JPS60239079A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPS60239079A JPS60239079A JP9400284A JP9400284A JPS60239079A JP S60239079 A JPS60239079 A JP S60239079A JP 9400284 A JP9400284 A JP 9400284A JP 9400284 A JP9400284 A JP 9400284A JP S60239079 A JPS60239079 A JP S60239079A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- guide
- active layer
- cladding
- clad
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2232—Buried stripe structure with inner confining structure between the active layer and the lower electrode
- H01S5/2234—Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
- H01S5/2235—Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface with a protrusion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2237—Buried stripe structure with a non-planar active layer
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
く技術分野〉
本発明は半導体レー吠特に大光出力半導体レーザに関す
るものである◇
〈従来技術〉
AA()aAs/GaA−s 等の結晶材料を用いた可
視光半導体レーザは小型であり低消費電力で高効率の室
温連続発振を行う事ができるので、光方式のディジタル
・オーディオ・ディスク(I)AD)用光源として最適
であり実用化されつつある。この可視光半導体レーザは
光プリンタ等の光書きこみ用光源としての需要も高まり
、この要求をみたすため大光出力発振に耐えつる可視光
半導体レーザの研究開発が進められている。[Detailed Description of the Invention] Technical Field> The present invention relates to a semiconductor laser, particularly a high optical output semiconductor laser. <Prior Art> A visible light semiconductor using a crystal material such as AA()aAs/GaA-s. Since lasers are small and can perform continuous oscillation at room temperature with low power consumption and high efficiency, they are suitable as light sources for optical digital audio discs (I) AD) and are being put into practical use. The demand for this visible light semiconductor laser as a light source for optical writing in optical printers and the like is increasing, and in order to meet this demand, research and development of visible light semiconductor lasers that can withstand large optical output oscillations is underway.
特ζこ最近ではこれらの可視光半導体レーザの需要の急
速な高まりに対応するため大量生産が行われるようにな
ってきた。AA’(JaAs/GaA s 可視光半導
体レーザの製法曇こおいては従来から液相成長法が用い
られてきた。これに対し有機金属を用いた気相成長法C
,Metalorganic ChemicalVap
our Deposition、略してMOOVD)6
1、量産性と精密膜厚制御性とを兼ね備えていることか
ら、今や元デバイス作製のためのきわめて重要な技術の
一つとなっている。特lこディピース(R4゜T) 、
1)upuis )とダビカス(L’ 、 D 、
Dapkus )とtこよってアプライドフィジックス
レター誌(Appl ied Physics 、1r
etter) 1977年31巻47.466頁から4
68頁に発表されて以来その実用性が着目されMOOV
D法を用いたA、、gGaAs/GaAs可視元半導体
レーザの研究が、ay)られ6ようζこなった。中でも
横モード制御した波長λ=0.78μmのAjGaAs
/GaAs 可視光半導体レーザ素子としては、例えば
中塚、小野、板村、中村により第44回応用鞠理学会学
術講演会講演予価集1983年109頁26p−P−1
61コl MOOVD法lcヨ6横−Eニー)’制御半
導体レーザ」と題して発表された論文に代表されるよう
に、活性層に隣近してストライプ状領域の両側に吸収層
を設は活性層からの光のしみ出しをこの吸収層で吸収し
損失領域となし、吸収層のないストライプ状領域との間
に利得−損失のステップを設けて横モード制御を行おう
と下るものカ月是案され試作されている。Recently, in order to meet the rapidly increasing demand for these visible light semiconductor lasers, mass production has begun. AA' (JaAs/GaAs Visible Light Semiconductor Laser Manufacturing Method) Liquid phase epitaxy has traditionally been used in this field.In contrast, vapor phase epitaxy using organic metals has been used.
,Metalorganic ChemicalVap
our Deposition (abbreviated as MOOVD)6
1. It is now one of the most important technologies for manufacturing original devices because it combines mass production and precision film thickness control. Special D Peace (R4゜T),
1) upuis) and Davicus (L', D,
Dapkus) and Applied Physics Letter magazine (Applied Physics, 1r.
etter) 1977, Vol. 31, 47.466-4
Since it was announced on page 68, its practicality has attracted attention and MOOV
Research on GaAs/GaAs visible semiconductor lasers using the D method has been carried out6). Among them, AjGaAs with transverse mode controlled wavelength λ = 0.78 μm.
