JPS6023794A - Heat exchange device - Google Patents

Heat exchange device

Info

Publication number
JPS6023794A
JPS6023794A JP58131269A JP13126983A JPS6023794A JP S6023794 A JPS6023794 A JP S6023794A JP 58131269 A JP58131269 A JP 58131269A JP 13126983 A JP13126983 A JP 13126983A JP S6023794 A JPS6023794 A JP S6023794A
Authority
JP
Japan
Prior art keywords
fluid
heat transfer
scale
transfer tube
supersonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58131269A
Other languages
Japanese (ja)
Inventor
Tadao Nakamura
忠雄 中村
Toshiharu Tachibana
橘 利春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsushita Kosan KK
Panasonic Holdings Corp
Original Assignee
Matsushita Kosan KK
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Kosan KK, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Kosan KK
Priority to JP58131269A priority Critical patent/JPS6023794A/en
Publication of JPS6023794A publication Critical patent/JPS6023794A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/004Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using protective electric currents, voltages, cathodes, anodes, electric short-circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To prevent scale from adhering to a heat transfer tube or a fluid carrying pipe by a method wherein a supersonic transducer is provided so as to contact with one of fluid near a heat transfer body having two kinds of different flow paths and an alternative electric power is supplied to the transducer. CONSTITUTION:The fluid 11 enters from an inlet port 2 and flows out of a discharging port 3. Another fluid 12 enters from the inlet port 4 and flows out of the discharging port 5. The supersonic transducer 7 is provided on the outer tube 6 near the heat transfer tube 1 so as to contact with the fluid 12 and high- frequency electric power is supplied continuously or intermittently to the transducer from an oscillating amplifier 10 through terminals 8, 9. Electric energy from the oscillating amplifier 10 oscillates the fluid 12 as a supersonic wave. The oscillated fluid 12 causes the supersonic vibration of the heat transfer tube 1 and the fluid 11 in the heat transfer tube 1 is oscillated by the propagation of the supersonic vibration, then, the supersonic vibration of all tubular body walls, such as the outer tube or the like, which are contacting with the fluid 12, are caused. According to the vibration, the scale of the heat transfer tube elutes out into the fluid as sludge without adhering to the heat transfer tube or the vicinity thereof.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は温泉水、地下水、海水あるいは水道水など(以
下流体という)に考る加熱・冷却装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a heating/cooling device for hot spring water, underground water, seawater, tap water, etc. (hereinafter referred to as fluid).

