JPH0236584B2 - - Google Patents

Info

Publication number
JPH0236584B2
JPH0236584B2 JP59095538A JP9553884A JPH0236584B2 JP H0236584 B2 JPH0236584 B2 JP H0236584B2 JP 59095538 A JP59095538 A JP 59095538A JP 9553884 A JP9553884 A JP 9553884A JP H0236584 B2 JPH0236584 B2 JP H0236584B2
Authority
JP
Japan
Prior art keywords
water
trifluoroacetic acid
tfa
tfac
separation tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59095538A
Other languages
Japanese (ja)
Other versions
JPS60239436A (en
Inventor
Isao Goto
So Yoneda
Seisaku Kumai
Tooru Ueno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP9553884A priority Critical patent/JPS60239436A/en
Priority to DE8585105653T priority patent/DE3564257D1/en
Priority to EP85105653A priority patent/EP0163975B1/en
Publication of JPS60239436A publication Critical patent/JPS60239436A/en
Priority to US06/930,056 priority patent/US5041647A/en
Publication of JPH0236584B2 publication Critical patent/JPH0236584B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、トリフルオロ酢酸クロライドを効率
的に加水分解せしめ、良好な収率で実質的に無水
のトリフルオロ酢酸を得る方法に関する。 トリフルオロ酢酸クロライド(以下TFACと略
す)は、農医薬の製造原料として、又トリフルオ
ロ酢酸(以下TFAと略す)は農医薬の製造原料
の他、反応溶媒としてあるいはエステル化触媒、
縮合触媒等の各種触媒として有用な化合物であ
る。特公昭58−24416号公報や特開昭58−159440
号公報には、1,1−ジクロロ−2,2,2−ト
リフルオロエタン(以下R−123と略す)の酸化
反応によりTFAとTFACが併産されることが示
されている。又、特許出願公表昭56−501649号公
報には水銀塩の存在下1,1,1−トリフルオロ
−2,2,2−トリクロロエタンと三酸化硫黄と
の反応によるTFACの製法が示されている。一
方、TFACは容易に加水分解が進行しTFAとな
ることは知られている。従つて、TFAのみを好
収率で得ようとする場合には、TFACを含む反応
混合物中にTFACの加水分解に必要な量以上の水
を供給し、TFACをすべてTFAに変換すればよ
いことになる。しかしながら、TFAと水には共
沸組成が存在し、蒸留分離は困難であり、TFAC
の加水分解後末反応の水が残存する前記のような
操作は好ましくない。 本発明者等は、このような問題点の認識のもと
に、TFACを効率的にTFAに変換する方法につ
いて鋭意研究を重ねた結果、以下()及び
()のごとき興味深い知見を得ることができた。 () 水を含むTFAから蒸留分離により水を除く
ことは困難であるが、水を含むTFAにTFAC
を接触させ、水をTFACの加水分解として消費
することにより実質的に水を含まないTFAを
得ることができる。TFACは加水分解を受けて
TFAに変化し、余剰のTFACは容易にTFAと
沸点差により分離できる。 () 前記()で水を含むTFAを実質的に水を
含まないTFAへ容易に変換できるため、
TFACに過剰の水を反応させTFACをすべて
TFAに変換する操作、すなわち水を含んだ
TFAが生成する操作は不利とはならない。 本発明はこれらの知見に基づき完成されたもの
であり、TFA中の水を取り除くためにTFACを
利用すること、及び水を含むTFAとしては、
TFACをすべてTFAに変換する操作で得られる
ものを使用することを基本構成とするものであ
る。 水を含むTFAにTFACを接触せしめる方法は
何ら限定されないが、常温常圧操作が好ましく、
水を含むTFA液中に気体であるTFACを撹拌下
に吹き込む方法あるいは、充てん塔中で連続的に
両者を接触させる方法又は、これらの方法を併用
し連続循環的に操作する方法等を採用できる。
TFA液中の水分量が少なくなればなる程、
TFACと水との加水分解反応は遅くなるため、連
続循環的操作によりTFACと水との接触機会を増
やすことが好ましい。 第1図には、TFACを過剰量の水によりすべて
TFAに変換する工程及び得られる水を含むTFA
中の水をTFACで除去脱水する工程からなるフロ
ーシートが示されている。第1図10から供給さ
れるものは、TFACを含む反応混合物でもよく、
TFAC単独でもよく、最終的にTFACはすべて
TFAに変換され28から排出される。TFACを
含む反応混合物としてR−123、酸素、及び水と
の反応により得られる反応混合物を例として説明
する。この反応混合物の組成は主にTFA、
TFAC、塩酸及び未反応の酸素である。第1図に
示すフローシートの操作は、すべて常温常圧操作
でよく、10より供給される前記塩酸や酸素は気
体状態で第1酢酸化塔11、第1分離槽12、導
管16、第1冷却塔13、導管19、第2酢酸化
塔21、第2分離槽22、導管26、第2冷却塔
23を経て除害系29へ排出され、目的物TFA
とは分離される。R−123の酸化反応以外の方法
で得られるTFACを含む反応混合物中の常温常圧
で気体の成分は、上記のような経路を経て同様に
排出されることになる。TFACの加水分解速度
は、これらの気体が水と反応する速度よりも速
く、除去すべきこれらの気体が液化ないし加水分
解を受けて残存する虞れはない。 加水分解すべきTFACも気体状態で前記塩酸等
と同一の経路を通過するが、第2冷却塔23を通
過するまでにはすべて加水分解されてTFA液に
変換されている。導管30により加水分解のため
の水が塩酸等に同伴したTFACに対して過剰量連
続的に供給され、第2分離槽22で加水分解を受
けTFA液に変換される。この変換されたTFA液
及び余剰の未反応の水は導管24及び25を経て
循環される。導管24を経るものは第2冷却塔2
3へ導入し、第2分離槽22で加水分解を受けず
塩酸等に同伴する可能性のある微量のTFACを
TFA液中の水によりTFAに変換した後、導管2
7を経て第2分離槽22へもどされる。TFAは
常温常圧で液体であるから、塩酸等に同伴して導
管26を上昇する可能性は少ないが、同伴した場
合は第2冷却塔23を経由する際液化して、導管
27から第2分離槽22へもどされるためTFA
が除害系へ排出されるようなロスはない。導管2
5を経るものは第2酢酸化塔21へ導入し、
TFACの加水分解を行なつて、第2分離槽へもど
される。このような、循環操作を連続的に行なう
ことにより、第2分離槽22中には1〜10重量%
の水を含むTFA液が蓄積される。以上、第1図
の右半分を占める第2酢酸化塔21、第2分離槽
22、第2冷却塔23をつなぐ流れを説明した
が、これら全体をB工程と称することとする。 第2分離槽22に満たされた微量の水を含む
TFA液は、断続的に第1分離槽12に移送され
る。第1分離槽12中の微量の水を含むTFA液
は、導管14及び15を経て循環される。導管1