/GaAs visible light semiconductor laser device, for example, by Nakatsuka, Ono, Itamura, and Nakamura in the 44th Academic Conference of the Society of Applied Chemistry, 1983, p. 109, 26 p-P-1.
As typified by a paper published under the title ``Controlled Semiconductor Laser'', it is possible to provide absorption layers on both sides of a striped region adjacent to the active layer. The current plan is to absorb the light leaking from the active layer into the absorption layer and create a loss region, and to create a gain-loss step between the striped region without the absorption layer and perform transverse mode control. It is being prototyped.
しかし上記構造では光出力5〜7mWまでしか基本横モ
ード発振しない事、利得−損失のステップを設けるため
吸収領域を内蔵しているがこの吸収領域では元が損失と
なるために閾値電流が高くなる事、発光ビームが非対称
である事等の欠点を持ちDAD用光源として実用的でな
いばかりか大光出力発振は不可能であった。However, in the above structure, fundamental transverse mode oscillation occurs only up to an optical output of 5 to 7 mW, and although an absorption region is built in to provide a gain-loss step, the threshold current becomes high in this absorption region because the source becomes a loss. In addition, it has drawbacks such as the asymmetrical emission beam, making it impractical as a light source for DAD, and making it impossible to oscillate a large optical output.
〈発明の目的〉
本発明の目的は上記欠点を除去しMOOVI)法の特長
を充分に生かして低閾値高効率のレーザ発振をするのみ
ならす安定な基本横モード発振による大光出力発振が可
能であり、等心円的な光源とγ了り比較的容易に一回成
長で製作でき再現性および信頼性の上ですぐれた半導体
レーザを提供する手にある。<Object of the Invention> The object of the present invention is to eliminate the above-mentioned drawbacks, fully utilize the features of the MOOVI (MOOVI) method, and achieve not only low-threshold, high-efficiency laser oscillation, but also stable fundamental transverse mode oscillation, which enables large optical output oscillation. Therefore, it is possible to provide a semiconductor laser which can be produced relatively easily by one-time growth and has excellent reproducibility and reliability using a concentric light source and a γ-light source.
〈発明の構成〉
本発明の半導体レーザの構成番ゴ凸状の形状を有する半
導体基板上fこ第1のクラッド鳴を設け、該クラッド層
lこ隣接して、該クラッド層よりも屈折率が大きく管内
波長の数倍以下の層厚を有する活性層を該活性層に隣接
して該活性層と同一程度の厚さを有し該活性層よりもバ
ンドギャップの広い材質からなる第2および第3のクラ
ッド層で挾み込んだダブルへテロ構造を該活性層よりも
屈折率が小さく該第1.第2.第3のクラッド層よりも
屈折率か大きい材質からなる第1と第2のガイド層でさ
らに挾み込んだ多層構造を設け、該多層構造に隣接して
電気的に絶縁で該カイト層よりも屈折率の小さい材質か
らなる第4のクラッド層を設けたI@溝構造有し、該各
成長層が該凸状基板の凸部に沿って一様な層厚で成長し
た形態を持ち、該凸状基板の凸部領域上の第4クラッド
層lこストライプ状の電気伝導領域を形成した事を特徴
とする。<Structure of the Invention> Structure of the semiconductor laser of the present invention A first cladding layer is provided on a semiconductor substrate having a convex shape, and a first cladding layer is provided adjacent to the cladding layer and has a refractive index lower than that of the cladding layer. Adjacent to the active layer is a second active layer having a layer thickness of approximately several times the wavelength in the tube or less, and second and third layers having a thickness approximately the same as the active layer and made of a material with a wider band gap than the active layer. The double heterostructure sandwiched between the cladding layers of No. 3 and No. 3 has a refractive index smaller than that of the active layer. Second. A multilayer structure further sandwiched between first and second guide layers made of a material with a refractive index higher than that of the third cladding layer is provided, and adjacent to the multilayer structure is electrically insulated and is higher than the kite layer. It has an I@groove structure in which a fourth cladding layer made of a material with a low refractive index is provided, and each growth layer has a form in which it is grown with a uniform layer thickness along the convex portion of the convex substrate, and The fourth cladding layer is characterized in that a striped electrically conductive region is formed on the convex region of the convex substrate.