従来例の構成とその問題点 工業用あるいは一般用に用いられる加熱・冷却装置にお
ける安定した運転のだめの問題として伝熱管あるいは搬
送管へのスケール付着とそれによる流体搬送抵抗の増大
、熱交換率の低下、缶体腐食の問題がある。これらスケ
ール付着は、装置運転における熱経済性を著しく阻害す
るため、その対策は重要な問題である。特に加熱や冷却
装置の熱交換部のスケールは著しい熱交換率の低下をも
たらし、更に熱交換器は伝熱面積増大のために複雑な形
状を有しており、一旦スケールが付着するとその除去に
は化学的方法あるいは物理的方法など経常的なメンテナ
ンスと費用が発生する。これらスケール付着を未然に防
止する方法として、従来から酸添加によりスケールに成
分をあらかじめ沈澱除去する方法、原水のpHを調整し
てスケール析出の限界点を変える方法あるいは抑制剤を
添加しスケール成分の過飽和性を維持したり、成分をス
ラッジ化する方法あるいは種晶を添加し、それを核にし
てスケール成分を析出させる方法などがある。しかしな
がらこれらの諸方法はいずれも++7を水に比較的多量
の薬材等を点滴−あるいは混入する方式でありそのため
の機械的手段や消耗品コストが大きなものになる。この
ような背景の中で、温泉熱水を建物の暖房や農業施設加
温に用いることによる化石エネルギー削減を意図したシ
ステムの開発の中でスケール問題はボトルネックとなる
課題であり、メンテナンスに労力を要せず、かつ経常的
な消耗品経費の発生しない方法の開発は緊急の課題とな
っている。
Conventional structure and its problems Problems that prevent stable operation of heating and cooling equipment used for industrial or general purposes include scale adhesion to heat transfer tubes or transfer tubes, resulting in an increase in fluid transfer resistance, and a decrease in heat exchange efficiency. There are problems with deterioration and corrosion of the can body. These scale deposits significantly impede the thermal economy in equipment operation, so countermeasures are an important issue. In particular, scale in the heat exchange parts of heating and cooling equipment causes a significant drop in heat exchange efficiency.Furthermore, heat exchangers have complicated shapes to increase the heat transfer area, and once scale has adhered, it is difficult to remove it. However, regular maintenance and costs such as chemical or physical methods are required. Conventional methods for preventing scale deposition include adding acid to precipitate and remove scale components, adjusting the pH of raw water to change the limit point of scale precipitation, or adding an inhibitor to remove scale components. There are methods such as maintaining supersaturation, turning the components into sludge, or adding seed crystals and using them as nuclei to precipitate scale components. However, all of these methods involve dripping or mixing a relatively large amount of medicinal materials into water, which requires a large amount of mechanical means and consumables. Against this background, the problem of scale has become a bottleneck in the development of systems intended to reduce fossil energy by using hot spring hot water to heat buildings and agricultural facilities, and maintenance is labor-intensive. There is an urgent need to develop a method that does not require additional costs and does not incur regular consumable costs.

発明の目的 本発明は上述の背景のもとで、工業用、一般用の加熱・
冷却装置における伝熱管あるいは流体搬送管へのスケー
ルを経常的なメンテナンス労力と消耗品費用を発生させ
ることなく防止する加熱・冷却装置を提供することを意
図したものである。
Purpose of the Invention The present invention has been developed based on the above-mentioned background.
It is intended to provide a heating and cooling system that prevents scaling on heat transfer tubes or fluid transfer tubes in a cooling system without incurring routine maintenance effort and consumables costs.

発明の構成 本発明は伝熱管あるいは搬送管を流れる流体を超音波エ
ネルギーにより励振させ、流体中のスケール成分の過飽
和条件を変化させ、かつ、管体による流体冷却に伴なう
流体の飽和度低下によるスケール析出をうながし、更に
は、管体にスケールが析出することを音波エネルギーに
より防止1−1あるいはすでに管体に付着したスケール
を剥離せしめる等超音波励振による複合的効果によって
、スケール成分を管体に付着することなく流体中にスラ
ッジとして析出させ、それらを沈澱除去することを特徴
とした加熱冷却装置である。
Structure of the Invention The present invention excites the fluid flowing through a heat exchanger tube or a conveyor tube with ultrasonic energy, changes the supersaturation conditions of scale components in the fluid, and reduces the saturation degree of the fluid due to cooling of the fluid by the tube. In addition, scale components can be removed by the combined effect of ultrasonic excitation, such as promoting scale precipitation by ultrasonic excitation, and preventing scale precipitation on the pipe body using sonic energy 1-1, or peeling off scale that has already adhered to the pipe body. This heating and cooling device is characterized by depositing sludge in a fluid without adhering to the body, and removing the sludge as a precipitate.

実施例の説明 以下本発明の一実施例を具体的に説明する。Description of examples An embodiment of the present invention will be described in detail below.