4を経るものは第1冷却塔13へ導入し、第1酢
酸化塔11や第1分離槽12で加水分解を受けず
塩酸等に同伴するTFACをTFA液中の水により
TFAに変換した後、導管17を経て第1分離槽
12へもどされる。導管15を経るものは第1酢
酸化塔11へ導入し、反応混合物10中のTFAC
の加水分解を行ない第1分離槽12へもどされ
る。第1冷却塔ではB工程中の第2冷却塔と同様
に、TFAを液化し第1分離槽12へもどす役割
も有している。このような循環操作を連続的に行
なうことにより第1分離槽12中には水分量が約
0.01重量%前後となつたTFA液が蓄積される。
以上、第1図左半分を占める第1酢酸化塔11、
第1分離槽12、第1冷却塔13をつなぐ流れを
説明したが、これら全体をA工程と称することと
する。 加水分解を受けなかつたTFACは導管19を経
て、前記B工程中の第2酢酸化塔21へ移送さ
れ、最終的には導管30から入る過剰量の水によ
りすべてTFAに変換される。第2酢酸化塔へは
かかるTFACばかりでなく、第1図10から供給
されるTFAC又は反応混合物を導入してもよい。
第2分離槽22中に蓄積された約1〜10重量%の
水分を含むTFA液は、水分量が約0.01重量%と
なつた第1分離槽12中のTFA液を導管28を
経て蒸留工程へ抜き出した後第1分離槽12へ充
てんするとよい。約1〜10重量%の水分を含む
TFA液の第1分離槽12への充てん量は、
TFACの加水分解によるTFAあるいは反応生成
物としてのTFAが蓄積される量(以下新たに蓄
積されるTFA量という)に応じて決定すればよ
い。すなわち、第1分離槽12中のTFA液の水
分量が例えば5重量%から0.01重量%となる時間
に新たに蓄積されるTFA量により第1分離槽1
2が充満するような充てん量となる。もちろん、
第1分離槽が100%液で充満するまで操作する必
要はなく80%程度となつた後蒸留系へ抜き出せる
操作が好ましい。 TFACを含む反応混合物又はTFACは連続的に
第1酢酸化塔へ導入される。TFA液中の水分量
が多い場合には、主に第1酢酸化塔でTFACの加
水分解が起ると考えられる。水分量が微量になる
につれ、TFACの加水分解は第1分離槽中で起る
ものと考えられる。10より供給されるTFACを
含む反応混合物又はTFACの温度が高い場合に
は、第1酢酸化塔へTFA液を通し、加水分解と
ともに冷却の役割をもたせる意味がある。すなわ
ち、供給されるTFACやその混合物により第1分
離槽中のTFAが気化し、A工程から排出される
可能性があるからである。 導管30から供給される水の量は、A工程から
送られるTFACを確実に全量TFAに変換するた
めに必要な量である。水の供給位置は、第1図の
ように第2酢酸化塔と第2分離槽の中間である必
要はなく、第2酢酸化塔の上部からでもよい。い
ずれにしても、最小限の水の供給量によつて
TFACをすべてTFAに変換する操作が好ましい。
TFACを除害系へ逃がさないために必要なTFA
液中の水分量は1〜10重量%以上である。酢酸化
塔から分離槽へ流れるTFACは、TFA液中の水
分と良く接触するように、TFA液中深く導入し、
液を撹拌する等の操作を行なうとよい。酢酸化塔
や冷却塔は、充てん塔を採用し、気液の接触を充
分に行なえる操作が好ましい。 以下、本発明の実施例についてさらに具体的に
説明する。 実施例 添付第1図のフローシートに従い、下記第1表
に示す操作条件でTFACの加水分解を行なつた。
第1分離槽12中に供給された5重量%の水を含
むTFA1620モルは脱水され24時間後には、水分
量が100ppm以下となつた。一方、第2分離槽2
2中に供給された水2160モルは第1図19から供
給されるTFACにより加水分解に供され24時間後
には、5重量%の水を含むTFA1620モルとなつ
た。第1図29から排出されるガス中にはTFA
及びTFACは含まれていなかつた。
The present invention relates to a method for efficiently hydrolyzing trifluoroacetic acid chloride to obtain substantially anhydrous trifluoroacetic acid in good yield. Trifluoroacetic acid chloride (hereinafter abbreviated as TFAC) is used as a raw material for the production of agricultural medicines, and trifluoroacetic acid (hereinafter abbreviated as TFA) is used as a raw material for the production of agricultural medicines, as well as as a reaction solvent, as an esterification catalyst,
It is a compound useful as various catalysts such as condensation catalysts. Japanese Patent Publication No. 58-24416 and Japanese Patent Publication No. 58-159440
The publication discloses that TFA and TFAC are co-produced through the oxidation reaction of 1,1-dichloro-2,2,2-trifluoroethane (hereinafter abbreviated as R-123). Furthermore, Patent Application Publication No. 56-501649 discloses a method for producing TFAC by reacting 1,1,1-trifluoro-2,2,2-trichloroethane with sulfur trioxide in the presence of a mercury salt. . On the other hand, it is known that TFAC is easily hydrolyzed to become TFA. Therefore, if you want to obtain only TFA in a good yield, all you need to do is to supply water in the reaction mixture containing TFAC in an amount greater than the amount required for hydrolysis of TFAC, and convert all of the TFAC to TFA. become. However, TFA and water have an azeotropic composition, making distillation separation difficult.
The above-mentioned operation in which water from the final reaction remains after hydrolysis is not preferred. Recognizing these problems, the present inventors have conducted intensive research into methods for efficiently converting TFAC to TFA, and as a result, have obtained the following interesting findings () and (). did it. () Although it is difficult to remove water from TFA containing water by distillation separation, it is difficult to remove water from TFA containing water.
