JPS60238708A - Detecting method of thickness of underground buried pipe - Google Patents
Detecting method of thickness of underground buried pipeInfo
- Publication number
- JPS60238708A JPS60238708A JP9389484A JP9389484A JPS60238708A JP S60238708 A JPS60238708 A JP S60238708A JP 9389484 A JP9389484 A JP 9389484A JP 9389484 A JP9389484 A JP 9389484A JP S60238708 A JPS60238708 A JP S60238708A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- signal
- thickness
- underground
- ultrasonic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L55/00—Devices or appurtenances for use in, or in connection with, pipes or pipe systems
- F16L55/18—Appliances for use in repairing pipes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B17/00—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
- G01B17/02—Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は、地中に埋設された水道管、ガス管等の地下埋
設管の太さを検知し得る地下埋設管太さ検知方法に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to an underground pipe thickness detection method that can detect the thickness of underground pipes such as water pipes and gas pipes buried underground.
一般に、地下埋設管の増設または取替工事等の際に、予
め埋設管の太さを知ることが出来れば、その太さに合っ
た新規の埋設管または取替管を準備でき、それゆえ工事
上の無駄時間を省き作業能率の向上を期待できる。従っ
て、従来地下埋設管の太さを地表にて簡準に検知し得る
各種の検知方法が提案されてきたが、いずれの検知方法
も種々の解決すべき問題点を有し、実用上充分に満足で
きるものではなかった。Generally, when expanding or replacing underground pipes, if you can know the thickness of the underground pipe in advance, you can prepare a new underground pipe or replacement pipe that matches that thickness, and therefore the construction work can be carried out. You can expect to eliminate wasted time and improve work efficiency. Therefore, various detection methods have been proposed that can easily detect the thickness of underground pipes on the ground surface, but each detection method has various problems that need to be solved, and is not sufficient for practical use. It wasn't satisfying.
本発明は、このような点に鑑みてなされ、従来技44i
の問題点を有効に解決し、地下埋設管の太さを地表にて
簡単で確実に検知し得ると共に、取扱操作が容易な地下
埋設管太さ検知方法を提供することを目的とする。The present invention has been made in view of the above points, and is based on the conventional technique 44i.
To provide an underground pipe thickness detection method that can effectively solve the above problems, easily and reliably detect the thickness of an underground pipe on the ground surface, and is easy to handle.
本発明は、このような目的を達成するために、地中に埋
設された埋設管から分岐されて地表に露出している分岐
管に設置された超音波音源により前記埋設管を超音波励
振しミこの埋設管からの放射超音波を、地表上において
超音波受信器を前記埋設管の軸線に対して直角方向に移
動させることにより検知し、その超音波の検知信号を前
記超音波音源の励振信号に同期させて信号処理し、前記
検知信号の波形幅に基づいて前記埋設管の太さを判定す
ることを特徴とする。In order to achieve such an object, the present invention uses an ultrasonic sound source installed in a branch pipe that is branched from a buried pipe buried underground and exposed to the surface of the earth to excite the buried pipe with ultrasonic waves. The ultrasonic waves emitted from the underground pipe are detected by moving an ultrasonic receiver on the earth's surface in a direction perpendicular to the axis of the underground pipe, and the ultrasonic detection signal is used to excite the ultrasonic sound source. The method is characterized in that signal processing is performed in synchronization with the signal, and the thickness of the buried pipe is determined based on the waveform width of the detection signal.
本発明の1つの実施態様によれば、前記音波は超音波で
あることを特徴とする。According to one embodiment of the invention, the sound waves are ultrasound waves.
本発明の他の1つの実施態様によれば、前記音波は低周
波音波であることを特徴とする。According to another embodiment of the invention, the sound waves are low frequency sound waves.
次に、本発明の一実施例を図面に基づいて詳細に説明す
る。Next, one embodiment of the present invention will be described in detail based on the drawings.
第1図は本発明の一実施例の概略構成図を示す。FIG. 1 shows a schematic diagram of an embodiment of the present invention.