〈実施例〉
以下図面を用いて本発明の詳細な説明T6゜第(5)
1図は本発明の実施例の斜視図、第2図は本発明の実施
例の断面図、第31ン1はこの実施例の製造途中の断面
図である。この実施例の製造方法は第3図に示すように
(1,(10)而を平面とするn形GaAs基板10上
に8i02膜11を設はフォトレジスト法で(011)
方向に幅2μmのストライプ状にS r 02膜を残し
てその外部ζこ窓をあけ、Br2とメチルアルコールと
の混合溶液を用いて深さ1.0μmエッチンクする。こ
の時〔OH〕方向ζこおいては5in2膜117i−残
した領域が凸状の順メサの構造をした凸部領域12が形
成される。<Example> The following is a detailed explanation of the present invention with reference to the drawings. is a cross-sectional view of this example during manufacturing. The manufacturing method of this embodiment is as shown in FIG.
The S r 02 film is left in the form of a stripe with a width of 2 μm in the direction, and an outer window is opened, and etched to a depth of 1.0 μm using a mixed solution of Br2 and methyl alcohol. At this time, in the [OH] direction ζ, a convex region 12 having a convex normal mesa structure is formed in the remaining region of the 5in2 film 117i.
次に、この5102膜11ヲ除去した後n形AlO,3
8Ga O,62A s第1クラッド層135:0.5
μm 、 t1形AA O,25G a O,75As
第1カイト層14を1.0μm。Next, after removing this 5102 film 11, the n-type AlO,3
8GaO, 62A s first cladding layer 135:0.5
μm, t1 type AA O, 25G a O, 75As
The thickness of the first kite layer 14 is 1.0 μm.
n形Alo、s G a o、sAs 第2クラッド層
15を0.051tm 、アンドープA l o、+s
QaO,85As 活性層I6f 0.04 μm
、 p形A# 0.+i Ga O,5As第3クラツ
ド層1’I0.05μm、I)形A 140.25 G
a O,75A、 s第2ガイ ド層18を1.0μ
m 、 AA o、as Ga 0.62AS絶縁性第
4クラッド層197i−0,511m 、 p形G a
A sキ(6)
ャップ層を0.5μm M O[3V D法で連続成長
する。n-type Alo, s Ga o, sAs second cladding layer 15 at 0.051 tm, undoped A lo, +s
QaO, 85As active layer I6f 0.04 μm
, p-type A# 0. +i Ga O, 5As third cladding layer 1'I0.05 μm, I) Type A 140.25 G
a O, 75A, s Second guide layer 18 1.0μ
m, AA o, as Ga 0.62AS insulating fourth cladding layer 197i-0,511m, p-type Ga
A cap layer is continuously grown to a thickness of 0.5 μm using the M O [3V D method.
上記成長ζこおいて従来から行われている液相成長法は
各成長層ごとに各組成を制御したメルトを用意して基板
を移動して各層を成長していく方法であるため本発明の
如き多層構造の成長はきわめて困難であるばかりでなく
4!r組成各層厚を制御する事は不可能である。これに
対してMOOV TJ法は有機金属を用いた気相成長法
であるので混合ガスの組成を変化させる事で任意の組成
の鳩を任意の多層に容易に)成長させる事ができるので
本発明の構造の成長を制御よく容易lこ行う事ができる
。Regarding the above growth ζ, the conventional liquid phase growth method is a method in which a melt with controlled composition is prepared for each growth layer and the substrate is moved to grow each layer. Not only is the growth of such a multilayer structure extremely difficult, but also 4! It is impossible to control the thickness of each layer of the r composition. On the other hand, the MOOV TJ method is a vapor phase growth method using organic metals, so by changing the composition of the mixed gas, it is possible to easily grow pigeons of any composition into any multilayer structure. The growth of the structure can be easily and easily controlled.