Substantially water-free TFA can be obtained by contacting TFAC and consuming water as hydrolysis of TFAC. TFAC undergoes hydrolysis
It changes to TFA, and excess TFAC can be easily separated from TFA based on the difference in boiling point. () Because TFA containing water can be easily converted into TFA that does not substantially contain water in () above,
React TFAC with excess water to remove all TFAC
Operation to convert to TFA, i.e. containing water
TFA-generated operations are not penalized. The present invention was completed based on these findings, and includes the use of TFAC to remove water from TFA, and the use of TFA containing water.
The basic configuration is to use what is obtained by converting all TFAC to TFA. The method of bringing TFAC into contact with TFA containing water is not limited at all, but operation at room temperature and normal pressure is preferred;
It is possible to adopt a method in which gaseous TFAC is injected into a TFA liquid containing water while stirring, a method in which the two are brought into continuous contact in a packed tower, or a method in which these methods are combined and operated in a continuous circulation manner. .
The lower the amount of water in the TFA solution, the more
Since the hydrolysis reaction between TFAC and water is slow, it is preferable to increase the chances of contact between TFAC and water by continuous cyclic operation. Figure 1 shows that TFAC is completely absorbed by excess water.
TFA including the process of converting to TFA and the resulting water
A flow sheet consisting of the process of removing and dehydrating the water inside with TFAC is shown. The feed from FIG. 1 10 may be a reaction mixture containing TFAC,
TFAC can be used alone, and ultimately all TFAC
It is converted to TFA and discharged from 28. A reaction mixture obtained by reacting R-123, oxygen, and water will be explained as an example of a reaction mixture containing TFAC. The composition of this reaction mixture is mainly TFA,
TFAC, hydrochloric acid and unreacted oxygen. All operations according to the flow sheet shown in FIG. 1 may be performed at room temperature and normal pressure, and the hydrochloric acid and oxygen supplied from 10 are in a gaseous state through the first acetic acid tower 11, the first separation tank 12, the conduit 16, and the first It passes through the cooling tower 13, the conduit 19, the second acetation tower 21, the second separation tank 22, the conduit 26, and the second cooling tower 23, and is discharged to the abatement system 29, and the target TFA
It is separated from Components that are gaseous at room temperature and pressure in the reaction mixture containing TFAC obtained by a method other than the oxidation reaction of R-123 will be similarly discharged via the above-mentioned route. The rate of hydrolysis of TFAC is faster than the rate at which these gases react with water, and there is no risk that these gases to be removed will remain after being liquefied or hydrolyzed. TFAC to be hydrolyzed also passes through the same route as the hydrochloric acid and the like in a gaseous state, but by the time it passes through the second cooling tower 23, it has been completely hydrolyzed and converted into a TFA liquid. Water for hydrolysis is continuously supplied through the conduit 30 in an excess amount to the TFAC accompanying the hydrochloric acid, and is hydrolyzed in the second separation tank 22 and converted into a TFA liquid. This converted TFA liquid and excess unreacted water are circulated via conduits 24 and 25. The one passing through the conduit 24 is the second cooling tower 2
