JPS60239330A - Manufacture of glass block - Google Patents

Manufacture of glass block

Info

Publication number
JPS60239330A
JPS60239330A JP9353684A JP9353684A JPS60239330A JP S60239330 A JPS60239330 A JP S60239330A JP 9353684 A JP9353684 A JP 9353684A JP 9353684 A JP9353684 A JP 9353684A JP S60239330 A JPS60239330 A JP S60239330A
Authority
JP
Japan
Prior art keywords
glass
substrate
glass block
block
nd2o3
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9353684A
Other languages
Japanese (ja)
Other versions
JPS623096B2 (en
Inventor
Hiroshi Namikawa
並河 洋
Kazuo Arai
和雄 荒井
Yoshiro Ishii
芳朗 石井
Teruhiro Noda
野田 曜裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP9353684A priority Critical patent/JPS60239330A/en
Publication of JPS60239330A publication Critical patent/JPS60239330A/en
Publication of JPS623096B2 publication Critical patent/JPS623096B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1484Means for supporting, rotating or translating the article being formed
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • C03B2201/36Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers doped with rare earth metals and aluminium, e.g. Er-Al co-doped

Abstract

PURPOSE:To prevent cracking effectively by forming a devitrified layer on a substrate and a glass block having a desired composition on the devitrified layer by deposition. CONSTITUTION:Nd2O3-SiO2 glass contg. no Al2O3 is devitrified when the Nd2O3 content is increased to >= about 0.3mol%. The devitrified layer 5 of 0.1-0.3mm. thickness is formed on a quartz glass substrate 3 by feeding gaseous NdCl+ SiCl3 in such a mixing ratio that Nd2O3 is contained by >=0.3mol%. A gaseous NdCl3+AlCl3+SiCl3 mixture having a required composition is then blown into the lower end of a plasma flame 2 from a nozzle 1 to form a desired glass block 4.

Description

【発明の詳細な説明】 本発明はガラス・ブロックの製造方法に関し、殊に化学
気相成長(CVD)法等の堆積法でガラス基板等の適当
な基板上に目的のガラス・ブロックを堆積形成した際、
当該目的のガラス・ブロックにクラックが入るのを効果
的に防止し得るガラス・ブロック製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a glass block, and in particular to a method of depositing and forming a desired glass block on a suitable substrate such as a glass substrate by a deposition method such as a chemical vapor deposition (CVD) method. When I did,
The present invention relates to a method for manufacturing a glass block that can effectively prevent cracks from forming in the target glass block.

従来から一般にガラス・ブロックを製造する方法として
、ガラス基板等の適当な基板の上に所期の組成のブロッ
ク状ガラス部分をCVD法により堆積、形成した後、ダ
イアモンドカッター等で基板を切断・、除去して目的の
ガラス・ブロックを得る方法がある。
Conventionally, the general method for manufacturing glass blocks is to deposit and form a block-shaped glass portion of a desired composition on a suitable substrate such as a glass substrate by CVD method, and then cut the substrate with a diamond cutter or the like. There is a way to remove it to get the desired glass block.

この方法は比較的簡単で原理的には優れているが、問題
になるのは用いたガラス基板とその上に堆積したガラス
・ブロックとの熱膨張係数の差である。
Although this method is relatively simple and excellent in principle, the problem is the difference in thermal expansion coefficient between the glass substrate used and the glass block deposited thereon.

特に基板に一般的なガラス基板を採用した時にその問題
が大きく、基板ガラスと堆積ガラスとの化学的組成が異
なるため、堆積工程後の冷却過程で両者間の熱膨張係数
の差による歪が大きくなり、堆積したガラス・ブロック
にクラックが入ってやがてはブロック全体が破断すると
いう結果を招きがちだった。
This problem is especially serious when a common glass substrate is used as the substrate. Because the chemical composition of the substrate glass and the deposited glass are different, distortion due to the difference in thermal expansion coefficient between the two is large during the cooling process after the deposition process. This tended to result in cracks forming in the stacked glass blocks and eventually causing the entire block to break.