更lこM U OV D法では薄11Q成長が可能であ
りかつ精密な膜厚制御性を兼ね備えているので上記の如
き層厚の薄い第2クラッド層15、活性層16、第3ク
ラッド層17を層厚の制御よく成長する事ができる。M
OOVD法は上記した如く気相成長法の一つであるので
第4クラツド唐19を形成する際に微量の酸素ガスを混
合させる事暑こより容易にAl0138Ga 0062
Asp縁層19を形成する事ができる、又MOOVD
法では各組成の微粒子が結合しながら成長していくので
成長の面方位依存性はなくどの方向にも一様な厚さで成
長する。従って本発明の構造の如く凸状基板上船こ多I
i1成陵させても凸部の形状に沿って−イ串な層厚の層
が成長していく。Moreover, the M U OV D method allows thin 11Q growth and has precise film thickness controllability. can be grown with good control of layer thickness. M
As mentioned above, the OOVD method is one of the vapor phase growth methods, so when forming the fourth cladding layer 19, it is easier to mix a small amount of oxygen gas than Al0138Ga0062.
Asp edge layer 19 can be formed, and MOOVD
In this method, fine particles of each composition grow while bonding, so there is no dependence on the plane orientation of the growth, and the growth is uniform in thickness in all directions. Therefore, as in the structure of the present invention, the number I on the convex substrate is
Even if the i1 layer is grown, a layer with a large thickness will continue to grow along the shape of the convex portion.
次にp形() a A sキャップ層20成長表面上O
こS IO2胛を形成した後フォトレジスト法で凸状4
&の凸部領域に一致する様に5i02膜2Hこ幅2μm
の窓をあけ亜鉛を拡散フロントが第2ガイド啼18内O
こくるように拡散する(拡散領域21)。このさき亜鉛
が拡散された領域の絶縁性第4クウツド層はp形に変換
されストライプ状のキャリア注入領域にする。次に5i
o2腔を除去しG a A sキャップ層全面にp形オ
ーミックコンタクト22を形成し基板側ζこn形オーミ
ックコンタクト2;3をそれぞれつけると本発明の構造
の半導体レーザを得る事ができる(第1図、第2図)。Then p-type () a A s cap layer 20 is grown on the surface
After forming the SIO2 ridges, a convex shape 4 is formed using a photoresist method.
The width of the 5i02 film 2H is 2 μm to match the convex area of &.
Open the window and spread the zinc inside the second guide.
It diffuses in a dense manner (diffusion region 21). The fourth insulating cloud layer in the region where zinc has been diffused is converted to p-type to form a striped carrier injection region. Next 5i
By removing the O2 cavity, forming a p-type ohmic contact 22 on the entire surface of the GaAs cap layer, and attaching ζn-type ohmic contacts 2 and 3 on the substrate side, a semiconductor laser having the structure of the present invention can be obtained (No. Figures 1 and 2).
〈発明の作用・Aノ果〉
本発明の構造において全面電極から注入された電流はキ
ャップ層20では全面暑こ広がって流れるが、キャップ
層201こ隣接して絶縁性第4クウツド層19があるの
でそこでは阻止され、亜鉛拡散によってp形に変換した
ストライブ状のキャリア注入領域からp形第2ガイド扁
18#こ注入されろ。電流は第2ガイド層18から第2
クラッド層17を通って活性層161こ注入される。活
性層16に注入されたギヤ11アは活性層水平横方向に
拡散していき利得分布そわめて薄いために元は活性層か
ら垂直方向に広く広がる。四に本発明の構造では活性層
は層厚の薄い第2.第3のクラッド鴫【こつづいて第1
.第2のガイド層ではさみこまれているために光は屈折
率の比較的大きい第1.第2のガイド層にひきこまれて
活性層を中心として垂直方向に大きく広がる。この場合
本実施例の如く第2クラッド層15と第3クラ、ドIi
!117との層厚を等しくシ(に第1ガイド層14と第
2ガイド層18との層厚を等しくすると垂直方向におい
て活性層を中心に各層の組成および層厚は対称となるの
で光の広がりはより助長される。<Function of the invention/A result> In the structure of the present invention, the current injected from the entire surface electrode spreads over the entire surface of the cap layer 20 and flows, but there is an insulating fourth cloud layer 19 adjacent to the cap layer 201. Therefore, the p-type second guide plate 18 is injected from the strip-shaped carrier injection region, which is blocked there and converted to p-type by zinc diffusion. The current flows from the second guide layer 18 to the second
The active layer 161 is implanted through the cladding layer 17. The gear 11a injected into the active layer 16 diffuses in the horizontal and lateral directions of the active layer, and because the gain distribution is relatively thin, it originally spreads widely in the vertical direction from the active layer. Fourth, in the structure of the present invention, the active layer has a thin second layer. 3rd Clad Shizu [Continued from the 1st part]
.. Since the light is sandwiched between the second guide layers, the light passes through the first guide layer, which has a relatively large refractive index. It is drawn into the second guide layer and widely spreads in the vertical direction centering on the active layer. In this case, as in this embodiment, the second cladding layer 15 and the third cladding layer 1i
! If the layer thicknesses of the first guide layer 14 and the second guide layer 18 are made equal (and the layer thicknesses of the first guide layer 14 and the second guide layer 18 are made equal), the composition and thickness of each layer will be symmetrical with respect to the active layer in the vertical direction, so that the light will spread. is more encouraged.
