JPS60238774A - Angle measuring system - Google Patents

Angle measuring system

Info

Publication number
JPS60238774A
JPS60238774A JP9603784A JP9603784A JPS60238774A JP S60238774 A JPS60238774 A JP S60238774A JP 9603784 A JP9603784 A JP 9603784A JP 9603784 A JP9603784 A JP 9603784A JP S60238774 A JPS60238774 A JP S60238774A
Authority
JP
Japan
Prior art keywords
angle
pencil
target
correcting
received
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9603784A
Other languages
Japanese (ja)
Other versions
JPH034115B2 (en
Inventor
Akira Ikeda
明 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP9603784A priority Critical patent/JPS60238774A/en
Publication of JPS60238774A publication Critical patent/JPS60238774A/en
Publication of JPH034115B2 publication Critical patent/JPH034115B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/68Radar-tracking systems; Analogous systems for angle tracking only

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To eliminate an error by providing an angle measuring means for obtaining angle information while correcting an angle measuring error based on a multi-path effect which a pencil beam receives through the ground surface, by a correcting data set in advance based on a radar operating condition. CONSTITUTION:A received wave of a target received by pencil beams (a), (b) is received and processed by receivers 1, 2, respectively, and amplitude level data A, B are obtained, and inputted to a subtracter 5 through logarithmic amplifiers 3, 4. Also, in case the beam (b) does not receive a multi-path effect, a multiplier 6 receives an antenna constant K from a correcting data memory 8, and a wave angle phialpha shown by an expression I is outputted. Also, in case a scanning angle data inputted through an input line 1001 is in a multi-path generating angle range, a multi-path correcting operator 7 receives multi-path effect correcting constants K', C corresponding to a target wave angle and high level information from an output line 802, executes the operation of an expression II, and outputs the wave angle phialpha which has eliminated the multi-path effect.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は測角方式に関し、特にほぼ等しい特性を有して
相接するペンシルビームを複数組形成して受信する少な
くとも1組のペンシルビームの受信信号の振幅を比較す
ることにより目標に関する角度情報を得る機能を備えた
レーダが地表面反射によって受けるマルチパス効果にも
とづく測角誤差の影響を補正することを図った測角方式
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an angle measurement method, and in particular to a method for receiving received signals of at least one set of pencil beams formed by forming a plurality of adjacent pencil beams having substantially equal characteristics. This invention relates to an angle measurement method that aims to correct the influence of angle measurement errors based on multipath effects caused by ground surface reflections on a radar that has the function of obtaining angle information about a target by comparing amplitudes.

〔従来技術〕[Prior art]

特性がほぼ等しくかつ相接して形成されるペンシルビー
ムを複数組備え、主として航空機等の移動目標を対象と
して取得した少なくとも1組のペンシルビームによる受
信振幅を比較して該目標に関する角度情報を得るレーダ
の測角方式はよく知られている。
A plurality of sets of pencil beams having substantially the same characteristics and formed adjacent to each other are provided, and angular information regarding the target is obtained by comparing the received amplitudes of at least one set of pencil beams obtained mainly for a moving target such as an aircraft. Radar angle measurement methods are well known.

しかしながら、この種の従来のペンシルビーム振幅比較
測角方式には地表面によるビームのマルチパス反射の影
響を受けて測角データに誤差を生ずるという欠点がある
However, this type of conventional pencil beam amplitude comparison angle measurement method has the disadvantage that errors occur in the angle measurement data due to the influence of multipath reflection of the beam from the ground surface.

第1図はペンシルビーム振幅比較測角方式の基本的内容
を説明するだめのペンシルビーム測角方式説明図(A)
、およびペンシルビーム測角方式マルチ・くス誤差の基
本的内容を説明するためのペンシルビーム測角方式マル
チパス効果説明図(均である。
Figure 1 is an explanatory diagram of the pencil beam angle measurement method (A) to explain the basic contents of the pencil beam amplitude comparison angle measurement method.
, and a pencil beam angle measurement method multipath effect explanatory diagram (average) for explaining the basic contents of the pencil beam angle measurement method multipath error.

