JPS60238195A - Treatment of high concentration copper-containing waste solution - Google Patents

Treatment of high concentration copper-containing waste solution

Info

Publication number
JPS60238195A
JPS60238195A JP9606384A JP9606384A JPS60238195A JP S60238195 A JPS60238195 A JP S60238195A JP 9606384 A JP9606384 A JP 9606384A JP 9606384 A JP9606384 A JP 9606384A JP S60238195 A JPS60238195 A JP S60238195A
Authority
JP
Japan
Prior art keywords
copper
waste liquid
neutralizing agent
liquid
waste solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9606384A
Other languages
Japanese (ja)
Inventor
Fujio Morimoto
森本 不二雄
Kosaku Masuda
増田 耕作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9606384A priority Critical patent/JPS60238195A/en
Publication of JPS60238195A publication Critical patent/JPS60238195A/en
Pending legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To perform the quantitatively and qualitatively excellent treatment of a copper waste solution, by forming a slurry by using an alkali neutralizing agent having a good dehydration property and dehydrating said slurry at specific pH while precipitating leaked copper in the dehydration separated solution as metal copper. CONSTITUTION:The copper waste solution from a printed circuit board manufacturing industry is stored in a neutralization tank at first and a neutralizing agent having a good dehydration property such as calcium hydroxide is added to said waste solution under stirring and the pH of the waste solution is held to 6.2-7. The formed slurry is subjected to solid-liquid separation in a dehydrator 3 to obtain a dehydrated sludge cake (b). The dehydration separated solution (a) is sent to a redox tank 4 where an iron powder (d) is thrown into said separated solution while pH is adjusted to 3-4 and redox reaction is performed to precipitate the leaked copper ion as metal copper. By this method, quantitatively and qulitatively excellent treatment is performed without diluting the copper waste solution.

Description

【発明の詳細な説明】 本発明は重金属含有廃液、特に電子部品関係のエツチン
グ廃液など主に銅の含有量が多い混液を中和法及び鉄粉
酸化還元法によ)処理する。
DETAILED DESCRIPTION OF THE INVENTION The present invention treats a heavy metal-containing waste liquid, particularly a mixed liquid containing a large amount of copper, such as an etching waste liquid related to electronic parts, by a neutralization method and an iron powder oxidation-reduction method.

高濃度鋼含有廃液の処理方法の改良に関するものである
。例えばプリント基板製造業或いは精密メッキ業等の業
種では高濃度に銅を含有した廃液(以下これを銅廃液と
称する)が排出されその銅濃度において高いものでは数
万ppmに達することもある。プリント基板製造業等に
は一般に過硫酸アンモニウム系、過酸化水素系等が多用
されこれらの銅廃液の処理に関して従来液状のitでは
処理が難しいとされていたが、これらを中和及び鉄粉酸
化還元法によシ処理するに次に述べるところの問題点の
解決となる。
This invention relates to improvement of a method for treating wastewater containing high concentration steel. For example, in industries such as the printed circuit board manufacturing industry and the precision plating industry, waste liquid containing a high concentration of copper (hereinafter referred to as copper waste liquid) is discharged, and the copper concentration can reach tens of thousands of ppm. Ammonium persulfate, hydrogen peroxide, etc. are commonly used in the printed circuit board manufacturing industry, and it has been difficult to treat these copper waste liquids with conventional liquid IT, but these can be neutralized and iron powder redox. Dealing with the law will solve the following problems.

従来の処理方法においては、焼却或いは電解及び稀釈に
よる放流であった。焼却はランニングコストが高く大気
汚染等の二次公害も発生する恐れがある。電解及び稀釈
による放流は無害化という本来の処理の原点から外れる
ものである。
Conventional treatment methods include incineration or discharge by electrolysis and dilution. Incineration has high running costs and may also cause secondary pollution such as air pollution. The discharge of water through electrolysis and dilution deviates from the original purpose of treatment, which is detoxification.

つまり従来の処理方法では複雑かつコストの高い一部の
方法を除外すれば銅の回収、廃液の無害化という技術的
要請を満足し得ないのである。
In other words, conventional treatment methods cannot satisfy the technical requirements of recovering copper and rendering waste liquid harmless, unless some complicated and costly methods are excluded.