図は本発明の一実施例である熱交換器用加熱冷却装置の
概要図である。熱交換器は複数本の伝熱管1を有し、熱
交換されるべき流体11は入口2より導入され伝熱管1
で熱の交換が行われた後排出口3より排出される。−力
流体11と互いに混入することなく流体12は入口4よ
り導入され、伝熱″#1で熱の授受が行われた後、排出
口5より排出される。一方法熱管1近傍の外管6には超
音波トランスデユーサ7が流体12に接して設置される
。トランスデユーサ7には端子8.9を通じて、発振増
巾器10より高周波電力が連続的に又は断続的に供給さ
れる。トランスデユーサ7は高周波電力によって超音波
振動をする振動子とそれに接着された振動板より成り、
発振増巾器1oからの電気エネルギーは超音波として、
流体2を励振する。励振された流体2は更に伝熱管1を
超音波振動させそれが伝播して伝熱管1内の流体2を励
振するとともに、流体2の接する外管等すべての管体壁
を超音波振動させる。振動子としてはチタン酸バリウム
やチタン酸ジルコン酸鉛などの強誘電体あるいはフェラ
イト磁歪素子などが好ましい。
The figure is a schematic diagram of a heating and cooling device for a heat exchanger, which is an embodiment of the present invention. The heat exchanger has a plurality of heat exchanger tubes 1, and a fluid 11 to be heat exchanged is introduced from an inlet 2 and passes through the heat exchanger tubes 1.
After heat exchange is performed, the water is discharged from the discharge port 3. - The fluid 12 is introduced from the inlet 4 without mixing with the power fluid 11, and after exchanging heat with heat transfer #1, it is discharged from the outlet 5. One method is the outer tube near the heat tube 1. 6, an ultrasonic transducer 7 is installed in contact with the fluid 12.High frequency power is continuously or intermittently supplied to the transducer 7 from an oscillation amplifier 10 through terminals 8.9. The transducer 7 consists of a vibrator that generates ultrasonic vibrations using high-frequency power and a diaphragm bonded to the vibrator.
The electrical energy from the oscillation amplifier 1o is converted into ultrasonic waves,
Excite fluid 2. The excited fluid 2 further causes the heat exchanger tube 1 to vibrate ultrasonically, which propagates to excite the fluid 2 inside the heat exchanger tube 1, and also causes all tube walls such as the outer tube that come into contact with the fluid 2 to vibrate ultrasonically. The vibrator is preferably a ferroelectric material such as barium titanate or lead zirconate titanate, or a ferrite magnetostrictive element.

これらの超音波エネルギーにより、例えば、流体11と
して温泉水を用い、流体12として水を用いた場合通常
伝熱管1やその他の流体11に接する管体壁に析出する
スケールを剥離させ、あるいは流体中に析出させる。こ
れら流体中に析出したスケールはスラッジとして排出口
3より排出され、必要に応じて沈澱槽を設は適宜取り去
ることができる。このようにして、本発明によれば、一
旦析出した場合極めて除去の困難な伝熱管のスケールを
、伝熱管近傍に付着させることなく流体中スラッジとし
て流失させることができる。
Using these ultrasonic energies, for example, when hot spring water is used as the fluid 11 and water is used as the fluid 12, the scale that is normally deposited on the tube walls that are in contact with the heat exchanger tube 1 and other fluids 11 is peeled off, or the scale that is deposited in the fluid is removed. Let it precipitate. The scale deposited in these fluids is discharged as sludge from the discharge port 3, and a settling tank can be installed and removed as necessary. In this manner, according to the present invention, the scale of the heat exchanger tube, which is extremely difficult to remove once precipitated, can be washed away as sludge in the fluid without adhering to the vicinity of the heat exchanger tube.

一方、温泉水を流体12とし、水を流体11と1〜だ場
合もスケール付着防止の原理は同様であるがこの場合ス
ケール成分の多い流体2は、トランスデユーサ7に直接
接触しているため効果は四に顕著である。これらの効果
は温泉水にとどまらず、地下水や加熱海水等の流体、に
ついても同様である。
On the other hand, the principle of preventing scale adhesion is the same when hot spring water is used as fluid 12 and water is used as fluids 11 and 1 to 1. However, in this case, fluid 2, which has a large scale component, is in direct contact with the transducer 7. The effect is noticeable in four ways. These effects are not limited to hot spring water, but also apply to fluids such as groundwater and heated seawater.