第1図(5)の如く、送および受信感度、指向特性等の
緒特性が互いにほぼ相等しい複数、たとえば2個の相接
するペンシルビームa、bを介して目標の受信信号を一
次レーダ方式で取得する場合を考えてみる。第1図(5
)におけるOはレーダ装置の送、受信点であり、またO
Llはペンシルビームaの最大送受信感度方向、いわゆ
るノーズ方向を示し、OLlはペンシルビームbのノー
ズ方向、OLoは二つのペンシルビームa、bの等送受
信感度方向、いわゆるクロスオーバ方向で、0!は目標
捕捉方向であり従って目標はO!綾線上あるとする。
As shown in Fig. 1 (5), the target reception signal is transmitted via a plurality of (for example, two) adjoining pencil beams a and b, which have almost the same characteristics such as transmission and reception sensitivities and directivity characteristics, using the primary radar system. Let's consider the case where we obtain Figure 1 (5
) is the transmitting and receiving point of the radar device, and O
Ll indicates the maximum transmitting and receiving sensitivity direction of pencil beam a, the so-called nose direction, OLl indicates the nose direction of pencil beam b, OLo indicates the equal transmitting and receiving sensitivity direction of the two pencil beams a and b, so-called crossover direction, and 0! is the target acquisition direction and therefore the target is O! Suppose it is on the twill line.

いまLLoQ、4 =ψαとするとψαはよく知られる
如く次の(1)式で示される。
Now, when LLoQ,4 = ψα, ψα is expressed by the following equation (1), as is well known.

ψα=K(LoiA−Lojil−B) ・・・・・・
・・・・・・・・・・・・(1)(1)式においてAお
よびBはそれぞれペンシルビームaおよびbによる目標
の受信電力であり、二つのペンシルビームによる受信信
号振幅に対応する量である。またKはペンシルビームの
特性によって予め決定されるアンテナ常数である。ペン
シルビームによる振幅比較測角方式はこの(1)式によ
ってめられるψαを二つの受信信号振幅からめる方式で
あり、OLo方向はレーダ装置の運用条件として既知で
あるので、このψαを目標に関する角度情報として利用
することができる。
ψα=K(LoiA-Lojil-B) ・・・・・・
・・・・・・・・・・・・(1) In equation (1), A and B are the target received power by pencil beams a and b, respectively, and are the amounts corresponding to the received signal amplitudes by the two pencil beams. It is. Further, K is an antenna constant determined in advance according to the characteristics of the pencil beam. The amplitude comparison angle measurement method using a pencil beam is a method in which ψα determined by equation (1) is calculated from the two received signal amplitudes, and since the OLo direction is known as an operating condition of the radar device, this ψα is used as angle information about the target. It can be used as

しかしながら、(1)式は二つのペンシルビームがほぼ
等しい特性を有するときに限って成立するものであり、
ペンシルビームによって測角する覆域にマルチパス生成
の要因となりうる地表面が存在すると、このマルチパス
伝搬を介して入力する受信信号によってペンシルビーム
の特性が等価的に変形するような影響を受け、これが測
角誤差の原因となる。
However, equation (1) only holds true when the two pencil beams have approximately the same characteristics.
If there is a ground surface that can cause multipath generation in the coverage area measured by the pencil beam, the received signal input through this multipath propagation will affect the characteristics of the pencil beam to be equivalently deformed. This causes angle measurement errors.

第2図はマルチパス効果による影響を含むペンシルビー
ム受信特性図である。
FIG. 2 is a diagram of pencil beam reception characteristics including the influence of multipath effects.

第2図に示す如く地表面によって生起せしめられるこの
種のマルチパス効果は主として下方のペンシルビームb
lcよる受信信号の振動レベルに影響し、恰もペンシル
ビームbがb′に変形したかのようになる。通常の受信
処理ではかかる変動バタンの平均値として点線に示すよ
うな受信振幅として扱われる。また一般的にこの種の目
的に利用されるペンシルビームの運用諸元においてはこ
のようなマルチパス効果の有意的影響はペンシルビーム
bに止まる場合が殆んどである。
As shown in Figure 2, this type of multipath effect caused by the ground surface is mainly caused by the downward pencil beam b.
This affects the vibration level of the signal received by the lc, making it appear as if the pencil beam b had been transformed into b'. In normal reception processing, the average value of such fluctuating bumps is treated as the reception amplitude shown by the dotted line. Furthermore, in the operating specifications of pencil beams generally used for this type of purpose, the significant influence of such multipath effects is mostly limited to pencil beam b.