本発明は上述したような従来の処理方法の欠点問題点を
解決するもので、その目的は銅廃液を稀釈により濃度を
下げることなく処理することができ、質的・量的に優れ
た処理能力を発揮し得る銅廃液の処理方法を提供するこ
とである。
The present invention solves the drawbacks of the conventional treatment methods as described above.The purpose of the present invention is to be able to treat copper waste liquid without reducing its concentration by diluting it, and to achieve qualitatively and quantitatively superior treatment capacity. An object of the present invention is to provide a method for treating copper waste liquid that can exhibit the following properties.

この目的を達する本発明の技術的構成は、A、プリント
基板エツチング等により生じた銅廃液に中和剤を添加し
て中和物を生成し、これを固液分離し夫々を廃棄等もし
くは再利用する工程より成る銅廃液の処理方法において B、中和剤として脱水性良好なアルカリ中和剤を使用し
中和スラリーをつくる。
The technical configuration of the present invention that achieves this objective is as follows: A. A neutralizing agent is added to copper waste liquid generated from printed circuit board etching, etc. to generate a neutralized product, which is separated into solid and liquid, and each is disposed of or recycled. In the method for treating copper waste liquid comprising the steps of utilizing B, an alkaline neutralizing agent with good dehydration properties is used as a neutralizing agent to create a neutralized slurry.

C9その中和スラリーはpH6,2〜7,0で脱水する
O D、脱水分離液中にリーク(1eak) l、た銅イオ
ンに関してFipn 3〜4に酸にてpHe調整しつつ
鉄粉による酸化還元反応をおこない金属鍜を析出させる
C9 The neutralized slurry was dehydrated at pH 6.2 to 7.0, leaked into the dehydrated separation solution (1 eak), and oxidized with iron powder while adjusting the pH with acid to Fipn 3 to 4 for copper ions. A reduction reaction is performed to precipitate metal.

上記A−Dから成る銅廃液の処理方法に存する。The present invention relates to a method for treating copper waste liquid consisting of the above A to D.

前記銅廃液は、プリント基板のエツチング、精密メッキ
等により生じた廃液そのものを相称することはいうまで
もないが単一の廃液に限定するものではなく、2種以上
の銅廃液の混合系が処理対象である場合も含む。むしろ
、こうし7た2種以上の銅廃液の混合系廃液の方が本発
明の被処理対象に適する場合がある。つまりプリント基
板製造業等において各種の銅廃液を使用量により分別す
ることはコスト高となるため混合銅廃液となる場合が多
く又産業廃棄物処理業が処理衣託を受けた場合において
も単−的に運搬することは難かしく、混積となる可能性
が大きいからである。
It goes without saying that the above-mentioned copper waste liquid refers to the waste liquid itself generated from etching of printed circuit boards, precision plating, etc., but it is not limited to a single waste liquid, but can be treated by a mixed system of two or more types of copper waste liquid. Including cases where it is a target. Rather, a mixed waste liquid of two or more of these seven types of copper waste liquid may be more suitable for the treatment target of the present invention. In other words, in the printed circuit board manufacturing industry, etc., it is costly to separate various types of copper waste liquid according to the amount used, so mixed copper waste liquid is often produced. This is because it is difficult to transport the materials and there is a high possibility that they will be mixed together.

(中和剤) 本発明は中和法の改良であるので、廃液をアルカリで中
和するというpHの調整工程を有する点は従来の中和法
と変わらない中和剤としては、脱水性の良好なものでな
くてはいけない。好ましくは水酸化カルシウム又はこれ
を主成分とするものが良い。
(Neutralizing agent) Since the present invention is an improvement of the neutralization method, it is the same as the conventional neutralization method in that it includes a pH adjustment step of neutralizing the waste liquid with an alkali. It must be in good condition. Preferably, calcium hydroxide or a material containing calcium hydroxide as a main component is preferred.

