in the previous stage. FJOO
C! The reaction product mixture of No. 1 is used as the raw material H! without being subjected to any separation operation. 0FICOO by reacting with a large amount of 00
0F3000H can be obtained smoothly and advantageously by converting I into 0F100H and taking out this □FsooOH together with OF 3000H obtained in the previous step.

すなわち、前段で(HrsOOOHとともに得られる主
生成物のQlraOOClを分離することなく、後段に
おいて、すべてCF3000Hに転化できるため、主生
成物を無駄にすることなく、極めて効率的にQys (
300Hを得ることができる。
That is, without separating the main product QlraOOCl obtained together with (HrsOOOH) in the first stage, all of it can be converted to CF3000H in the second stage, so the main product is not wasted and Qys (
300H can be obtained.

後段における、Hl0と前段の反応生成混合物との反応
は、以下に説明するA、B二工程から ゛なる加水分解
操作が好ましい。すなわち、人工程ではHl0を含む○
F3C!OOHに前段の反応生成混合物を接触させ、実
質的にHl0を含まない0F3C!OOHを得、B工程
では人工程で加水分解を受けずに分離した0FI100
OIに過剰のHlを反応させてHl0を含むOFI0O
OHを得て、これをA工程で使用する方法である。人工
程では、いわばC7aOOO1により0FI100OH
の脱水を行ない、B工程では過剰のHffiOによりc
ysaoalをすべて0F100OHに転化しようとす
るものであり、人工程より実質的に無水のCFlooO
Hを取り出すことができる。
The reaction between H10 and the reaction product mixture from the first stage in the second stage is preferably a hydrolysis operation consisting of two steps A and B described below. In other words, in the human process, ○ including Hl0
F3C! By contacting OOH with the reaction product mixture from the previous stage, 0F3C containing substantially no H10! OOH was obtained, and in step B, 0FI100 was separated without undergoing hydrolysis in a manual process.
OFI0O containing H10 by reacting OI with excess H1
This is a method in which OH is obtained and used in step A. In the human process, so to speak, 0FI100OH is determined by C7aOOOO1.
In step B, excess HffiO is used to dehydrate c
The aim is to convert all ysaoal into 0F100OH, which is essentially anhydrous CFlooO from a human process.
H can be taken out.

人工程において旧0を含む0F100OHに0F100
OIを接触せしめる方法は何ら限定されないが、常温常
圧操作が好ましく、Hgoを含む01rsOOOH液中
に気体である0F100OIを攪拌下に吹き込む方法あ
るいは、充填塔中で連続的に両者を接触させる方法、又
はこれらの方法を併用し連続循環的に操作する方法等を
採用できる。
0F100 to 0F100OH including old 0 in human process
The method of bringing the OI into contact is not limited in any way, but operation at room temperature and normal pressure is preferred; a method in which gaseous 0F100OI is blown into the 01rsOOOH liquid containing Hgo under stirring, or a method in which the two are brought into continuous contact in a packed column; Alternatively, a method in which these methods are used in combination and operated continuously and cyclically can be adopted.

c′FsooOH液中の水分量が少なくなればなる程、
OFI OOO’lとltQとの加水分解反応は遅くな
るため、連続循環的操作によりaysaoalと水との
接触機会を増やすことが好ましい。
The less water content in the c'FsooOH solution,
Since the hydrolysis reaction between OFI OOO'l and ltQ is slow, it is preferable to increase the chances of contact between aysaoal and water by continuous cyclic operation.

B工程では、人工程で加水分解を受けずに分離したOF
I Coolをすべて0F100OHに転化するた 1
めに、過剰量のH!Oと反応させる。0FllOOO’
lとHCHを接触せしめる方法は、前述のFr2Oを含
む01000HとOF8 Coolを接触せしめる方法
と同様な操作でよ〜・。HIOはQ7*QOO1との反
応により0F100OHに転化し、最終的には少量のH
xOを含む0F100OHとなり、人工程で脱水を受け
て、無水の0F3000Hとして取り出されることにな
る。
In process B, OF is separated without undergoing hydrolysis in the human process.
To convert all I Cool to 0F100OH 1
An excessive amount of H! React with O. 0FllOOO'
The method for bringing 1 into contact with HCH is similar to the method described above for bringing 01000H containing Fr2O into contact with OF8 Cool. HIO is converted to 0F100OH by reaction with Q7*QOO1, and finally a small amount of H
It becomes 0F100OH containing xO, undergoes dehydration in a manual process, and is extracted as anhydrous 0F3000H.