この危険はブロックの大きさが大きくなればなる程、高
くなるから、結局、こうした最もオーツドックスな直接
堆積手法にこだわっている以上、クラックを防ぐにはガ
ラス・ブロックの大きさを小さく留めるしかない、とい
うことになる。
This risk increases as the size of the block increases, so since we are sticking to the most traditional direct deposition method, the only way to prevent cracks is to keep the size of the glass block small. ,It turns out that.

然し勿論、大きなガラス・ブロックを得たいとする要請
は高く、そこで従来からもこれに応える一方策として、
基板ガラス上にこの基板ガラスと最終製品としての堆積
ガラス・ブロックとの中間の熱膨張係数を有する“中間
ガラスパを先づ堆積し、その後、この゛中間ガラス″の
上にガラス・ブロックとすべき所期の組成のガラスを堆
積する方法が提案されてはいた。“中間ガラス″で基板
ガラスとガラス・ブロックとの応力歪を緩和、吸収させ
ようとしたのである。
However, of course, there is a high demand for large glass blocks, so as a way to meet this demand,
An "intermediate glass glass" having a coefficient of thermal expansion intermediate between this substrate glass and the deposited glass block as a final product is first deposited on the substrate glass, and then a glass block is to be formed on this "intermediate glass". Methods have been proposed for depositing glasses of desired composition. The idea was to use the "intermediate glass" to alleviate and absorb stress and strain between the substrate glass and the glass block.

然しこのように、“中間ガラス″という概念を導入する
方法は、数ミリ乃至数十ミリの管状のもの、例えば石英
ガラス管と硼珪酸ガラス管とを組成を連続的に変化させ
て接合する等においては実現可能であっても、ここで問
題にしているようなガラス・ブロック等、接合面積の広
いものへの適用は困難な点が多く、実際上は全く不可能
であった。
However, the method of introducing the concept of "intermediate glass" in this way involves bonding tube-shaped objects ranging from several millimeters to several tens of millimeters, such as a quartz glass tube and a borosilicate glass tube by continuously changing their composition. Even if it is possible to achieve this, there are many difficulties in applying it to objects with a large bonding area, such as the glass blocks discussed here, and it has been completely impossible in practice.

(本発明は0の点に鑑みて成5れたもので・比較的大き
な寸法のガラス・ブロックを形成してもこれにクラック
を入れることなく、且つ十分に実用的なガラス・ブロッ
ク製造方法を提供せんとするものである。
(The present invention was developed in view of the above points.) A method for producing a glass block that is sufficiently practical and that does not cause cracks even when a glass block of relatively large size is formed. This is what we intend to provide.

本発明ではこの目的を達成するため、基板の上に先づ意
図的に失透層を形成し、その後、当該失透層の上に目的
の組成のガラス・ブロックを堆積させる方法を採る。こ
れは次のような知見に基くものである。
In order to achieve this objective, the present invention adopts a method in which a devitrification layer is first intentionally formed on a substrate, and then a glass block having a desired composition is deposited on the devitrification layer. This is based on the following knowledge.

一般に多成分ガラスは成る組成領域内でだけ、安定にガ
ラス化するが、この領域外では失透を起こす。失透は微
細な結晶の発生成いは微視的な相分離によって起こるも
のであるが、いづれにしても失透状態では内部に微細な
界面が発生する。
In general, multi-component glasses are stably vitrified only within a compositional range, but devitrification occurs outside this range. Devitrification occurs due to the generation of fine crystals or microscopic phase separation, but in any case, in a devitrified state, a fine interface is generated inside.

そして、こうし、た内部界面は応力によって比較的容易
にズレを起こすため、結果としてその応力は緩和乃至吸
収されたことになる。
Since these internal interfaces are relatively easily displaced by stress, the stress is relaxed or absorbed as a result.

従って、上記のように基板と目的とする堆積ガラス・ブ
ロックとの間に失透層を意図的に形成してやれば、当該
基板ガラ゛スとガラス・ブロックとの間に発生する応力
歪は当該失透層の介在によって低減乃至解消することが
できる。
Therefore, if a devitrification layer is intentionally formed between the substrate and the target deposited glass block as described above, the stress strain generated between the substrate glass and the glass block will be reduced. This can be reduced or eliminated by intervening a transparent layer.