(中和範囲) pHを6.2〜7.0としたのけ本発明の一つの特徴で
ある。中和法のみでは全ての銅を析出させることは難か
しい。鉄粉酸化還元法と合せ安価な処理コストとするた
めで脱水分離液中にリークする銅イオン濃度を一定範囲
とする点でpH6,2〜7.0に設定する(第1図)。
(Neutralization range) One feature of the present invention is that the pH is set to 6.2 to 7.0. It is difficult to precipitate all the copper using only the neutralization method. The pH is set at 6.2 to 7.0 in order to keep the concentration of copper ions leaking into the dehydrated liquid within a certain range in order to reduce the processing cost in combination with the iron powder oxidation-reduction method (Figure 1).

pHを6.2以下又は7.0以上にて調整を行なうとリ
ークする。銅イオン濃度が高くなるため鉄粉酸化還元法
において多量の鉄粉及びpH調整酸が消費されることに
なる。又これらの現象は次の固液分離工程において時間
的に長くかかシ、スラッヂ量の多いことも手つだって維
持管理費がよシ高価となる。特にpHが酸性領域におい
ては脱水スラツヂケーキの再利用の際に水素イオンによ
シ炉 ゛に悪影響を及ぼす。
If the pH is adjusted to below 6.2 or above 7.0, leakage will occur. Since the copper ion concentration becomes high, a large amount of iron powder and pH adjusting acid are consumed in the iron powder redox method. In addition, these phenomena require a long time in the subsequent solid-liquid separation step, and a large amount of sludge is produced, resulting in high maintenance costs. Particularly in acidic pH ranges, when reusing dehydrated sludge cake, hydrogen ions will have a negative effect on the furnace.

以上の説明からも理解されるように、本発明は中和スラ
リーのpH調整が簡単であることを利用しpH6,2〜
7.0という範囲で中和並びに脱水を行ない、これによ
シ脱水分離液中にリークする銅イオン濃度を意図的に制
御するものである。
As can be understood from the above explanation, the present invention takes advantage of the fact that the pH of the neutralized slurry can be easily adjusted.
Neutralization and dehydration are carried out within the range of 7.0, thereby intentionally controlling the concentration of copper ions leaking into the dehydrated separated liquid.

(鉄粉酸化還元法) 脱水分離液中にリークした銅イオンは硫酸にてpH3〜
4に調整をし鉄粉を銅濃度に合せ混合し酸化還元反応を
行なわせる。
(Iron powder oxidation-reduction method) Copper ions leaked into the dehydrated separated liquid are treated with sulfuric acid to pH 3~
4 and mix the iron powder according to the copper concentration to perform the oxidation-reduction reaction.