(9)
本発明の構造では活性層は第2図に見られるようにその
水平横方向Oこおいては第3クラッド層17ζこつづい
て第2ガイド層1旧こはさみこまれている。(9) In the structure of the present invention, as shown in FIG. 2, the active layer is sandwiched between the third cladding layer 17ζ and the second guide layer 1 in the horizontal direction O.
従って活性層の光は水平横方向では屈折率の冒い活性層
に集光し正の屈折率分布にもさづく正の屈折率ガイディ
ング機構が作りつけらねでいる。一般に活性−の両端が
屈折率の低いクラッド層ではさみこすれている場合にげ
正の屈折率分布が太きく1よりすぎその結果−次横モー
ド発振が+h ll+起レ起用ベルじるおそれがあるの
でこれを抑圧するため活性層の幅を狭く限定する必要が
ある。これに対して本発明の構造では活性層両端に隣接
した第3クラッド層は層厚が薄いので光は第2ガイド層
の影響を受ける。第2ガイド層の屈折率はクラッド層よ
り大きく活性層との屈折率差は比較的小さいので活性層
水平横方向に作りつけられる正の屈折率分布の高さを比
較的小さくする事ができ安定な基本横モード発振を広範
囲にわたる電流注入領域で維持する事ができる。Therefore, the light of the active layer has a different refractive index in the horizontal and lateral directions, and a positive refractive index guiding mechanism that focuses the light on the active layer and creates a positive refractive index distribution cannot be created. In general, when both ends of the active − are sandwiched between cladding layers with a low refractive index and are rubbed together, the positive refractive index distribution becomes thicker than 1, and as a result, the −-order transverse mode oscillation may be caused by +h ll+ . Therefore, in order to suppress this, it is necessary to narrow the width of the active layer. In contrast, in the structure of the present invention, the third cladding layer adjacent to both ends of the active layer is thin, so that light is influenced by the second guide layer. Since the refractive index of the second guide layer is higher than that of the cladding layer and the difference in refractive index with the active layer is relatively small, the height of the positive refractive index distribution created in the horizontal and lateral directions of the active layer can be made relatively small and stable. Fundamental transverse mode oscillation can be maintained over a wide range of current injection regions.
本発明の構造の如く活性層が第2および第3の(10) クラッド層ではさまれている事は次の効果を持つ。As in the structure of the present invention, the active layer is the second and third (10) Being sandwiched between cladding layers has the following effects.