以下、こうした本発明の思想に即し本出願人が実用化し
た実施例に−就き、添付図面に従って説明する。
Hereinafter, embodiments put into practical use by the applicant in accordance with the idea of the present invention will be described with reference to the accompanying drawings.

この実施例ではプラズマトーチCVD法によっテレーザ
活性媒体用)Nd203−A1203−5iOz カラ
ス・ブロックを石英ガラス基板上に堆積させる場合を想
定して説明するが、従来においては、予め所定の割合で
混合したNdCl3+ AlCl3+ 5iC13ガス
を輸送用アルゴンガスで送給し、ポットラインノズル1
から酸素或いは酸素−アルゴン混合プラズマ炎2の下端
に吹き込んで酸化させ、プラズマ炎2の下方で約170
0’Oに過熱されて回転しながら下降している石英ガラ
ス基板3の上に直接に目的(7)Nd203−Al2O
3−5iOzガラス−ブロック4を堆積させていた。
In this example, explanation will be made on the assumption that Nd203-A1203-5iOz glass blocks (for use as a telelaser active medium) are deposited on a quartz glass substrate by plasma torch CVD method. The NdCl3+ AlCl3+ 5iC13 gas was delivered using argon gas for transportation, and the pot line nozzle 1 was
Oxygen or oxygen-argon mixed plasma is oxidized by blowing into the lower end of the plasma flame 2, and about 170
The object (7) Nd203-Al2O is placed directly on the quartz glass substrate 3 which is heated to 0'O and is rotating and descending.
3-5 iOz glass-block 4 was deposited.

そのため既述したように、基板ガラス3と堆積された目
的ノNd203−AI203−5in2カy スープロ
ック4との間の熱膨張係数の差による歪のため、当該堆
積ガラス・ブロック4にクラックが生じ、これが成長し
てブロック全体の破断を招くことがあったのである。
Therefore, as described above, cracks occur in the deposited glass block 4 due to distortion due to the difference in thermal expansion coefficient between the substrate glass 3 and the deposited target Nd203-AI203-5in2 super block 4. , which could grow and cause the entire block to break.

対して本発明では、基板ガラス3と目的とする堆積ガラ
ス・ブロック4との間に、意図的に適当な厚味、例えば
0.1−0.3mm程度の失透層5を形成する点に特徴
がある。
In contrast, in the present invention, a devitrification layer 5 with an appropriate thickness, for example, about 0.1-0.3 mm, is intentionally formed between the substrate glass 3 and the target deposited glass block 4. It has characteristics.

本実施例ではこの失透層は次のような手順により形成し
ている。
In this example, the devitrification layer is formed by the following procedure.

Al2O3を含まナイNd203−8lo2ガ7スニオ
Lz’ては、Nd2O3が約0.3モル%以上になると
失透を起こす。従って先づ、Nd2O3が0.3モル%
以上になるような混合比のNdCl3+ 5iC13ガ
スを流し、石英ガラス基板3上に意図的に失透層5を形
成する。この厚味は先のように例えば0.1−0.3+
am程度にする。というよりも、少なくとも歪を解消す
るに十分な厚さに形成する。
For Nd203-8lo2 gas containing Al2O3, devitrification occurs when Nd2O3 exceeds about 0.3 mol%. Therefore, first, Nd2O3 is 0.3 mol%
A devitrification layer 5 is intentionally formed on the quartz glass substrate 3 by flowing NdCl3+5iC13 gas having the above-mentioned mixing ratio. This thickness is, for example, 0.1-0.3+ as before.
Make it about am. Rather, it is formed to have a thickness sufficient to at least eliminate distortion.

そうした後、目的の組成のガラス・ブロック4を形成す
るため、所期の組成のNdCl3+ AlCl3+5i
C13混合ガスをノズル1より吹き込む。
After that, NdCl3+ AlCl3+5i of the desired composition is added to form the glass block 4 of the desired composition.
Blow C13 mixed gas through nozzle 1.