尚、塩酸にてpH調整を行なった場合は、反応性は良好
であるが銅の再溶解の危険性が供なうため望ましくは硫
酸を用いる。鉄粉酸化還元法においてpHを3〜4に調
整する理由は次の通ジであるpH3以下において、硫酸
で調整した場合鉄粉の表面に酸化被覆が生じてしまい置
換反応がさまたけられてしまう。よって適量の鉄粉で反
応が起らず多量の鉄粉を消費しなければならない一方p
H4以上におl/−1テFe (OH) 3m nH2
O070ツクが析出されSSの増加となる。又酸濃度の
りすいことより鉄粉の未溶解が生じる。以上のことより
pH3以下もpH4以上も後の固液分離を非常に難かし
くさせランニングコストを高めてしまうことになる。こ
うした本発BAKよる処理方法の一例を70−シート(
第2図)に基づいて説明する。銅廃液はまず、中和槽1
に貯留し、これに中和剤を添加して攪拌しつつpHを6
.2〜7.OK維持し、その後スラリー[2を経て脱水
@3でけ固液分離がおこなわれ脱水スラッジケーキが排
出される。脱水分離液は酸1し還元種4に送られる。固
液分離工程において高圧脱水機(例えばチューブプレス
脱水機)を使用すれば100kf/c++l程度で行な
えるので脱水スラッジケーキの含水率が著しく低く脱水
スラジケーキの再利用という点で有利となる。つまりフ
ィルタープレス脱水機、真空脱水機等の比較的低圧(4
ks/cyd〜tOkp/d)脱水機の使用に関しては
含水率が高くなシ再利用するには脱水後に乾燥工程など
が加算され保管設備といったこともあって費用が嵩むの
である。脱水分離液成分はリークした銅イオンが主体で
酸化還元槽4においてpHを3〜4に調整しつつ鉄粉を
投入し酸化還元反応を行なわせ金属鋼析出後1次分離装
置5で固液分離する。6は1次濾過器、7は1次pH調
整槽でめる0 重金属以外の物質を含有しない脱水分離液#−t1次p
HX整檜9にてpH10〜10,5に調整し水酸化鉄の
フロックを形成させると共に凝集槽8でフロックを成長
させ2次分離装置9で固液分離させる。
Note that when the pH is adjusted with hydrochloric acid, the reactivity is good, but there is a risk that copper will be redissolved, so sulfuric acid is preferably used. The reason why the pH is adjusted to 3 to 4 in the iron powder redox method is as follows: If the pH is below 3, an oxidized coating will form on the surface of the iron powder and the substitution reaction will be hindered. . Therefore, the reaction does not occur even with an appropriate amount of iron powder, and a large amount of iron powder must be consumed.
l/-1teFe (OH) 3m nH2 over H4
O070 is precipitated and SS increases. Also, due to the acid concentration being too high, iron powder may not be dissolved. As a result of the above, solid-liquid separation after pH 3 or lower or pH 4 or higher becomes extremely difficult, resulting in increased running costs. An example of a processing method using the BAK of this invention is 70-sheets (
The explanation will be based on Fig. 2). Copper waste liquid is first transferred to neutralization tank 1.
Add a neutralizing agent to this and adjust the pH to 6 while stirring.
.. 2-7. After that, solid-liquid separation is performed through slurry [2] and dehydration@3, and a dehydrated sludge cake is discharged. The dehydrated separated liquid is converted into acid 1 and sent to reducing species 4. If a high-pressure dehydrator (for example, a tube press dehydrator) is used in the solid-liquid separation process, it can be carried out at about 100 kf/c++l, so the moisture content of the dehydrated sludge cake is extremely low, which is advantageous in terms of reusing the dehydrated sludge cake. In other words, relatively low pressure (4
ks/cyd~tOkp/d) When using a dehydrator, the moisture content is high, and if it is to be reused, a drying process is added after dehydration, and storage equipment is required, which increases costs. The dehydration separation liquid component is mainly composed of leaked copper ions, and the pH is adjusted to 3 to 4 in the oxidation-reduction tank 4, and iron powder is introduced to perform the oxidation-reduction reaction. After precipitation of metal steel, solid-liquid separation is carried out in the primary separator 5. do. 6 is the primary filter, 7 is the primary pH adjustment tank. 0 Dehydrated separated liquid containing no substances other than heavy metals #-t1st p
The pH is adjusted to 10 to 10.5 using an HX cypress 9 to form iron hydroxide flocs, and the flocs are grown in a coagulation tank 8 and solid-liquid separated in a secondary separator 9.

この際鉄以外の重金属も水酸化鉄にて共沈する=10は
2次濾過器。11は2次pH調整槽である。
At this time, heavy metals other than iron are also co-precipitated with iron hydroxide = 10 is a secondary filter. 11 is a secondary pH adjustment tank.

以下、実施例にたシ本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

〔実施例1〕 別表1に示す組成を有する銅廃液A、B、C社(排出事
業Wr)を適当量づつ9−を中和槽に貯留し、これに中
和剤としてカーバイト滓(Ca(OH)2)を1−程度
投入しpHを6.5 K調整した(2時間)。
[Example 1] Appropriate amounts of copper waste solutions A, B, and C companies (discharge business Wr) having the composition shown in Attached Table 1 were stored in a neutralization tank, and carbide slag (Ca (OH)2) was added to adjust the pH to 6.5 K (2 hours).

次いでこれをスラリー槽を中継して脱水機に入れ、脱水
スラッジケーキと脱水分離液に分離した。
Next, this was put into a dehydrator via a slurry tank and separated into a dehydrated sludge cake and a dehydrated separated liquid.

スラリー槽でのpHは6.6、脱水機は総濾過容量1、
62 m/を有する自動型圧搾式フィルタープレスで、
濾過圧力4Ky/al、圧搾圧力フ Kql ad 、
瀘布け10 c c/aim secでアラた(200
/l 濾過時間18分、圧搾時間2分)。
The pH in the slurry tank is 6.6, the total filtration capacity of the dehydrator is 1,
Automatic filter press with 62 m/
Filtration pressure 4Ky/al, compression pressure Kql ad,
Arata with 10 c c/aim sec (200
/l filtration time 18 minutes, squeezing time 2 minutes).