人工程で脱水を受ける前のOF!0OOH中の水分量は
約1〜10重量%であればよい。水分量が少なすぎる場
合には、B工程で0F30001が加水分解を受けずに
排出される可能性が高くなり好ましくない。又、水分量
が多すぎる場合には、人工程での脱水時間が長くなり好
ましくない。人工程の脱水により、水分量が約0.01
重量%以下の実質的に無水のOF2 C0OHを得るこ
とができる。CFm C!OOHとHtoには共沸組成
が存在し、蒸留分離は困難であるため、このような脱水
工程は極めて効果的である。
OF before being dehydrated in the human process! The amount of water in 0OOH may be about 1 to 10% by weight. If the water content is too small, there is a high possibility that 0F30001 will be discharged without being hydrolyzed in step B, which is not preferable. Furthermore, if the water content is too large, the dehydration time in the manual process becomes longer, which is not preferable. Due to dehydration in the human process, the water content is approximately 0.01
Up to % by weight of substantially anhydrous OF2 COOH can be obtained. CFm C! Since OOH and Hto have an azeotropic composition and are difficult to separate by distillation, such a dehydration step is extremely effective.

以下、本発明の実施例について、さらに具体的に説明す
る。
Examples of the present invention will be described in more detail below.

実施例1 攪拌機及びジャケット型熱交換器を備えた縦1 型反応
槽50を中に、C!F30H0111103mol/i
、Hto 10.3 mo1/4及び02103 mo
l/&を連続的に供給し、本発明の前段反応を行なった
。反応温度は300℃、圧力は30Ky/evls滞留
時間は8.4分であった。得られた反応生成物を19F
−NMR及びガスクロマトグラフで分析したところ、O
F+lHO]−zの反応率95%、cFsooOHの選
択率26チ、0FII Coolの選択率68チであっ
た。
Example 1 C! F30H0111103mol/i
, Hto 10.3 mo1/4 and 02103 mo
The first stage reaction of the present invention was carried out by continuously supplying 1/&. The reaction temperature was 300° C., the pressure was 30 Ky/evls, and the residence time was 8.4 minutes. The obtained reaction product was heated to 19F
- Analysis by NMR and gas chromatography revealed that O
The reaction rate of F+lHO]-z was 95%, the selectivity of cFsooOH was 26%, and the selectivity of 0FII Cool was 68%.

続いて、得られた反応生成物のA、B二工程による加水
分解を行なった。人工程では、5重量%のHtoを含む
0FaOOOH1] 97 mol中に、0F3000
H25,4mol/&及び0FaC!00166.5 
mo1/恕を連続循環的に供給し、脱水を行ない、24
時間後には水分量が0.01重・量チ以下となった。
Subsequently, the obtained reaction product was hydrolyzed in two steps A and B. In the human process, in 97 mol of 0FaOOOH1 containing 5% by weight of Hto, 0F3000
H25,4mol/& and 0FaC! 00166.5
Mo1/min was continuously supplied and dehydrated, 24
After a period of time, the moisture content became less than 0.01% by weight.

一方、B工程では、HzO1596molがA工程から
供給される0FICoolにより連続循環的に加水分解
に供され、24時間後には、5重量%のHtoを含むC
!FsOOOH1197molとなった。
On the other hand, in step B, 1596 mol of HzO is hydrolyzed in a continuous cycle by OFI Cool supplied from step A, and after 24 hours, C containing 5% by weight of Hto is
! The amount of FsOOOH was 1197 mol.

なお、A工程で加水分解を受けずにB工程へ供給される
0F80001の量は、A工程のOF3000H中の水
分量が約1重量%まではほとんどなく、水分量が0.0
1重量%に近づくに従って急激に多くなっていった。
Note that the amount of 0F80001 that is not hydrolyzed in Step A and is supplied to Step B is that the water content in OF3000H in Step A is approximately 1% by weight, and the water content is 0.0%.
The amount increased rapidly as it approached 1% by weight.