このような手法により実際にも、Nd2O3が0.3モ
ル%、 Al2O3が2.1モル%、5i02が87.
6モル%、の組成のレーザ用ガラス・ブロックをクラッ
クを生じさせることなくかなりの大きさに製造すること
ができた。
Actually, by such a method, Nd2O3 was 0.3 mol%, Al2O3 was 2.1 mol%, and 5i02 was 87.
A laser glass block having a composition of 6 mol % could be manufactured to a considerable size without cracking.

即ち、失透層5は本発明において期待した応力緩和機能
を十分に営んでいると考えられる結果を得・ることがで
きた。
That is, it was possible to obtain results that indicate that the devitrification layer 5 sufficiently performs the stress relaxation function expected in the present invention.

尚、ガラス・ブロック4の堆積後、この失透層5は基板
1と共に機械的切断手法等、適当な手法により除去し得
ること、言うまでもない。
It goes without saying that after the glass block 4 has been deposited, the devitrification layer 5 can be removed together with the substrate 1 by a suitable method such as a mechanical cutting method.

勿論、上記実施例に示した組成以外のガラス・ブロック
を製造するに際しても本発明が変わりなく有効に機能す
ることは既述した本発明の原理から顕かである。
Of course, it is clear from the principles of the present invention described above that the present invention will still function effectively even when manufacturing glass blocks having compositions other than those shown in the above embodiments.

以上詳記のように、歪解消、クラック発生の防止に失透
層を用いるという本発明の思想は、かなり大きなガラス
・ブロックを不都合なく得ることができるという基本的
な効果に加え、当該失透層ノ を形成するのにも特殊な材料や装置は一般に不用であり
、目的の堆積ガラス・ブロックを形成するに要する装置
をそのまま使用し、単に目的とする。
As described in detail above, the idea of the present invention of using a devitrification layer to eliminate strain and prevent the occurrence of cracks is that in addition to the basic effect of being able to obtain fairly large glass blocks without any inconvenience, the devitrification layer Special materials and equipment are generally not required to form the layers; the equipment required to form the desired deposited glass block is simply used and directed.

最終製品における組成を得るための材料群から使わない
材料を選択すれば良いだけである等、生産性、合理性の
観点からも大きな効果を得ることのできるものである。
It is possible to obtain great effects from the viewpoint of productivity and rationality, such as by simply selecting unused materials from the group of materials used to obtain the composition of the final product.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明のガラス・ブロック製造方法を適用する装
置の概略構成図である。 図中、lはホットラインノズル、2はプラズマ炎、3は
基板、4は製造すべき堆積ガラス・ブロック、5は失透
層、である。 指定代理人 工業技術院 手続補正書坊幻 昭和52年?月g 日 1事件の表示 昭和sq年特許願第93!;3乙号 2発明の名称 ガラス・ブロックの製造方法 3補正をする者 事件との関係特許出願人 114工業技術院長川田裕部 4指定代理人 7 補正の内容 (1) 明細書中、第に貴簡6行の「図面」を「第1図
」に訂正する。 (2)別紙の通り、添付図面に「第1図」を記入する。 第1図
The drawing is a schematic diagram of an apparatus to which the glass block manufacturing method of the present invention is applied. In the figure, l is a hot line nozzle, 2 is a plasma flame, 3 is a substrate, 4 is a deposited glass block to be produced, and 5 is a devitrification layer. Designated agent: Agency of Industrial Science and Technology procedural amendment book phantom year 1972? Showa sq year patent application No. 93! ;3 No. Otsu 2 Name of the invention Glass block manufacturing method 3 Person making the amendment Relationship to the case Patent applicant 114 Director of the Agency of Industrial Science and Technology Hirobe Kawada 4 Designated agent 7 Contents of the amendment (1) In the specification, Correct "Drawing" in line 6 of your letter to "Figure 1." (2) Fill in "Figure 1" on the attached drawing as shown in the attached sheet. Figure 1

Claims (1)