1 こ0第1図において・埋設管・例えば水道管lは地
中2に埋設されており、分岐管3はこの水道管1から分
岐されて地表に露出し、たとえば消火栓4を装備してい
る。地下埋設管太さ検知装置5は、超音波音源(本実施
例では振動子6と振動子駆動装置7とからなる超音波音
源)、同期信号検出器(ロックインアンプ)8.超音波
マイク9および記録計10等から成る。振動子6は分岐
管3の外周面に設置されるかまたは消火栓4等の放水口
にて接液して設置され、振動子駆動装置7により駆動さ
れて、地中2に埋設された水道管1を超音波励振する。1 In Figure 1, a buried pipe, for example, a water pipe 1, is buried underground 2, and a branch pipe 3 is branched from this water pipe 1 and exposed on the ground surface, and is equipped with, for example, a fire hydrant 4. . The underground pipe thickness detection device 5 includes an ultrasonic sound source (in this embodiment, an ultrasonic sound source consisting of a vibrator 6 and a vibrator drive device 7), a synchronization signal detector (lock-in amplifier)8. It consists of an ultrasonic microphone 9, a recorder 10, etc. The vibrator 6 is installed on the outer circumferential surface of the branch pipe 3 or is installed in contact with liquid at the water outlet of a fire hydrant 4, etc., and is driven by the vibrator drive device 7 to connect the water pipe buried underground 2. 1 is ultrasonically excited.
また、超音波マイク9は地表に近接または密接して移動
可能に設けられ、水道管1より地中2を経て伝達される
微弱な超音波を受信する。Further, the ultrasonic microphone 9 is movably provided close to or in close contact with the ground surface, and receives weak ultrasonic waves transmitted from the water pipe 1 through the underground 2.
なお、同期信号検出器8は、超音波マイク9にて受信す
る微弱な受信波が検知信号として信号線11を介して入
力されると共に、超音波音源である振動子駆動装置7の
励振信号が同期信号として信号線12を介して入力され
、そしてその検知信号と同期信号とを比較して、同期信
号に同期している検知信号の信号成分すなわち振幅成分
信号と位相成分信号とを含む信号成分のみを抽出するこ
とにより雑音除去を行って受信感度を高めるものである
。この間M信号検出器8の出力信号は記録計10にて記
録される。さらに、X−Xは水道管1の軸線方向を示し
、Y−Yは軸線方向x−Xに直角な超音波マイク9の走
査移動方向を示す。The synchronizing signal detector 8 receives a weak reception wave received by the ultrasonic microphone 9 as a detection signal via a signal line 11, and also receives an excitation signal from the transducer driving device 7, which is an ultrasonic sound source. The detection signal is input as a synchronization signal via the signal line 12, and the detection signal is compared with the synchronization signal to determine the signal component of the detection signal that is synchronized with the synchronization signal, that is, the signal component including an amplitude component signal and a phase component signal. By extracting only those signals, noise is removed and reception sensitivity is increased. During this time, the output signal of the M signal detector 8 is recorded by the recorder 10. Further, XX indicates the axial direction of the water pipe 1, and YY indicates the scanning movement direction of the ultrasonic microphone 9 perpendicular to the axial direction xx.
次に、第2図は水道管の軸線に対して直角方向に移動さ
れる超音波マイク9により受信した検知信号を同期信号
検出器8にて信号処理した後記録計lOにて記録した波
形図を示し、同図(A)は水道管が太い場合、同図(B
)は水道管が細い場合の波形図である。この第2図にお
いて、DAは水道管1への管径で、DBは水道管IBの
管径である。ここで、管径DAは管径DBよりも大きい
とする。しかして、第1図に示す超音波マイク9を地表
に近接または密接させて、移動方向Y−Yに移動させる
。この際に、超音波マイク9により検知される水道管I
A、IBからの検知信号の波形WA、WBは水道管LA
、1Bの中心線上に超音波マイク9があるときが最も高
く、水道管IA。Next, FIG. 2 is a waveform diagram obtained by processing the detection signal received by the ultrasonic microphone 9, which is moved perpendicularly to the axis of the water pipe, by the synchronization signal detector 8, and then recording it by the recorder IO. The same figure (A) shows the same figure (B) when the water pipe is thick.
) is a waveform diagram when the water pipe is thin. In this FIG. 2, DA is the pipe diameter to the water pipe 1, and DB is the pipe diameter of the water pipe IB. Here, it is assumed that the pipe diameter DA is larger than the pipe diameter DB. Thus, the ultrasonic microphone 9 shown in FIG. 1 is brought close to or in close contact with the ground surface and moved in the moving direction YY. At this time, the water pipe I detected by the ultrasonic microphone 9
Waveforms WA and WB of detection signals from A and IB are water pipe LA
, 1B is highest when the ultrasonic microphone 9 is on the center line of the water pipe IA.