3, and in the second separation tank 22, a trace amount of TFAC that is not hydrolyzed and may be entrained in hydrochloric acid etc. is removed.
After conversion to TFA by water in TFA solution, conduit 2
7 and is returned to the second separation tank 22. Since TFA is a liquid at room temperature and normal pressure, there is a small possibility that it will accompany hydrochloric acid etc. and rise up the conduit 26, but if it does, it will liquefy when passing through the second cooling tower 23 and pass through the second conduit 27. TFA is returned to the separation tank 22.
There is no loss such as discharge into the abatement system. conduit 2
5 is introduced into the second acetation tower 21,
TFAC is hydrolyzed and returned to the second separation tank. By continuously performing such a circulation operation, 1 to 10% by weight is contained in the second separation tank 22.
TFA solution containing water accumulates. The flow connecting the second acetation tower 21, the second separation tank 22, and the second cooling tower 23, which occupy the right half of FIG. 1, has been described above, and these will be collectively referred to as the B process. Contains a small amount of water filled in the second separation tank 22
The TFA liquid is intermittently transferred to the first separation tank 12. The TFA liquid containing a trace amount of water in the first separation tank 12 is circulated through conduits 14 and 15. conduit 1
4 is introduced into the first cooling tower 13, and the TFAC that does not undergo hydrolysis in the first acetation tower 11 or the first separation tank 12 and accompanies hydrochloric acid etc. is treated with water in the TFA liquid.
After being converted to TFA, it is returned to the first separation tank 12 via a conduit 17. The TFAC in the reaction mixture 10 is introduced through the conduit 15 into the first acetation column 11.
is hydrolyzed and returned to the first separation tank 12. The first cooling tower also has the role of liquefying TFA and returning it to the first separation tank 12, similar to the second cooling tower during the B process. By continuously performing such a circulation operation, the amount of water in the first separation tank 12 is approximately
TFA liquid with a concentration of around 0.01% by weight accumulates.
As mentioned above, the first acetation tower 11 occupies the left half of Figure 1,
Although the flow connecting the first separation tank 12 and the first cooling tower 13 has been described, the entire flow will be referred to as the A process. TFAC that has not undergone hydrolysis is transferred via conduit 19 to second acetation tower 21 in the step B, and finally all of it is converted into TFA by excess water entering from conduit 30. Not only such TFAC but also TFAC or the reaction mixture supplied from FIG. 10 may be introduced into the second acetation column.
The TFA liquid containing about 1 to 10% by weight of water accumulated in the second separation tank 22 is transferred to the first separation tank 12 with a water content of about 0.01% by weight through a distillation process through a conduit 28. It is preferable to fill it into the first separation tank 12 after extracting it from the tank. Contains about 1-10% water by weight