実施例2 Htoの供給量を20.6 mo1/丸とし、反応温度
を260℃、滞留時間を7.2分とする以外は、実施例
1と同様な反応及び分析を行なった。その結果、cFs
aHc1鵞の反応率は91チ、0FsOOOHの選択率
は28%、0F110001の選択率は65重%であっ
た。続いて得られた反応生成物のA、B二工程による加
水分解を行なった。人工程では” N無% (7) a
2oを含むCFsooOH858mol中に、0FsO
00H26,2mol/−An、及び0F300016
0.9m01/−Aルな連続循環的に供給し、脱水を行
ない、24時間後には水分量が0.01重量%以下とな
った。一方、B工程では、HzO1462molがA工
程から供給されるcFqooclにより連続循環的に加
水分解に供され、24時間後には10重量−〇H20を
含む0F3000H858molとなった。
Example 2 The same reaction and analysis as in Example 1 were carried out, except that the amount of Hto supplied was 20.6 mo1/circle, the reaction temperature was 260° C., and the residence time was 7.2 minutes. As a result, cFs
The reaction rate of aHc1 was 91%, the selectivity of 0FsOOOH was 28%, and the selectivity of 0F110001 was 65%. Subsequently, the obtained reaction product was hydrolyzed in two steps A and B. In human process “N%” (7) a
0FsO in 858 mol of CFsooOH containing 2o
00H26,2mol/-An, and 0F300016
0.9 m01/-A of water was supplied in a continuous circulation manner to perform dehydration, and after 24 hours, the moisture content became 0.01% by weight or less. On the other hand, in Step B, 1462 mol of HzO was subjected to hydrolysis in a continuous circulation with cFqoocl supplied from Step A, and after 24 hours, it became 858 mol of 0F3000H containing 10 weight -〇H20.

なお、人工程で加水分解を受けずにB工程へ供給される
chi<:to○1の量は、実施例1と同様に、人工程
のOF!000H中の水分量が約1重量−まではほとん
どなく、水分量が0.01重量%に近づくに従って急激
に多くなっていった。
Note that, as in Example 1, the amount of chi<:to○1 that is not hydrolyzed in the human process and is supplied to the B process is determined by the amount of OF! in the human process. There was almost no water content in 000H up to about 1% by weight, and it rapidly increased as the water content approached 0.01% by weight.

Claims (1)

【特許請求の範囲】 (1) 0FsOHO1,Os及びHIOを原料として
OFI000Hな製造するに当り、前段において、原料
HIOの少量部分の添加のもとに0FsOHO1と02
を反応せしめ、主生成物としてのQFiOOOl及び随
伴生成物としての0F100OHを含む反応生成混合物
を得、後段において、前記前段からの反応生成混合物を
分離操作にかけることなく原料H!0の多量部分と反応
せしめて、0F3COO1を0FJOOOHに転化せし
め、次いで前段随伴生成物の0FaOOOHと後段生成
物のC!FS 0OOHを一緒に取り出すことを特徴と
するトリフルオロ酢酸の製法。 (匂 前段における、HIOの添加量が0F30HO1
1モル当り0.01〜0.5モルの範囲から選ばれる*
杵H青求の範囲@2項記載のトリフルオロ酢酸の製法。 (8) 前段における、0F30HO1zと02との反
応モル、比が1=1〜1:2の範囲から選ばれる特許請
求の範囲第1項記載のトリフルオロ酢酸の製法。 (荀 前段における反応温度が260〜320℃の範囲
から選ばれる特許請求の範囲第1項記載のトリフルオロ
酢酸の製法。 (6) 前段における反応圧力が25〜35Kf/cd
の範囲から選ばれる特許請求の範囲第1項記載のトリフ
ルオロ酢酸の製法。
[Claims] (1) In producing OFI000H using 0FsOHO1, Os and HIO as raw materials, in the first stage, 0FsOHO1 and 02 are added by adding a small portion of the raw materials HIO.
is reacted to obtain a reaction product mixture containing QFiOOOl as a main product and 0F100OH as an accompanying product, and in the latter stage, the reaction product mixture from the previous stage is not subjected to a separation operation, and the raw material H! 0 to convert 0F3COO1 to 0FJOOOH, and then convert the front co-product 0FaOOOH and the post-product C! A method for producing trifluoroacetic acid, which is characterized by removing FS 0OOH at the same time. (In the first stage, the amount of HIO added is 0F30HO1
Selected from the range of 0.01 to 0.5 mol per mol *
Scope of Pestle H Seigyu @ 2. The method for producing trifluoroacetic acid described in item 2. (8) The method for producing trifluoroacetic acid according to claim 1, wherein the reaction molar ratio of 0F30HO1z and 02 in the first stage is selected from the range of 1=1 to 1:2. (1) The method for producing trifluoroacetic acid according to claim 1, wherein the reaction temperature in the first stage is selected from the range of 260 to 320°C. (6) The reaction pressure in the first stage is 25 to 35 Kf/cd.
The method for producing trifluoroacetic acid according to claim 1, which is selected from the range of:
JP9553784A 1984-05-15 1984-05-15 Production of trifluoroacetic acid Pending JPS60239435A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9553784A JPS60239435A (en) 1984-05-15 1984-05-15 Production of trifluoroacetic acid
DE8585105653T DE3564257D1 (en) 1984-05-15 1985-05-08 Process for producing trifluoroacetic acid and trifluoroacetyl chloride
EP85105653A EP0163975B1 (en) 1984-05-15 1985-05-08 Process for producing trifluoroacetic acid and trifluoroacetyl chloride
US06/930,056 US5041647A (en) 1984-05-15 1986-11-12 Process for producing trifluoroacetic acid and trifluoroacetyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9553784A JPS60239435A (en) 1984-05-15 1984-05-15 Production of trifluoroacetic acid