第1図(B)における点線fは、マルチパス伝搬波ノ影
響を受けた下方ペンシルビームによる受信信号処理にお
いて、前述した振幅レベルの平均化処理によるパターン
平滑化に対応する等価ビームパターンであり、第2図の
点線によるパターンにも対応するもので明らかにペンシ
ルビームl) −1): マ/l/チパスの影響を受け
てそのノーズ方向が上方にシフトするが、本発明にあっ
てはこれを等価的にビーム幅の拡大として処理する。第
1図(均において、第1図(A)と同じ02方向の目標
から入力する目標の仰角は、等価的に拡大したものとし
て扱う下方ペンシルビームの影響を受けて受信され正し
い仰角ψαは次の(2)式で示すように等価ビーム幅拡
大に対応する補正を(1)式に施したものとして得られ
る。
The dotted line f in FIG. 1(B) is an equivalent beam pattern corresponding to pattern smoothing by the above-mentioned amplitude level averaging process in received signal processing by a downward pencil beam affected by multipath propagation waves, This corresponds to the pattern indicated by the dotted line in Fig. 2, and clearly the pencil beam l)-1): The nose direction shifts upward under the influence of the ma/l/chip path, but this is not the case in the present invention. is equivalently treated as an expansion of the beam width. In Fig. 1 (at the same time), the elevation angle of the target input from the target in the 02 direction as in Fig. 1 (A) is received under the influence of the downward pencil beam, which is treated as equivalently expanded, and the correct elevation angle ψα is as follows. As shown in equation (2), it is obtained by applying correction to equation (1) corresponding to the expansion of the equivalent beam width.

epa =に’ (Lo pA−,8o ff B −
C) −= ・= ・= −(2)(2)式においてに
′はマルチパス効果による等価ビーム幅拡大を受けだ場
合のペンシルビームの指向幅にもとづくアンテナ常数、
Cはビーム幅拡大を受けたペンシルビームによって得ら
れる受信信号に対する振幅レベル補正量である。
epa = ni' (LopA-,8offB-
C) −= ・= ・= −(2) In equation (2), ′ is the antenna constant based on the pointing width of the pencil beam when receiving the equivalent beam width expansion due to the multipath effect,
C is the amplitude level correction amount for the received signal obtained by the pencil beam that has undergone beam width expansion.

マルチパス伝搬の影響を受けるときにはこのような誤差
が測角データに入りこんでしまうという欠点があられれ
る。
When affected by multipath propagation, the disadvantage is that such errors enter the angle measurement data.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した欠点を除去し、ペンシルビーム
振幅比較により角度情報を得るレーダを利用する測角方
式において、地表面反射等によっ−C受けるペンシルビ
ームのマルチパス効果を補正する手段を予め備えて角度
情報を得ることにより、測角誤差を基本的に排除した高
精度の測角方式を提供することにある。
An object of the present invention is to eliminate the above-mentioned drawbacks and to provide a means for correcting the multipath effect of a pencil beam that is affected by -C due to ground surface reflection, etc. in an angle measurement method that uses a radar to obtain angle information by comparing pencil beam amplitudes. The object of the present invention is to provide a highly accurate angle measurement method that basically eliminates angle measurement errors by obtaining angle information in advance.

〔発明の構成〕[Structure of the invention]

本発明の方式は、特性がほぼ等しくかつ相接して形成さ
れ複数組のペンシルビームを介して取得する少なくとも
1組のペンシルビームによる目標の受信振幅を比較する
ことによって目標の角度情報を得るレーダの測角方式で
あって、前記ペンシルビームが地表面を介して受けるマ
ルチパス効果にもとづく測角誤差をレーダ運用条件にも
とづいて予め設定した補正データによって補正しつつ角
度情報を得る測角手段を備えて構成される。
The method of the present invention is a radar that obtains target angle information by comparing the received amplitude of the target by at least one set of pencil beams that are formed adjacently and have substantially equal characteristics and are acquired through a plurality of sets of pencil beams. The angle measurement method includes angle measurement means for obtaining angle information while correcting angle measurement errors due to multipath effects that the pencil beam receives through the ground surface using correction data set in advance based on radar operating conditions. Prepared and configured.