すなわち上記のように活性層垂直方向への元のしみ出し
が大きいときには活性層内での光の閉込め係数(fil
ling factor)が小すクするノテレーザ発振
をさせるには多量の注入キャリアか必要となる。このと
き本発明の構造の如く活性層がバンドギャップの広いク
ラッド層ではさみこまれている場合には注入キャリアは
活性層内に閉込められて有効に再結合するため比較的低
閾値でレーザ発振を開始する。特−こ本発明の構造では
第3クラッド層に隣接した第2ガイド層にはストライプ
状のキャリア注入領域からのみ電流が注入されるのでキ
ャリア注入@域を本実施例のように狭くすると共に亜鉛
拡散領域21のフロントを第2カイト層内深く入れて第
2ガイド層旧よび第3クラッド層での電流の横広がりを
少なくできるので更に注入電流が有効にレーザ発振に寄
与するので低閾値、高効率のレーザ発振を行なう。史に
活性層かバンドギャップの広いクラッド層ではさみこま
れている本発明の構造では温度を上昇しても活性層から
垂直方向に漏れ出るキャリアの積を低減する事ができる
ので高温動作にも耐えつる事ができ素子の信頼性を向上
する車力Sできる。In other words, as mentioned above, when the original seepage in the vertical direction of the active layer is large, the light confinement coefficient (fil
A large amount of injected carriers is required to cause telelaser oscillation with a small ling factor. At this time, when the active layer is sandwiched between cladding layers with a wide bandgap as in the structure of the present invention, the injected carriers are confined within the active layer and effectively recombine, resulting in laser oscillation at a relatively low threshold. Start. In particular, in the structure of the present invention, current is injected into the second guide layer adjacent to the third cladding layer only from the striped carrier injection region. By putting the front of the diffusion region 21 deep into the second kite layer, the lateral spread of the current in the second guide layer and the third cladding layer can be reduced, so that the injected current effectively contributes to laser oscillation, resulting in a low threshold value and a high Performs efficient laser oscillation. The structure of the present invention, which is traditionally sandwiched between an active layer and a cladding layer with a wide band gap, can reduce the product of carriers leaking vertically from the active layer even when the temperature rises, making it suitable for high-temperature operation. It can withstand the force of the vehicle and improve the reliability of the device.
本発明の様に活性層からの光のしみ出しを大きくして活
性層垂直方向の光の閉じ込め係数(fillingfa
ctor )を小さくする事は大光出力レーザ発振の上
で著しい効果を持つ。通常のAlGaAs/GaA、s
半導体レーザを大光出力レーザ発振させると反射面が破
壊される現象か生じる。この現象は光学損傷として古く
から知られておりそのレベルはOWレーザ発振では〜I
MW/liiで生じる。通常A 1t(3a A s
/G a A s半導体レーザの反射面破壊の生じる
光出力P は活性層の層厚をd、閉じ込め係数(fil
ling factor)をr、1)zモードのスポッ
トサイズをW、lとすると
となりpMはFに反比例して上昇する。As in the present invention, by increasing the seepage of light from the active layer, the light confinement coefficient (fillingfa) in the direction perpendicular to the active layer is increased.
Reducing ctor ) has a significant effect on high optical output laser oscillation. Ordinary AlGaAs/GaA,s
When a semiconductor laser is caused to oscillate with a large optical output, a phenomenon occurs in which the reflective surface is destroyed. This phenomenon has long been known as optical damage, and its level is ~I in OW laser oscillation.
Occurs at MW/lii. Normally A 1t (3a A s
/G a As semiconductor laser, the optical output P at which the reflective surface is destroyed is determined by the layer thickness of the active layer being d and the confinement coefficient (fil
ling factor) is r, and the spot size of 1)z mode is W and l, and pM increases in inverse proportion to F.
本発明の構造を用いれはr≦0.υ11こpすpM″>
100 m Wが可能となり大光出力レーザ発振が可
能になる。When using the structure of the present invention, r≦0. υ11kopspM″>
100 mW becomes possible, and high optical output laser oscillation becomes possible.
本発明のように活性層からの光のしみ出しを大きくする
事は活性層垂直方向の広がり角θ1を急激に減少させる
事ができる。特に本実施例の如く活性層垂直方向ζこお
いて活性層をはさみこんだクラッド層およびガイド層の
組W、および層厚を等しくすわば光は活性層を中心とし
て垂直方向lこ広く対称曲に広げる事ができる。その結
果本実施例を用いればθ±≦15度にする事ができる。By increasing the seepage of light from the active layer as in the present invention, the spread angle θ1 in the direction perpendicular to the active layer can be sharply reduced. In particular, as in this embodiment, if the set W of the cladding layer and the guide layer sandwich the active layer in the vertical direction ζ of the active layer, and if the layer thicknesses are equal, the light will be broadly symmetrical in the vertical direction ζ with the active layer as the center. It can be expanded to As a result, using this embodiment, it is possible to set θ±≦15 degrees.