The amount of TFA liquid filled into the first separation tank 12 is
The amount may be determined depending on the amount of TFA accumulated by hydrolysis of TFAC or TFA as a reaction product (hereinafter referred to as newly accumulated amount of TFA). That is, when the water content of the TFA liquid in the first separation tank 12 changes from, for example, 5% by weight to 0.01% by weight, the amount of TFA newly accumulated in the first separation tank 12 increases.
The amount of filling is such that 2 is filled. of course,
It is not necessary to operate until the first separation tank is 100% full of the liquid, and it is preferable to perform an operation that allows the liquid to be discharged to the distillation system after the first separation tank is about 80% full. The reaction mixture containing TFAC or TFAC is continuously introduced into the first acetation column. When the amount of water in the TFA liquid is large, it is thought that hydrolysis of TFAC occurs mainly in the first acetation tower. Hydrolysis of TFAC is thought to occur in the first separation tank as the amount of water becomes very small. When the temperature of the reaction mixture containing TFAC supplied from No. 10 or TFAC is high, it is meaningful to pass the TFA liquid to the first acetation tower to play a role of cooling as well as hydrolysis. That is, there is a possibility that the TFA in the first separation tank will be vaporized by the supplied TFAC or its mixture and will be discharged from the A process. The amount of water supplied from conduit 30 is the amount necessary to ensure that all of the TFAC sent from step A is converted to TFA. The water supply position does not have to be between the second acetation tower and the second separation tank as shown in FIG. 1, but may be from the upper part of the second acetation tower. In any case, with a minimum water supply
An operation that converts all TFAC to TFA is preferred.
TFA necessary to prevent TFAC from escaping into the abatement system
The water content in the liquid is 1 to 10% by weight or more. TFAC flowing from the acetation tower to the separation tank is introduced deeply into the TFA liquid so that it comes into good contact with the water in the TFA liquid.
It is recommended to perform operations such as stirring the liquid. It is preferable to use a packed tower as the acetic acid tower or cooling tower so that sufficient gas-liquid contact can be carried out. Examples of the present invention will be described in more detail below. Example TFAC was hydrolyzed according to the flow sheet shown in the attached FIG. 1 under the operating conditions shown in Table 1 below.
The 1620 moles of TFA containing 5% by weight water supplied into the first separation tank 12 was dehydrated and the water content became 100 ppm or less after 24 hours. On the other hand, the second separation tank 2
2,160 moles of water supplied in 2 was subjected to hydrolysis by TFAC supplied from FIG. There is TFA in the gas discharged from Figure 1 29.
and TFAC were not included.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は、TFACの加水分解プロセスの一態様
を示すフローシート。 11……第1酢酸化塔、12……第1分離槽、
13……第1冷却塔、30……水供給導管。
Figure 1 is a flow sheet showing one aspect of the TFAC hydrolysis process. 11...first acetation tower, 12...first separation tank,
13...first cooling tower, 30...water supply conduit.