〔実施例〕〔Example〕

次に図面を参照して本発明の詳細な説明する。 Next, the present invention will be described in detail with reference to the drawings.

第3図は本発明の一実施例を示すブロック図である。FIG. 3 is a block diagram showing one embodiment of the present invention.

第3図に示す実施例は、それぞれほぼ同一の性能を有す
る受信器1および2、対数増幅器3および4のほか、減
算器5、乗算器6、マルチパス補正演算器7および補正
データメモリ8等を備えて構成される。
The embodiment shown in FIG. 3 includes receivers 1 and 2, logarithmic amplifiers 3 and 4, each having substantially the same performance, as well as a subtracter 5, a multiplier 6, a multipath correction calculator 7, a correction data memory 8, etc. It is composed of:

上下1組のペンシルビームによって取得した目標のふた
つの受信信号の振幅を比較し・て角度情報をめる場合に
マルチパス伝搬波による効果を補正するには、この効果
を受けてビームバタンか等価的に変形する下方のペンシ
ルビームについてその変形量をビーム幅の拡大として近
似せしめ、この拡大に対応する補正量を予め用意したう
え仰角をめればよい。
To compensate for the effect of multipath propagation waves when comparing the amplitudes of the two received signals of the target obtained by a set of upper and lower pencil beams to obtain angle information, the beam slam or equivalent It is sufficient to approximate the amount of deformation of the downward pencil beam that is deformed as an expansion of the beam width, prepare in advance a correction amount corresponding to this expansion, and then adjust the elevation angle.

このことは基本的には前述した(2)弐に示すK r。This basically corresponds to Kr shown in (2) 2 above.

Cを予め用意し、これによってマルチパス効果を受ケて
いるペンシルビームによって取得した測定値を補正すれ
ばよいわけである。
It is sufficient to prepare C in advance and use this to correct the measured values obtained by the pencil beam, which is subject to multipath effects.

マルチハス伝搬の効果によって下方ペンシルビームが等
価的に拡大変形したものとして処理する場合、この変形
による受信振幅の誤差を補正するためには、ペンシルビ
ームaとbとの振幅比較に利用する従来の振幅比較内挿
計算式を変形して得られる次の(3)式を利用する。
When processing the downward pencil beam as being equivalently enlarged and deformed due to the effect of multi-helix propagation, in order to correct the error in the received amplitude due to this deformation, it is necessary to change the conventional amplitude used for amplitude comparison between pencil beams a and b. The following equation (3) obtained by modifying the comparison interpolation calculation equation is used.

Kに等しくψ。Bは上方ペンシルビームの電力半値幅で
ある。寸たHは上方および下方ペンシルビームによって
捕捉した目標受信信号のアナログ/デジタル変換常数で
ある。さらにα=ψOB/ψBで、これは上方ペンシル
ビーム 電力半値幅/下方ペンシルビーム電力半値幅、ψaはマ
ルチパス効果を含む測定仰角であり、ψqは上、下方1
組のペンシルビームの上下方向走査における走査ステッ
プ角、Aはレーダ信号処理出力であって、レーダ装置に
おけるアナログ/デジタル変換後の出力がこれに相当す
る。
ψ equal to K. B is the power half width of the upper pencil beam. The dimension H is the analog-to-digital conversion constant of the target received signal acquired by the upper and lower pencil beams. Furthermore, α=ψOB/ψB, which is the upper pencil beam power half width/lower pencil beam power half width, ψa is the measurement elevation angle including multipath effects, and ψq is the upper, lower 1
The scanning step angle A in the vertical scanning of the set of pencil beams is the radar signal processing output, which corresponds to the output after analog/digital conversion in the radar device.

上述した(3)式は、ペンシルビームの方位方向走査角
と上下方向走査角によって決定される直角座標において
、上下方向角ψaに目標があるとき。
Equation (3) above applies when the target is at the vertical angle ψa in the rectangular coordinates determined by the azimuth scanning angle and the vertical scanning angle of the pencil beam.