IBから離れると急激に小さくなることが実測された。It was actually observed that the distance from the IB rapidly decreases.
従って、同−深さに埋設された管の場合、波形WA、W
Bの高さHl、H□はほぼ等しく、幅D+、Dzは水道
管IA、IBの管径DA、DBにほぼ対応していること
が判る。このことから水道管つまり埋設管の太さを検知
することができる。その際に、検知信号は同期検出器8
において励振信号と同期して処理されるから他の雑音の
影響を受けず、従って検知信号は微弱であるにもがかわ
らず検知感度が良好になる。Therefore, for pipes buried at the same depth, the waveforms WA and W
It can be seen that the heights Hl and H□ of B are approximately equal, and the widths D+ and Dz approximately correspond to the pipe diameters DA and DB of the water pipes IA and IB. From this, the thickness of the water pipe, that is, the buried pipe, can be detected. At that time, the detection signal is sent to the synchronous detector 8.
Since the detection signal is processed in synchronization with the excitation signal, it is not affected by other noises, and therefore the detection sensitivity is good even though the detection signal is weak.
なお、以上の説明においては、音波として超音波を使用
することについて述べたが、音波として低周波音波を使
用しても所期の目的が達成されることが実験の結果確認
されている。Although the above description has been made regarding the use of ultrasonic waves as the sound waves, it has been confirmed through experiments that the intended purpose can be achieved even when low frequency sound waves are used as the sound waves.
以上に説明するように、本発明によれば、地表に露出す
る分岐管を通じて埋設管を音波励振し、この埋設管から
の音波を、前記地表上において音波受信器を前記埋設管
の軸線に対して直角方法に移動して検知し、この検知信
号を音波音源の励振信号に同期させて信号処理すること
により、前記埋設管の太さを前記検知信号の波形幅とし
て得ることができる。その際に、検知信号は測定系以外
の雑音によって妨害されず、従って検知信号が微弱であ
るにもかかわらず、地下埋設管の太さを簡単かつ確実に
検知することができるようになると共に、長年の熟練を
要しないからその取扱が容易となる等の効果が奏される
。As explained above, according to the present invention, a buried pipe is acoustically excited through a branch pipe exposed on the ground surface, and the sound wave from the buried pipe is transmitted to a sonic receiver on the ground surface with respect to the axis of the buried pipe. The thickness of the buried pipe can be obtained as the waveform width of the detection signal by detecting the detection signal by moving in a perpendicular direction and processing the detection signal in synchronization with the excitation signal of the sonic sound source. At that time, the detection signal is not interfered with by noise other than the measurement system, so even though the detection signal is weak, it becomes possible to easily and reliably detect the thickness of the underground pipe, and Since it does not require many years of skill, it is easy to handle.
第1図は本発明の一実施例の概略構成図、第2図は水道
管の軸線に対して直角方向に移動される超音波マイクに
より受信した検知信号を同期信号検出器にて信号処理し
た後記録計にて記録した波形図を示し、同図−(A>は
水道管が太い場合、同図(B)は水道管が細い場合の波
形lである。
1−一水道管、3−−−一分岐管、5−−一地下埋設管
太さ検知装置、6−−−一振動子、7−−−一振動子駆
動装置、8−−一同期信号検出器(ロックインアンプ)
、9−−一超音波マイク。
第 1 図
(Al CB)
第2図
第1頁の続き
0発 明 者 石 塚 宏
@発 明 者 河 野 勝
O発明者山本 邦男
横須賀市長板2丁目2番1号 株式会社富士電機総合研
究所内Fig. 1 is a schematic configuration diagram of an embodiment of the present invention, and Fig. 2 shows a detection signal received by an ultrasonic microphone moved perpendicular to the axis of a water pipe and processed by a synchronous signal detector. The waveform diagram recorded by the rear recorder is shown, and the figure (A> is the waveform l when the water pipe is thick, and the figure (B) is the waveform l when the water pipe is thin. 1-1 Water pipe, 3- ---1 branch pipe, 5--1 underground pipe thickness detection device, 6--1 vibrator, 7--1 vibrator drive device, 8--1 synchronous signal detector (lock-in amplifier)
, 9--1 ultrasonic microphone. Figure 1 (Al CB) Figure 2, page 1 continued 0 Inventor: Hiroshi Ishizuka @ Inventor: Masaru Kono Inventor: Kunio Yamamoto 2-2-1 Nagaita, Yokosuka, Fuji Electric Research Institute, Ltd.