こ11.Gこ対して活性層水平横方向では比較的強い正
の屈折率ガイディング機構が作りつけであるので横モー
ドのスポットサイズを狭くして活性層水平横方向の広が
り角θ//lをθ、、 = 12〜15度にする事がで
きる。This 11. On the other hand, in the horizontal and lateral directions of the active layer, a relatively strong positive refractive index guiding mechanism is built-in, so the spot size of the lateral mode is narrowed and the spread angle θ//l of the active layer in the horizontal and lateral directions is set to θ, , = 12 to 15 degrees.
従ってθユ2θ、イとなり等心円的な光源を得る事がで
き、実用Oこ際して外部の光学系とのカップリング効率
を著しく上昇させる事ができる。Therefore, it is possible to obtain a concentric light source, and in practical use, the coupling efficiency with an external optical system can be significantly increased.
上記した様に本発明の構造は前記した中塚、小野、梶村
、中村により第44回応用物理学会学術講演会諭演予稿
集1983年109頁26 p −1’−16に発表さ
れたレーザの如く損失領域を設けて横モード(13)
制御する機構とは全く異てfっでおり損失領域もない事
から低閾値、高効率でレーザ発振ができる。As mentioned above, the structure of the present invention is similar to that of the laser described in the 44th Japan Society of Applied Physics Academic Conference Proceedings, 1983, p. 109, 26 p-1'-16, by Nakatsuka, Ono, Kajimura, and Nakamura. This is completely different from the mechanism that controls the transverse mode (13) by providing a loss region, and since there is no loss region, laser oscillation can be performed with a low threshold and high efficiency.
更にmmの成長で製作でき、全面電極を用いる等製造方
法も比較的やさしくMOOVT)法特有の層厚の制御性
の良い利点をいかして再現性よく作る事ができる。Furthermore, it can be manufactured with a growth of 1 mm, the manufacturing method is relatively easy, such as using an electrode on the entire surface, and it can be manufactured with good reproducibility by taking advantage of the good controllability of layer thickness peculiar to the MOOVT method.
以上のように実施例はA、/GaAs/GaA s ダ
ブルへテロ接合結晶材料について説明したが、他の結晶
材料例えばInGaAsP/InGaP 、 InGa
P/AA!InP。As mentioned above, the embodiments have been described with respect to the A, /GaAs/GaAs double heterojunction crystal material, but other crystal materials such as InGaAsP/InGaP, InGa
P/AA! InP.
InGaAs’P/1nP、AA!GaAs8b/Ga
AsSb等数多くの結晶材料lこ適用する事ができる。InGaAs'P/1nP, AA! GaAs8b/Ga
Many crystalline materials such as AsSb can be applied.
第1図は本発明実施例の斜視図、第2図は第1図の断面
図、第3図はこの実施例の作製の過程において基板に凸
部領域を形成した時の断面図である。図憂こおいて
10−− n形G a A s基板、1]−−8i 0
.膜、12・・・・・・凸部領域、13−− n形At
! 0.380B O,62AS第1クラッド層、14
・” −n形Alo、250a0.75ks第1 カ
(14)
イド層、15 ・= −n形A l o、s Ga o
、s As第2クラツド廟、16−=−アンドープA
l o、+s Q30,75 As活性層、17・・・
・・・p形AlO,5()a o、s As第3クラッ
ド層、18・・・・・・p形Al 0025 Qa o
、7Asi2 ’77 ッt’ N、19−− A/
o、ss Ga 0062 As p縁性第4クラッド
層、20・・・・・・p形G a A sキイ91層、
21・・・・・・亜鉛拡散領域、22・・・・・・p形
オーミックコンタクト、23−− n形オーミックコン
タクトである。
(15)FIG. 1 is a perspective view of an embodiment of the present invention, FIG. 2 is a cross-sectional view of FIG. 1, and FIG. 3 is a cross-sectional view when a convex region is formed on a substrate in the process of manufacturing this embodiment. Figure 10--n-type GaAs substrate, 1]--8i 0
.. Film, 12... Convex region, 13-- n-type At
! 0.380B O,62AS first cladding layer, 14
・”-n-type Alo, 250a0.75ks 1st force (14) id layer, 15 ・=-n-type Alo, s Ga o
, s AsSecond Clad Mausoleum, 16-=-Undoped A
l o, +s Q30, 75 As active layer, 17...