たとえば上下方向走査角が+ψqのA点における出力電
圧x1と、上下方向走査角が−ψq シフトしたB点に
おける出力電圧x2に関するレーダ信号処理出力、通常
はアナログ/デジタル変換後の4o7xx−Jofxz
を演算すること罠よってめられる。なお、これら出力電
圧x1およびx2はそれぞれ次の(4)式および(5)
式で示される。
For example, the radar signal processing output regarding the output voltage x1 at point A, where the vertical scanning angle is +ψq, and the output voltage x2 at point B, whose vertical scanning angle is shifted by -ψq, usually 4o7xx-Jofxz after analog/digital conversion.
It is a trap to calculate. Note that these output voltages x1 and x2 are calculated by the following equations (4) and (5), respectively.
It is shown by the formula.

xs=Goe−b:’ψa−ψq)296110110
00.10.、(4)8□=Gte−bF(ψa+ψq
)2叫・・・・・・・・・・・(5)(4)、(5)弐
においてbOは前述したものと同じであり、またblは
abo 、G1=GoβでGoはアンテナ電力利得、β
はペンシルビームパターン形状によってきまる常数、b
oおよびblは垂直方向のアンテナビーム形状常数であ
る。
xs=Goe-b:'ψa-ψq)296110110
00.10. , (4) 8□=Gte-bF(ψa+ψq
)2...... (5) In (4) and (5) 2, bO is the same as above, bl is abo, G1 = Goβ, and Go is the antenna power gain. ,β
is a constant determined by the pencil beam pattern shape, b
o and bl are vertical antenna beam shape constants.

(3)式の左辺に対して実際のレーダの運用条件にもと
づく数値を代入してψaとAとの関係をめると、上下二
つのペンシルビームのクロスオーバ点を原点とし、ψa
がたかだか上下方向に1度程度の通常の運用動作角度範
囲では、ψa対対峙特性ほぼψaの一次関数mψ3+f
iで近似しうる。このmおよびnは目標の高度で決定し
うる常数であり、従ってマルチパスの影響が及ぶペンシ
ルと一ム走査角度範囲にわたって予め設定する諸高度ご
とに(3)式にもとづいてmおよびnの値を計算してお
けば、マルチパスの影響をうけた仰角ψaの真の値が正
確にめられる。
By substituting values based on the actual operating conditions of the radar into the left side of equation (3) and finding the relationship between ψa and A, we can see that the crossover point of the two upper and lower pencil beams is the origin, and ψa
In the normal operating angle range of about 1 degree in the vertical direction, the ψa versus confrontation characteristic is approximately the linear function of ψa mψ3+f
It can be approximated by i. These m and n are constants that can be determined based on the target altitude, and therefore, the values of m and n are determined based on equation (3) for each altitude set in advance over the pencil and one-meter scanning angle ranges that are affected by multipath. By calculating , the true value of the elevation angle ψa affected by multipath can be accurately determined.

ふたたび第3図の実施例に戻って説明する。上下二つの
ペンシルビーム、ペンシルビームaおよびbのうちbが
マルチパス効果を受けているものとする。
Returning again to the embodiment shown in FIG. 3, the explanation will be given again. It is assumed that of the two upper and lower pencil beams, pencil beams a and b, b is subject to a multipath effect.

ペンシルビームaによって受信された目標の受信波は受
信器1によって所定のレベル増幅等の受信処理を行なっ
たのち振幅レベルデータAとして対数増幅器3に供給さ
れる。
The target received wave received by the pencil beam a is subjected to reception processing such as predetermined level amplification by the receiver 1, and then is supplied to the logarithmic amplifier 3 as amplitude level data A.

はぼ同様にしてペンシルビームbによっテ捕捉された受
信波が受信器2から振幅レベルデータBとして対数増幅
器4に供給されるが、この振幅レベルデータBは第1図
卦よび第2図によって説明した如くマルチパス効果を受
けている。
In the same way, the received wave captured by the pencil beam b is supplied from the receiver 2 to the logarithmic amplifier 4 as amplitude level data B, but this amplitude level data B is expressed as shown in Figs. As explained above, it is affected by the multipath effect.