Claims (1)
している分岐管に設置された音波音源により前記埋設管
を音波励振し、この埋設管からの放射音波を、地表上に
おいて音波受信器を前記埋設管の軸線に対して直角方向
に移動させることにより検知し、その音波の検知信号を
前記音波音源の励振信号に同期させて信号処理し、前記
検知信号の波形幅に基づいて前記埋設管の太さを判定す
ることを特徴とする地下埋設管太さ検知方法。 2、特許請求の範囲第1項記載の検知方法において、前
記音波は超音波であることを特徴とする地下埋設管太さ
検知方法。 3)特許請求の範囲第1項記載の検知方法において、前
記音波は低周波音波であることを特徴とする地下埋設管
太さ検知方法。[Scope of Claims] 1) A sonic sound source installed in a branched pipe branched from a buried pipe buried underground and exposed to the ground surface causes the buried pipe to be sonic-excited, and the radiated sound waves from this buried pipe are generated. is detected by moving a sound wave receiver on the ground surface in a direction perpendicular to the axis of the buried pipe, and the detection signal of the sound wave is processed in synchronization with the excitation signal of the sound wave source, and the detection signal is A method for detecting the thickness of an underground underground pipe, characterized in that the thickness of the underground pipe is determined based on the waveform width of the underground pipe. 2. The method for detecting the thickness of underground pipes according to claim 1, wherein the sound waves are ultrasonic waves. 3) The method for detecting the thickness of underground pipes according to claim 1, wherein the sound waves are low-frequency sound waves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9389484A JPS60238708A (en) | 1984-05-12 | 1984-05-12 | Detecting method of thickness of underground buried pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9389484A JPS60238708A (en) | 1984-05-12 | 1984-05-12 | Detecting method of thickness of underground buried pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60238708A true JPS60238708A (en) | 1985-11-27 |
Family
ID=14095184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9389484A Pending JPS60238708A (en) | 1984-05-12 | 1984-05-12 | Detecting method of thickness of underground buried pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60238708A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017207426A (en) * | 2016-05-20 | 2017-11-24 | 国立研究開発法人産業技術総合研究所 | Acoustic wave propagation length measurement method, and acoustic wave propagation length measurement device |
-
1984
- 1984-05-12 JP JP9389484A patent/JPS60238708A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017207426A (en) * | 2016-05-20 | 2017-11-24 | 国立研究開発法人産業技術総合研究所 | Acoustic wave propagation length measurement method, and acoustic wave propagation length measurement device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20050072237A1 (en) | Pipeline inspection pigs | |
CA2169307A1 (en) | Non-contact characterization and inspection of materials using wideband air coupled ultrasound | |
CA2540596A1 (en) | Sonar system and process | |
GB2308191B (en) | Inspection of pipes | |
CA1295043C (en) | Method for acoustic reverberation removal | |
Alleyne et al. | The inspection of chemical plant pipework using Lamb waves: Defect sensitivity and field experience | |
JPS60238708A (en) | Detecting method of thickness of underground buried pipe | |
JPS60238734A (en) | Detection of water leakage | |
US20220099629A1 (en) | Method and device for non-destructive testing of a plate material | |
JPS60238777A (en) | Buried position detecting method of underground buried pipe | |
JPH08233788A (en) | Ultrasonic test equipment and test method | |
Fortunko et al. | Examination of objects made of wood using air-coupled ultrasound | |
CA2151116A1 (en) | Zig-Zag Electromagnetic Acoustic Transducer Scan | |
JPS55132950A (en) | Defect detector | |
JPS61120035A (en) | Method for detecting abnormality of underground piping | |
JPS60238778A (en) | Underground cavity detecting method | |
RU2011205C1 (en) | Parametric echo sounder | |
EP1320737A1 (en) | Method for detecting fluid leaks from underwater pipelines | |
RU2126538C1 (en) | Split method of ultrasonic inspection | |
Benson et al. | Experimental generation of Lamb wave dispersion using Fourier analysis of leaky modes | |
JPH05332996A (en) | Detection of surface defect of steel pipe | |
RU2082162C1 (en) | Piezoelectric converter of acoustic emission signals for flaw detection | |
JPS57157108A (en) | Device for detecting welded part of metallic material | |
Schramm et al. | Advanced methods for noncontact inspection of welds using electromagnetic-acoustic transducers | |
CN115901965A (en) | Golay coding ultrasonic excitation method based on nonlinear frequency modulation |