【特許請求の範囲】 基板上にガラス・ブロックを堆積形成するガラス・ブロ
ックの製造方法であって、 上記基板上に先づ失透層を形成し、その後、この失透層
上に目的とする組成のガラス・ブロックを堆積すること
を特徴とするガラス・ブロックの製造方法。
[Claims] A method for manufacturing a glass block, which comprises depositing a glass block on a substrate, first forming a devitrification layer on the substrate, and then depositing a devitrification layer on the devitrification layer. 1. A method for manufacturing a glass block, characterized in that the glass block of the composition is deposited.
JP9353684A 1984-05-10 1984-05-10 Manufacture of glass block Granted JPS60239330A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9353684A JPS60239330A (en) 1984-05-10 1984-05-10 Manufacture of glass block

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9353684A JPS60239330A (en) 1984-05-10 1984-05-10 Manufacture of glass block

Publications (2)

Publication Number Publication Date
JPS60239330A true JPS60239330A (en) 1985-11-28
JPS623096B2 JPS623096B2 (en) 1987-01-23

Family

ID=14084999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9353684A Granted JPS60239330A (en) 1984-05-10 1984-05-10 Manufacture of glass block

Country Status (1)

Country Link
JP (1) JPS60239330A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882683A2 (en) * 1997-06-06 1998-12-09 Alcatel Lightguide amplifier and method for making it
US8304081B2 (en) 2006-10-17 2012-11-06 Rensselaer Polytechnic Institute Process for making rare earth containing glass
RU171679U1 (en) * 2017-02-21 2017-06-09 Автономная некоммерческая организация высшего образования "Белгородский университет кооперации, экономики и права" DEVICE FOR OBTAINING BLOCK FOAM GLASS

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0882683A2 (en) * 1997-06-06 1998-12-09 Alcatel Lightguide amplifier and method for making it
EP0882683A3 (en) * 1997-06-06 1999-04-07 Alcatel Lightguide amplifier and method for making it
US8304081B2 (en) 2006-10-17 2012-11-06 Rensselaer Polytechnic Institute Process for making rare earth containing glass
RU171679U1 (en) * 2017-02-21 2017-06-09 Автономная некоммерческая организация высшего образования "Белгородский университет кооперации, экономики и права" DEVICE FOR OBTAINING BLOCK FOAM GLASS

Also Published As

Publication number Publication date
JPS623096B2 (en) 1987-01-23

Similar Documents

Publication Publication Date Title
US4363647A (en) Method of making fused silica-containing material
US2239551A (en) Method of making sealing glasses and seals for quartz lamps
GB1498907A (en) Method for manufacturing an optical fibre
US3892904A (en) Glass ceramic article having a metallic coating layer in a localized area or its surface and method of making the same
US9321669B2 (en) Thin glass sheet with tunable coefficient of thermal expansion
EP1025054B1 (en) Production of quartz glass articles having high surface purity
KR900005890B1 (en) Bonding process of semiconductor substrate
JPS60239330A (en) Manufacture of glass block
US20030101772A1 (en) Manufacturing method for optical fiber preform
JPS6168340A (en) Production of parent glass material for optical fiber
JPS60260430A (en) Manufacture of base material for optical fiber containing fluorine in clad part
US3676097A (en) Physically strengthening bodies made of at least partly vitreous material
WO2008001673A1 (en) Process for producing optical fiber base, process for producing optical fiber, and optical fiber
US5238479A (en) Method for producing porous glass preform for optical fiber
CA1084534A (en) Method of producing glass compositions for optical wave guides
JPH0225853B2 (en)
JPH0525818B2 (en)
JPS59184735A (en) Transparent vitrification of optical porous glass
JP3078590B2 (en) Manufacturing method of synthetic quartz glass
JPS60145923A (en) Device for production of base material for optical fiber
JPS61284704A (en) Multi-layered glass film for quartz optical waveguide and its production
EP0415341B1 (en) Method for producing porous glass preform for optical fiber
JP4243656B2 (en) Opaque quartz glass and method for producing the same
JP3517250B2 (en) Method for producing glass fiber preform for optical transmission line
JPS61281039A (en) Production of optical fiber

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term