対数増幅器3および4は、それぞれ振幅レベルデータA
およびBの対数増幅を行ったのちこれらの所定のビット
数でデジタル変換して得られる沼05LA 、 J3o
 ffB を対数増幅出力として減算器5に供給する。
Logarithmic amplifiers 3 and 4 each have amplitude level data A
and B are logarithmically amplified and then digitally converted using a predetermined number of bits.
ffB is supplied to the subtracter 5 as a logarithmically amplified output.

減算器5は入力ライン1001を介してレーダ装置本体
(図示せず)から受けるペンシルビーム走査角情報にも
とづき、マルチパス効果を受けない場合と受けている場
合とで異る次の如き処理を行なう。
The subtracter 5 performs the following processing, which differs depending on whether the multipath effect is not affected or not, based on the pencil beam scanning angle information received from the radar device main body (not shown) via the input line 1001. .

すなわち、入力ライン1001を介して受けるペンシル
ビーム走査角情報は、ペンシルビームの方位角ならびに
上下角情報を提供するが、地表面等の反射を介して発生
するマルチパス効果はレーダの運用栄件に対応して成る
角度範囲内で発生することは明らかであり、減算器5は
走査角情報を受けつつ、マルチパス効果を発生しない走
査角範囲で捕捉した目標信号に対してはそのままJ3o
%A−poffBの演算が実施される。この場合J3o
 fBが101Aより大であるときは極性符号が変換さ
れて減算が実施される。こうして得られた−(1?oj
iLA −、、go54B はレーダ信号処理出力とし
て出力ライン501を介して乗算器6に供給される。
That is, the pencil beam scanning angle information received via the input line 1001 provides azimuth and vertical angle information of the pencil beam, but multipath effects generated through reflections from the ground surface etc. affect radar operation. It is clear that the signal occurs within the corresponding angle range, and while the subtractor 5 receives the scan angle information, it directly uses J3o for the target signal captured in the scan angle range where the multipath effect does not occur.
A computation of %A-poffB is performed. In this case J3o
When fB is greater than 101A, the polarity sign is changed and subtraction is performed. Thus obtained −(1?oj
iLA-, , go54B are supplied to the multiplier 6 via an output line 501 as radar signal processing outputs.

乗算器6は出力ライン801を介して補正データメモリ
8から受ける、(1)式に示すに常数を入力に乗算して
K (−1liloyA−JoPB)すなわち仰角ψa
を得る。このに常数は前述した如くペンシルビームで送
、受信するアンテナ常数であり、予め補正データメモリ
にストアされており、1001を介して入力する走査角
データがマルチパス効果発生範囲外であるときは基本的
な値のKが読出されて乗数として利用される。
The multiplier 6 receives the correction data from the correction data memory 8 via the output line 801 and multiplies the input by a constant as shown in equation (1) to obtain K (-1liloyA-JoPB), that is, the elevation angle ψa.
get. As mentioned above, this constant is the antenna constant for transmitting and receiving with a pencil beam, and is stored in the correction data memory in advance. The value of K is read out and used as a multiplier.

次に、入力ライン1001を介して入力する走査角デー
タが明らかにマルチパス発生角度範囲内であるときに入
力した受信波にもとづくレーダ信号出力Ao fA−A
o fBにはマルチパス効果の影神が含まれているので
これを補正して正しい仰角ψaを得なければならない。
Next, a radar signal output Ao fA-A is generated based on the received wave input when the scanning angle data input via the input line 1001 is clearly within the multipath occurrence angle range.
Since o fB includes the shadow of the multipath effect, this must be corrected to obtain the correct elevation angle ψa.

入力ライン1001を介して入力されるデータには前述
した走査角データのほか、目標の高度データも供給され
る。
In addition to the aforementioned scan angle data, target altitude data is also supplied to the data input via the input line 1001.