以下実施例における本発明の具体的効果について述べる
Hereinafter, specific effects of the present invention will be described in Examples.

実施例においてはアルカリ度約1600m、!17/e
カルシウム硬度約1,000 UJjj/lの約70°
Cの温泉水毎時10m5/時を図に原理構成を示した固
定長管板式熱交換器の流体とし、はぼ静流M−の水を流
体12として用いた。伝熱管1に外径約25111Ja
m長とし、これを36本用い、約400MMの直径を有
する列前内に設置した。一方伝熱管1を包む外管内壁に
超音波出力的1.5KWのトランスデユーサ2個をそれ
ぞれ外管の入口部及び排出口部近傍の内壁に設置し、発
振増巾器10より約30KHzの高周波電力を供給する
よう゛にした。このような設置条件のもとて温泉水を供
給しつづけ本発明の装置を用いた場合と用いない従来の
場合について伝熱管へのスケール付着の度合を観察する
ことによって本発明による装置の効果を評価することが
できる。
In the example, the alkalinity is about 1600m! 17/e
Approximately 70° of calcium hardness of approximately 1,000 UJjj/l
10 m5/hour of hot spring water of C was used as the fluid of a fixed length tube plate type heat exchanger whose principle configuration is shown in the figure, and a static flow of water of M- was used as fluid 12. Heat exchanger tube 1 has an outer diameter of approximately 25111 Ja
36 of them were installed in front of the row having a diameter of about 400 mm. On the other hand, two transducers with an ultrasonic output of 1.5 KW are installed on the inner wall of the outer tube surrounding the heat exchanger tube 1 near the inlet and outlet of the outer tube, respectively, and the oscillation amplifier 10 generates a frequency of about 30 KHz. It was designed to supply high frequency power. Under these installation conditions, hot spring water was continuously supplied and the effectiveness of the device of the present invention was evaluated by observing the degree of scale adhesion to the heat transfer tubes when the device of the present invention was used and in the conventional case where the device of the present invention was not used. can be evaluated.

実施例においては、高周波電力を6時間毎に約16分間
供給した場合と、しない場合の従来例について、流体1
2(温泉水)のスケールによる伝熱管内の径減少による
静圧損失と熱交換率をチェックした。その結果、従来の
運転状態では約16日間で、スケール付着により熱交換
率は当初にくらべ激減し、静圧損失抵抗の増大により、
はぼ熱交換器としての機能は果さなくなった。−力木発
明の装置による運転状態では、運転開始の16日後も極
立った熱交換率低下及び静圧損失がみられず、その後長
期にわたる運転でも熱交換器の機能は継続的に発揮され
ており、本発明の顕著な効果が認められた。
In the example, the fluid 1
We checked the static pressure loss and heat exchange rate due to the diameter reduction in the heat transfer tube due to the scale of 2 (hot spring water). As a result, in about 16 days under conventional operating conditions, the heat exchange rate drastically decreased compared to the initial level due to scale adhesion, and due to an increase in static pressure loss resistance,
It no longer functions as a heat exchanger. - Under the operating conditions of the device invented by Rikiki, no significant drop in heat exchange rate or static pressure loss was observed even 16 days after the start of operation, and the function of the heat exchanger was continuously demonstrated even after long-term operation. The remarkable effects of the present invention were recognized.