Claims (1)

【特許請求の範囲】 1 トリフルオロ酢酸クロライドを加水分解して
実質的に水を含まないトリフルオロ酢酸を製造す
るに当り、加水分解をA、B二工程で行ない、A
工程では水を含むトリフルオロ酢酸にトリフルオ
ロ酢酸クロライドを接触させて実質的に水を含ま
ないトリフルオロ酢酸を得、B工程ではトリフル
オロ酢酸クロライドに過剰の水を反応させて水を
含むトリフルオロ酢酸を得てこれをA工程で使用
することを特徴とするトリフルオロ酢酸の製造方
法。 2 A工程ではトリフルオロ酢酸クロライドと下
記トリフルオロ酢酸液(a)とを接触させて加水分解
を行なうとともにトリフルオロ酢酸クロライドを
分離してB工程へ送り、かつ該液(a)中の水が加水
分解により消費された後、実質的に水を含まない
トリフルオロ酢酸液(b)を抜き出すこと、B工程で
はA工程から送られたトリフルオロ酢酸クロライ
ドと該クロライドに対し過剰量の水とを反応させ
て水を含むトリフルオロ酢酸液(a)を製造し、かつ
該液(a)を液(b)が抜き出された後のA工程へ送るこ
とを特徴とする特許請求の範囲第1項記載のトリ
フルオロ酢酸の製造方法。 3 水を含むトリフルオロ酢酸液(a)中の水分量が
1〜10重量%である特許請求の範囲第2項記載の
トリフルオロ酢酸の製造方法。
[Scope of Claims] 1. In producing trifluoroacetic acid substantially free of water by hydrolyzing trifluoroacetic acid chloride, hydrolysis is carried out in two steps A and B,
In step B, trifluoroacetic acid chloride is brought into contact with trifluoroacetic acid containing water to obtain trifluoroacetic acid that is substantially free of water, and in step B, trifluoroacetic acid chloride is reacted with excess water to obtain trifluoroacetic acid containing water. A method for producing trifluoroacetic acid, which comprises obtaining acetic acid and using it in step A. 2 In step A, trifluoroacetic acid chloride and the following trifluoroacetic acid solution (a) are brought into contact to perform hydrolysis, and trifluoroacetic acid chloride is separated and sent to step B, and the water in the solution (a) is After being consumed by hydrolysis, the substantially water-free trifluoroacetic acid solution (b) is extracted, and in step B, the trifluoroacetic acid chloride sent from step A and an excess amount of water relative to the chloride are removed. Claim 1, characterized in that a trifluoroacetic acid solution (a) containing water is produced by the reaction, and the solution (a) is sent to step A after the solution (b) is extracted. The method for producing trifluoroacetic acid described in Section 1. 3. The method for producing trifluoroacetic acid according to claim 2, wherein the water content in the trifluoroacetic acid solution (a) containing water is 1 to 10% by weight.
JP9553884A 1984-05-15 1984-05-15 Production of trifluoroacetic acid Granted JPS60239436A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9553884A JPS60239436A (en) 1984-05-15 1984-05-15 Production of trifluoroacetic acid
DE8585105653T DE3564257D1 (en) 1984-05-15 1985-05-08 Process for producing trifluoroacetic acid and trifluoroacetyl chloride
EP85105653A EP0163975B1 (en) 1984-05-15 1985-05-08 Process for producing trifluoroacetic acid and trifluoroacetyl chloride
US06/930,056 US5041647A (en) 1984-05-15 1986-11-12 Process for producing trifluoroacetic acid and trifluoroacetyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9553884A JPS60239436A (en) 1984-05-15 1984-05-15 Production of trifluoroacetic acid