補正データメモリ8には、マルチパス効果を受ける方位
角、上下角範囲で目標を捕捉した場合の仰角に対するマ
ルチパス効果補正常数すなわち(2)式に示すに′およ
びCが、前述した(3)式によって説明した計算根拠に
もとづいてマルチパス効果を発生すると予め計算された
積載から取得した目標仰角、高度等に対応して得られる
修正量をマルチパス効果補正常数に’、Cとして予め計
算しストアされている。
The correction data memory 8 stores the multipath effect correction normal numbers for the elevation angle when a target is captured in the azimuth and vertical angle ranges subject to the multipath effect, that is, ' and C shown in equation (2), as described in (3) above. Based on the calculation basis explained by the formula, when a multipath effect occurs, the amount of correction obtained corresponding to the target elevation angle, altitude, etc. obtained from the pre-calculated load is calculated in advance as the multipath effect correction normal number ', C. Stored.

マルチパス補正演算器7は13o f A−430FB
に対して出力ライン802から供給される目標の仰角。
Multipath correction calculator 7 is 13of A-430FB
Target elevation angle provided from output line 802 relative to the target elevation angle.

高度情報に対応するマルチパス効果補正常数に/。/ to the multipath effect correction normal number corresponding to the altitude information.

Cを受けつつ(2)式に示す演算を実施し、マルチパス
効果を除去した仰角ψaを得てこれを出方する。
The calculation shown in equation (2) is performed while receiving C, and the elevation angle ψa from which the multipath effect has been removed is obtained and output.

このようにして地表面等の反射を介して発生するマルチ
パス効果を含むペンシルビーム振幅比較測高処理におけ
るマルチパス測角誤差の補正が容易に実施できる。
In this way, it is possible to easily correct multipath angle measurement errors in pencil beam amplitude comparison height measurement processing that include multipath effects caused by reflections from the ground surface, etc.

なお、第1図の実施例における各構成内容はこれらを任
意の組合せとして構成しても一向に差支えないことは明
らかである。
It is clear that each of the configurations in the embodiment shown in FIG. 1 may be configured in any combination.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、ペンシルビーム受信
振幅比較によって目標の角度情報を得るレーダの測角方
式において、地表面等の反射によって発生するマルチパ
ス効果にもとづくビーム変形量をビーム幅の拡大として
等価近似せしめ、レーダ運用条件にもとづいて予め計算
しストアしうる仰角補正データを利用しつつマルチパス
効果による測角誤差を補正するという手段を備えて測角
処理を行なうことにより、マルチパス効果を基本的に排
除した測角処理を極めて容易かつ効率的に実施しうる測
角方式が実現できるという効果がある。
As explained above, according to the present invention, in a radar angle measurement method that obtains target angle information by comparing the received amplitude of a pencil beam, the amount of beam deformation based on the multipath effect caused by reflection from the ground surface, etc. is expanded by expanding the beam width. By performing angle measurement processing with a means of correcting angle measurement errors due to multipath effects while using elevation angle correction data that can be calculated and stored in advance based on radar operating conditions, multipath effects can be effectively approximated. This has the effect of realizing an angle measurement method that can extremely easily and efficiently carry out angle measurement processing that basically eliminates the above.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はペンシルビーム振幅比較測角方式酸、明図(A
)およびペンシルビーム測角方式マルチパス効果説明図
(均、第2図はマルチパス効果を含むペンシルビーム受
信特性図、第3図は本発明の一実施例を示すブロック図
である。 1.2・・・・・・受信器、3.4・・・・・・対数増
幅器、5・・・・・・減算器、6・・・・・・乗算器、
7・・・・・・マルチ−くス補正演算器、8・・・・・
・補正データメモリ。 代理人 弁理士 内 原 晋 64) 卒 1 (支) Y 2 回
Figure 1 shows the pencil beam amplitude comparison angle measurement method.
) and a diagram illustrating the multipath effect of the pencil beam angle measurement method (Figure 2 is a pencil beam reception characteristic diagram including the multipath effect, and Figure 3 is a block diagram showing an embodiment of the present invention. 1.2 ...Receiver, 3.4...Logarithmic amplifier, 5...Subtractor, 6... Multiplier,
7... Multi-factor correction calculator, 8...
・Correction data memory. Agent Patent Attorney Susumu Uchihara 64) Graduated 1 (branch) Y 2 times

Claims (1)