Publications (1)

Publication Number Publication Date
JPS60239435A true JPS60239435A (en) 1985-11-28

Family

ID=14140309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9553784A Pending JPS60239435A (en) 1984-05-15 1984-05-15 Production of trifluoroacetic acid

Country Status (1)

Country Link
JP (1) JPS60239435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020812A (en) * 2017-06-09 2018-12-18 浙江省化工研究院有限公司 A kind of continuous uncatalyzed reaction prepares difluoro chloracetate and the chloroacetic method of difluoro

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894082A (en) * 1972-01-07 1975-07-08 Kali Chemie Ag Process of making trifluoroacetic acid
JPS58159440A (en) * 1982-03-18 1983-09-21 Asahi Glass Co Ltd Preparation of trifluoroacetic acid and trifluoroacetyl chloride

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894082A (en) * 1972-01-07 1975-07-08 Kali Chemie Ag Process of making trifluoroacetic acid
JPS58159440A (en) * 1982-03-18 1983-09-21 Asahi Glass Co Ltd Preparation of trifluoroacetic acid and trifluoroacetyl chloride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109020812A (en) * 2017-06-09 2018-12-18 浙江省化工研究院有限公司 A kind of continuous uncatalyzed reaction prepares difluoro chloracetate and the chloroacetic method of difluoro
CN109020812B (en) * 2017-06-09 2021-06-01 浙江省化工研究院有限公司 Method for preparing difluorochloroacetate and difluorochloroacetic acid through continuous non-catalytic reaction

Similar Documents

Publication Publication Date Title
US4927962A (en) Process of preparing fluorocarbon carboxylic or sulfonic acid from its fluoride
KR101901480B1 (en) Method for producing imide salt
JPH0231681B2 (en) TETORAKARUBON SANNOSEIZOHOHO
KR101284659B1 (en) Process for production of 1,2,2,2-tetrafluoro ethyl difluoro methyl ether
JPS60239435A (en) Production of trifluoroacetic acid
JPS60131802A (en) Manufacture of hydrofluoric acid anhydride
US2595198A (en) Method of preparing phosphorous acid
JPH04503658A (en) Continuous recovery method for hydrofluoric acid gas
US4386223A (en) Method of purifying hexafluoroacetone containing chlorofluoroacetones
US5041647A (en) Process for producing trifluoroacetic acid and trifluoroacetyl chloride
JP2007056025A (en) Preparation of high-purity fluoroperoxide
JPS59204149A (en) Method for purifying hexafluoroacetone hydrate
JPH05382B2 (en)
JP4534274B2 (en) Method for producing hexafluoroacetone or hydrate thereof
US2296763A (en) Process for the production of chlorine and metal nitrate
SE8501615L (en) PROCEDURE FOR THE PREPARATION OF CHLORIDE Dioxide
RU2135463C1 (en) Method of synthesis of trifluoromethane sulfoacid
SU632646A1 (en) Method of obtaining fluosulfonic acid
JPH032134A (en) Production of fluorophenol
JPH0753677B2 (en) Method for purifying 2-perfluoroalkylethanol
JPH0236584B2 (en)
JP2003146620A (en) Method for manufacturing carbonyl difluoride
US6183712B1 (en) Production of dicalcium phosphate or monocalcium phosphate from calcium phosphate
CN103443065A (en) Method for purifying difluoroacetic acid chloride
JP2794436B2 (en) Nitrosyl fluoride manufacturing method