Publications (2)

Publication Number Publication Date
JPS60239436A JPS60239436A (en) 1985-11-28
JPH0236584B2 true JPH0236584B2 (en) 1990-08-17

Family

ID=14140337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9553884A Granted JPS60239436A (en) 1984-05-15 1984-05-15 Production of trifluoroacetic acid

Country Status (1)

Country Link
JP (1) JPS60239436A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3606155A1 (en) * 1986-02-26 1987-08-27 Basf Ag PHOTOPOLYMERIZABLE MIXTURE, THIS CONTAINING LIGHT-SENSITIVE RECORDING ELEMENT, AND METHOD FOR PRODUCING A FLAT PRINT MOLD BY THIS LIGHT-SENSITIVE RECORDING ELEMENT
CA2719804C (en) * 2008-04-03 2015-11-24 Dow Corning Corporation Method of dehydrating acetic acid
CN111039771B (en) * 2019-12-25 2022-06-03 湖南有色郴州氟化学有限公司 Preparation method of 3,3, 3-trifluoropropionic acid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894082A (en) * 1972-01-07 1975-07-08 Kali Chemie Ag Process of making trifluoroacetic acid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894082A (en) * 1972-01-07 1975-07-08 Kali Chemie Ag Process of making trifluoroacetic acid

Also Published As

Publication number Publication date
JPS60239436A (en) 1985-11-28

Similar Documents

Publication Publication Date Title
SU1731041A3 (en) Method of ethylenegrycol preparation
NO159164B (en) PROCEDURE FOR THE PREPARATION OF ETHYLENE LYCOL.
FI66586B (en) FOERFARANDE FOER FRAMSTAELLNING AV MYRSYRA GENOM HYDROLYS AV METYLFORMIAT
CA1068077A (en) Purification of crude hydrogen chloride
JPS617222A (en) Manufacture of ethanol
JPS6236507B2 (en)
JPS60239429A (en) Method of reducing ethylene carbonate content in ethylene glycol
AU615985B2 (en) Thee production of formic acid from a nitrogenous base, carbon dioxide and hydrogen
US3647892A (en) Preparation of ethylene glycol
JPH1059878A (en) Production and fractionation of mixture of dimethyl ether and chloromethane with water as extractant
JPH0236584B2 (en)
US4220609A (en) Process for the recovery of alkyl chlorides
US2169210A (en) Recovery of olefin oxides from
US5401876A (en) Synthesis of chloroacetic acids
KR100203996B1 (en) Process for producing isopropyl alcohol
US4104316A (en) Process for the preparation of 2-chlorobuta-1,3-diene
US2296763A (en) Process for the production of chlorine and metal nitrate
US4599455A (en) Process of purifying fluorinated carbonyl compound mixed with hydrogen fluoride
Weaver et al. Ethylene Oxide Derivatives. Glycols and Ethanolamines
US4642377A (en) Process for producing terephthalic acid from p-xylene and methanol by way of dimethyl terephthalate
JPH036132B2 (en)
JP2988573B2 (en) Purification method of boric acid for hydrocarbon oxidation
US1782591A (en) Manufacture of alkyl formates
KR960013831B1 (en) Separation of monoalkyl maleate from dialkyl maleate
SU1447817A1 (en) Apparatus for producing cyclohexane thiol