【特許請求の範囲】[Claims] 特性がほぼ等しくかつ相接して形成された複数組のペン
シルビームを介して取得する少なくとも1組のペンシル
ビームによる目標の受信振幅を比較することによって目
標の角度情報を得るレーダの測角方式であって、前記ペ
ンシルビームが地表面を介して受けるマルチパス効果に
もとづく測角誤差をレーダ運用φ件にもとづいて予め設
定した補正データによって補正しつつ角度情報を得る測
角手段を備えて成ることを特Φとする測角方式。
A radar angle measurement method that obtains angle information about a target by comparing the received amplitude of the target by at least one set of pencil beams obtained through a plurality of sets of pencil beams that have approximately equal characteristics and are formed adjacent to each other. The apparatus further comprises an angle measurement means for obtaining angle information while correcting angle measurement errors due to multipath effects that the pencil beam receives via the ground surface using correction data set in advance based on radar operation φ. An angle measurement method with the characteristic Φ.
JP9603784A 1984-05-14 1984-05-14 Angle measuring system Granted JPS60238774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9603784A JPS60238774A (en) 1984-05-14 1984-05-14 Angle measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9603784A JPS60238774A (en) 1984-05-14 1984-05-14 Angle measuring system

Publications (2)

Publication Number Publication Date
JPS60238774A true JPS60238774A (en) 1985-11-27
JPH034115B2 JPH034115B2 (en) 1991-01-22

Family

ID=14154277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9603784A Granted JPS60238774A (en) 1984-05-14 1984-05-14 Angle measuring system

Country Status (1)

Country Link
JP (1) JPS60238774A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724875A (en) * 1980-07-23 1982-02-09 Mitsubishi Electric Corp Tracking radar device
JPS58123484A (en) * 1982-01-18 1983-07-22 Nec Corp Radar height-measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724875A (en) * 1980-07-23 1982-02-09 Mitsubishi Electric Corp Tracking radar device
JPS58123484A (en) * 1982-01-18 1983-07-22 Nec Corp Radar height-measuring apparatus

Also Published As

Publication number Publication date
JPH034115B2 (en) 1991-01-22

Similar Documents

Publication Publication Date Title
RU2291464C2 (en) Mode of measuring of the position of targets at availability of reflections of received echo-signal from surface and an impulse surface three-coordinate radar station for its realization
CN111638494A (en) Multi-channel amplitude and phase correction method for digital beam synthesis system
CA1223944A (en) Pulse radar apparatus
CN110426670B (en) Super-resolution DOA estimation method for external radiation source radar based on TLS-CS
KR102001394B1 (en) Method of estimating DOA of received signals based on logarithmic-domain antenna array interpolation, and apparatus for the same
CN110927751B (en) Array antenna self-adaptive correction implementation method based on carrier phase measurement
EP0542440B1 (en) Processing method for antenna patterns
CN115542243A (en) Interferometer direction finding method and system based on array antenna
CN116068484A (en) Direction finding method for realizing multi-beam monopulse signal by using amplitude comparison direction finding table
CN114966574A (en) Active electronic camouflage interference method for resisting spaceborne SAR reconnaissance
JPS60238774A (en) Angle measuring system
CN111929669B (en) Radio detection ranging correction method and system based on distance compensation
US6670918B2 (en) Method of repointing a reflector array antenna
US4193075A (en) Low angle elevation guidance system
US5296864A (en) Beam compression process for antenna pattern
CN112986701A (en) Holographic measurement method and system based on radio frequency power supply broadband signal
JP3009547B2 (en) Monopulse angle measurement receiver
RU2755058C1 (en) Method for determining the location of a ground satellite communication station by a retransmitted signal
JPH0511043A (en) Monopulse type rader angle measuring device
US4789864A (en) Low elevation guidance system
US5448247A (en) Beam compression method for radar antenna patterns
KR102561065B1 (en) Method and apparatus for improving satellite navigation positioning performance using stap of anti-jamming technology
CN115902797A (en) High-orbit SAR antenna pointing calibration method
CN115963484A (en) Vehicle-mounted motion platform self-adaptive digital multi-beam radar and detection method thereof
JP2884949B2 (en) Target detector

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term