...p-type AlO, 5()a o, s As third cladding layer, 18...p-type Al 0025 Qa o
, 7Asi2 '77 t' N, 19-- A/
o, ss Ga 0062 As p-type fourth cladding layer, 20... p-type Ga As key 91 layer,
21... Zinc diffusion region, 22... P type ohmic contact, 23-- N type ohmic contact. (15)
Claims (1)
設け、該クラッド層に隣接して、該クラッド層よりも屈
折率か大きく管内波長の数倍以下の層厚を有する活性層
を該活性層と同一程度の厚さを有し該活性層よりもバン
ドギャップの広い材質からなる第2および第3のクラッ
ド層で挾み込んだダブルへテロ構造を該活性層よりも屈
折率が小さく該第1.第2.第3の各クラッド層よりも
屈折率が大きい材質からなる。第1と第2のガイド層で
さらに挾み込んだ多層構造を設け、該多層構造に隣接し
て電気的に絶縁で該ガイド層よりも屈折率の小さい材質
からなる第4のクラ、ド鳥を設けた層構造とし、該各成
長層が該凸状基板の凸部lこ沿って一様な層厚で成長し
た形態を持ち、該第4クラッド層内で該凸状基板の凸部
領域の上lこ相当する領域にストライプ状の電気伝導領
域を形成した事を特徴とする半導体レーザ。A cladding layer of ml is provided on a semiconductor substrate having a convex shape, and an active layer having a refractive index higher than that of the cladding layer and a layer thickness not more than several times the tube wavelength is adjacent to the cladding layer. A double heterostructure sandwiched between second and third cladding layers made of materials with a band gap wider than that of the active layer and having a thickness similar to that of the active layer is formed. 1st. Second. The third cladding layer is made of a material having a higher refractive index than each of the third cladding layers. A multilayer structure further sandwiched between the first and second guide layers is provided, and a fourth layer is provided adjacent to the multilayer structure and is electrically insulated and made of a material having a refractive index smaller than that of the guide layer. The layer structure has a layer structure in which each growth layer has a uniform layer thickness along the convex portion of the convex substrate, and the convex region of the convex substrate within the fourth cladding layer. A semiconductor laser characterized in that a stripe-shaped electrically conductive region is formed in a region corresponding to the upper part of the semiconductor laser.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9400284A JPS60239079A (en) | 1984-05-11 | 1984-05-11 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9400284A JPS60239079A (en) | 1984-05-11 | 1984-05-11 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60239079A true JPS60239079A (en) | 1985-11-27 |
Family
ID=14098206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9400284A Pending JPS60239079A (en) | 1984-05-11 | 1984-05-11 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60239079A (en) |
-
1984
- 1984-05-11 JP JP9400284A patent/JPS60239079A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4852110A (en) | Semiconductor laser of a refractive index-guided type and a process for fabricating the same | |
JPS6085585A (en) | Buried type semiconductor laser | |
JPS60239079A (en) | Semiconductor laser | |
JPS6362292A (en) | Semiconductor laser device and manufacture thereof | |
JPS61134094A (en) | Semiconductor laser | |
JPS60239080A (en) | Semiconductor laser | |
JPH05226774A (en) | Semiconductor laser element and its production | |
JPS60239081A (en) | Semiconductor laser | |
JPS6191991A (en) | Semiconductor laser | |
JPS60189986A (en) | Semiconductor laser | |
JPH06104527A (en) | Fabrication of semiconductor laser | |
JP2973215B2 (en) | Semiconductor laser device | |
JPS612379A (en) | Semiconductor laser | |
JPH05121822A (en) | Manufacture of semiconductor laser device | |
JPS60242687A (en) | Semiconductor laser | |
JPS59197181A (en) | Semiconductor laser | |
JPS62283690A (en) | Semiconductor laser | |
JPS611081A (en) | Semiconductor laser | |
JPS6196790A (en) | Semiconductor laser | |
JPS6234473Y2 (en) | ||
JPH01132191A (en) | Semiconductor laser element | |
JP3038186B2 (en) | Method for manufacturing semiconductor laser device | |
JPS60239084A (en) | Semiconductor laser | |
JPS63188986A (en) | Semiconductor laser | |
JPS6112399B2 (en) |