この脱水スラッジケージの含水率は50”%−であル、
含有試験を行なったところ、Cu7v/W程度であった
。脱水分離液中Cu3501R9/lであった。
The moisture content of this dehydrated sludge cage is 50”%.
When a content test was conducted, it was about Cu7v/W. The dehydrated separated liquid contained Cu3501R9/l.

酸化還元反応てpH3〜4に硫酸にて調整しつつ更に鉄
粉0.35〜0.4 Kql dを投入し酸化還元反応
を行なった(1時間)。金属鋼析出後1次分離装置に送
給した。1次濾過器を経由した分離液成分のCu濃度は
3.3■/lであるこのことはこの分離液が海洋投棄規
制に適合することを意味する。この分離液を再び1次p
Hll1整槽にてpHを10.5に調整し水酸化鉄フロ
ックを発生させ凝集槽にて凝集剤sppm注入後2次分
離装置に送給した。この際2次濾過器を経由せず得られ
た処理液成分は次の通シである。これは下水道放流規制
に適合する・ ことを意味する。
While adjusting the pH to 3 to 4 with sulfuric acid, 0.35 to 0.4 Kql d of iron powder was further added to carry out the redox reaction (for 1 hour). After the metal steel was deposited, it was sent to a primary separation device. The Cu concentration of the separated liquid component that passed through the primary filter was 3.3/l, which means that this separated liquid complied with ocean dumping regulations. This separated liquid is reused in the primary p
The pH was adjusted to 10.5 in the Hll1 adjustment tank to generate iron hydroxide flocs, and after spm of flocculant was injected in the flocculation tank, the flocs were sent to a secondary separation device. At this time, the treated liquid components obtained without passing through the secondary filter were as follows. This means that it complies with sewer discharge regulations.

濃度;Cd<0.01.S−Mn<Q、5.Pb<0.
1S−Fe Q、7 、 Cu 0621 、 F 2
.0. Zn <0.5T−Cr <Q、Q5 、 n
−ヘキサン抽出物質量 不検出BOD/20 、ヨウ素
消費量100 〔単位:11〕 〔実施例2〕(比較資料) 別表2に示す組成の銅廃液A、B、C社(排出事業所)
を適当量づつ9♂を用意し、これにカーバイト滓1.5
wt程度を混合攪拌し、pH7,8に中和した。スラリ
ー槽でのpHは8.0、フィルタープレス脱水機におけ
る脱水スラッジケーキの含水率は50%憾、 CuけC
覧]であった。また脱水分離液中Cu Id2,0OO
11に9/lであった。
Concentration; Cd<0.01. S-Mn<Q, 5. Pb<0.
1S-Fe Q,7, Cu0621, F2
.. 0. Zn <0.5T-Cr <Q, Q5, n
- Amount of hexane extracted substance: Undetected BOD/20, Iodine consumption: 100 [Unit: 11] [Example 2] (Comparative data) Copper waste liquid companies A, B, and C (discharging business) with the composition shown in Attached Table 2
Prepare an appropriate amount of 9♂ and add 1.5 of carbide slag to this.
About wt was mixed and stirred and neutralized to pH 7.8. The pH in the slurry tank is 8.0, and the moisture content of the dehydrated sludge cake in the filter press dehydrator is 50%.
]. In addition, Cu Id2,0OO in the dehydrated separated liquid
It was 9/l in 11.

別表2 〔単位:■/l〕 つまりこの段階でCuは過多であり、酸化還元反応に要
する鉄粉は1.8〜1.9 Kql d テ同時t/c
pH調整用硫酸も増量となシコストアップの要因となっ
ていることがわかる。この段階で水処理を目的とした場
合、1次pH調整檜におけるアルカリ消費量が多量とな
るばかりでなく固液分離圧おけるスラッジ量が増大し維
持管理費がかさむことは明白である。
Attached Table 2 [Unit: ■/l] In other words, at this stage there is too much Cu, and the amount of iron powder required for the redox reaction is 1.8 to 1.9 Kql d Te simultaneous t/c
It can be seen that the amount of sulfuric acid for pH adjustment is also a factor in increasing the sycocost. If water treatment is intended at this stage, it is clear that not only will the amount of alkali consumed in the primary pH-adjusting cypress be large, but also the amount of sludge in the solid-liquid separation pressure will increase, increasing maintenance costs.

中和pHが6.2以下においても同様の結果となるばか
シでなく脱水スラッジケーキを銅として再利用する際に
炉圧水素イオンによシ悪影響を与える。又銅以外の重金
属を含有する銅廃液においては脱水分離液中にこれらの
重金属がリークをし前述の海洋投棄処理、下水道放流処
理の様な脱水分離液処理をよシ困難とさせるのである。
Even if the neutralization pH is 6.2 or lower, the same result will not occur, but when the dehydrated sludge cake is reused as copper, the furnace pressure hydrogen ions will have an adverse effect. In addition, in copper waste liquid containing heavy metals other than copper, these heavy metals leak into the dehydrated separated liquid, making it difficult to treat the dehydrated separated liquid such as the aforementioned ocean dumping treatment or sewage discharge treatment.

上述のsm−例、2よ)、本発明の処理方法によって得
られた脱水スラッジケーキは銅として再利用が可能であ
る。よシ含水率を低下させるためには高圧脱水機(10
0Kqlal )を使用するととKよシ含水率3s〜4
0 ’5/−1程度の脱水スラッジケーキが得られる実
験結果を得ている。
As per SM-Example 2 above), the dewatered sludge cake obtained by the treatment method of the present invention can be reused as copper. In order to lower the moisture content, use a high pressure dehydrator (10
When using 0Kqlal), the water content is 3s~4.
Experimental results have been obtained in which a dehydrated sludge cake of about 0'5/-1 can be obtained.

前述した各業種のほか、産業廃棄物処理業においても、
より完全かつ徹底した安全な海洋投棄処理又は水処理、
再利用が望まれる。本発明によシ銅廃液中にアンモニア
が多量に重金属と共存している場合でも設定した中和ス
ラリーpH値の範囲において除去され、かつ水処理にお
いては水酸化鉄により共沈除去され実質上完全無害化が
達成されることとなる。
In addition to the above-mentioned industries, in the industrial waste treatment industry,
more complete, thorough and safe ocean dumping or water treatment;
Reuse is desirable. According to the present invention, even when a large amount of ammonia coexists with heavy metals in the copper waste solution, it is removed within the set neutralization slurry pH value range, and in water treatment, it is virtually completely removed by co-precipitation with iron hydroxide. Detoxification will be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における#画調廃液スラリー(中和スラ
17−)pHと脱水分離液中の銅濃度の相関を示す一例
のグラフ、第2図は本発明に係る銅廃液の処理方法の一
例を示すフローシートである0 特許出願人 森 本 不二雄 第 1 図 竺 嘱 畢 CP)l)
Figure 1 is a graph showing an example of the correlation between the pH of the #image-grading waste liquid slurry (neutralized slurry 17-) and the copper concentration in the dehydrated separation liquid in the present invention, and Figure 2 is a graph of the method for treating copper waste liquid according to the present invention. This is a flow sheet showing an example.

Claims (1)

【特許請求の範囲】 1)プリント基板製造業、精密メッキ業等より生じた高
濃度銅含有廃液に中和剤を添加して、中和物を生成しこ
れを固液分離し夫々を再利用もしくけ廃液等処理する工
程より成る高濃度鋼含有廃液の処理方法、・中和剤とし
ては脱水性良好なアルカリ中和剤を使用し、その中和ス
ラリーをpH6,2〜7.0で脱水する。脱水分離液中
にリークした銅イオン#’1pHa〜4に酸(以下これ
をpHM整酸と称する)Kて調整を行ないつつ鉄粉によ
る酸化・還元反応(以下これを鉄粉酸化還元法と称する
)を行ない金属鋼として析出させる過程を”含むことを
特徴とする。 高濃度鋼含有廃液の処理方法 2)アルカリ中和剤が水酸化カルシウム又はこれを主成
分とするものである特許請求の範囲第13!HIF!載
の高温、豫釧含右廃前の軌理嘴炊へ3) pH調整酸が
硫酸・塩酸又はこれを主成分とするものである特許請求
の範囲第1項記載の高濃度鋼含有廃液の処理方法。 4)高濃度鋼含有廃液が単独、ある鱒は混合廃液である
特許請求の範囲第1項記載の高濃度鋼含有廃液の処理方
法。
[Scope of Claims] 1) Adding a neutralizing agent to high-concentration copper-containing waste liquid generated from the printed circuit board manufacturing industry, precision plating industry, etc. to produce a neutralized product, which is separated into solid and liquid and reused. A method for treating high-concentration steel-containing waste liquid, which consists of the process of treating waste liquid, etc. - An alkaline neutralizing agent with good dehydration properties is used as the neutralizing agent, and the neutralized slurry is dehydrated at a pH of 6.2 to 7.0. do. While adjusting the copper ions #'1 pHa to 4 leaked into the dehydrated separated liquid with acid (hereinafter referred to as pHM acid regulation), an oxidation/reduction reaction using iron powder (hereinafter referred to as iron powder oxidation-reduction method) is carried out. ) and depositing it as metallic steel. Method for treating waste liquid containing high concentration steel 2) Claims in which the alkali neutralizing agent is calcium hydroxide or a substance containing calcium hydroxide as a main component. No. 13! To the high-temperature, high-temperature cooking before discontinuation of the HIF! 3) The high temperature according to claim 1, in which the pH-adjusting acid is sulfuric acid, hydrochloric acid, or one containing these as a main component. 4) The method for treating a high concentration steel-containing waste liquid according to claim 1, wherein the high concentration steel-containing waste liquid is used alone, and for some trout, a mixed waste liquid is used.
JP9606384A 1984-05-14 1984-05-14 Treatment of high concentration copper-containing waste solution Pending JPS60238195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9606384A JPS60238195A (en) 1984-05-14 1984-05-14 Treatment of high concentration copper-containing waste solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9606384A JPS60238195A (en) 1984-05-14 1984-05-14 Treatment of high concentration copper-containing waste solution

Publications (1)

Publication Number Publication Date
JPS60238195A true JPS60238195A (en) 1985-11-27

Family

ID=14154968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9606384A Pending JPS60238195A (en) 1984-05-14 1984-05-14 Treatment of high concentration copper-containing waste solution

Country Status (1)

Country Link
JP (1) JPS60238195A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813271A (en) * 2020-12-31 2021-05-18 深圳市星河环境技术有限公司 Method for recovering brownification waste liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112813271A (en) * 2020-12-31 2021-05-18 深圳市星河环境技术有限公司 Method for recovering brownification waste liquid

Similar Documents

Publication Publication Date Title
US5266210A (en) Process for removing heavy metals from water
JP5003786B2 (en) Method and apparatus for treating chlorine-containing waste as a raw material for cement
WO2004094320A1 (en) Method of treating digested sludge
EP0005011B1 (en) A method of removing metallic impurities from sewage sludge
CA1115437A (en) Process for treating waste water
JP2010036107A (en) Sewage treatment method
JP3325689B2 (en) Treatment method for metal-containing wastewater
JPS60238195A (en) Treatment of high concentration copper-containing waste solution
JP5073354B2 (en) Waste liquid treatment method and treatment equipment using iron-oxidizing bacteria
JPH05337474A (en) Treatment of waste water containing heavy metal
CN113371934A (en) Sewage treatment method
JP5693992B2 (en) Method for recovering dissolved iron from wastewater containing various metal ions
JP3225777B2 (en) Wastewater treatment method
JPH0141110B2 (en)
JP2021074663A (en) Wastewater treatment method and wastewater treatment system
JP2007038196A (en) Metal etching wastewater treatment method
JPS6339309B2 (en)
JPS5834098A (en) Treatment of organic sludge
JPS5910391A (en) Treatment of waste acid having high concentration
JPS63315197A (en) Treatment process for organic waste water
JPH0557292A (en) Treatment of waste water containing heavy metal
JP7240577B2 (en) Method for treating etching wastewater containing copper ions and water-soluble organic substances
JPS63258692A (en) Treatment of organic sewage
JPH10277564A (en) Method for treating waste liquid
JPH057879A (en) Treatment of waste water containing heavy metal