上記実施例は、スケール成分の比較的多い温泉水による
ものであるが、地下水や、工業用水など温泉よりもスケ
ール成分の少ない流体に対しては、超音波出力を低下さ
せたり、超音波励振の時間の間隔を長く設定したりする
ことによって、より設備コストを低下させることができ
るとともに運転電力を削減できる。又、本実施例は固定
多管板式熱交換器の例について述べたが、本発明の効果
がプレートフィン式熱交換器その他の熱交換器に用いて
発揮されることは明らかである。
The above example uses hot spring water that has a relatively large scale component, but for fluids that have a lower scale component than hot springs, such as groundwater and industrial water, it is necessary to reduce the ultrasonic output or apply ultrasonic excitation. By setting the time interval longer, it is possible to further reduce equipment costs and reduce operating power. Furthermore, although this embodiment has been described with reference to a fixed multi-tube and plate type heat exchanger, it is clear that the effects of the present invention can be exerted when used in plate-fin type heat exchangers and other heat exchangers.

発明の効果 以上のように、本発明は二種の異なる流路を流れる流体
が互いに混入することなく相互に熱の授受を行なうよう
伝熱体を配し、この伝熱体近傍の一方の流体に接して超
音波トランスデユーサを設置し、この超音波トランスジ
ューサに交番電力を供給するようにしだ熱交換装置であ
り、温泉水、地下水、海水あるいは水道水などの流体に
よる加熱・冷却装置における伝熱管や搬送管へのスケー
ルの付着を防止することができ、スケールを主たる原因
とする熱交換率の低下によるエネルギー損失や、静圧損
失増大による流体搬送動力の増大を防ぐと共に、日常何
らの薬剤等消耗品使用することなくスケールの付着が防
止できるため、スケール防止に要する設備コスト、日常
メンテナンス費用および消耗品経費が大巾に削減される
とともに、本発明の装置を用いることによって、地熱水
や温泉水のエネルギーとしての有効利用あるいは海水淡
水化装置における効率向上と費用削減に顕著な効果を有
し、経済的効果のみならず省エネルギー技術面での社会
的効果をも併せて有するものである。
Effects of the Invention As described above, the present invention arranges a heat transfer body so that the fluids flowing through two different flow paths exchange heat with each other without mixing with each other, and when one of the fluids near the heat transfer body This is a heat exchange device in which an ultrasonic transducer is installed in contact with the ultrasonic transducer and alternating power is supplied to the ultrasonic transducer. It can prevent scale from adhering to heat pipes and conveying pipes, prevent energy loss due to a decrease in heat exchange rate mainly caused by scale, and increase in fluid conveyance power due to increased static pressure loss, and prevent the use of everyday chemicals. Since scale adhesion can be prevented without using consumables, equipment costs, daily maintenance costs, and consumables costs required for scale prevention can be greatly reduced. It has remarkable effects on the effective use of water and hot spring water as energy, as well as on improving efficiency and reducing costs in seawater desalination equipment, and has not only economic effects but also social effects in terms of energy saving technology. .

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明による熱交換装置の〜実施例を示す断面図で
ある。 1・・・・・伝熱管、2.4・・・・・・入口、3.6
・・・山排出口、6・・・・・・熱交換器外管、7・・
・・・・超音波トランスジューサ、8,9・・山端子、
1o・・・・・発振増巾器、11.12°山流体。
The figure is a sectional view showing an embodiment of a heat exchange device according to the present invention. 1... Heat exchanger tube, 2.4... Inlet, 3.6
... Mountain discharge port, 6 ... Heat exchanger outer tube, 7 ...
... Ultrasonic transducer, 8, 9... Mountain terminal,
1o...Oscillation amplifier, 11.12° mountain fluid.

Claims (1)

【特許請求の範囲】 (ト)二種の異なる流路を有する流体が互いに相混入す
ることなく相互に熱の授受を得なうよう伝熱体を配し、
この伝熱′体近傍の一方の流体に接して超音波トランス
デユーサを設置し、この超音波トランスデユーサに交番
電力を供給することを特徴とする熱交換装置。 (2)超音波トランスデユーサが強誘電体振動子である
ことを特徴とする特許請求の範囲第1項記載の熱交換装
置。 (3)超音波トランスデユーサが強磁性体振動子である
ことを特徴とする特許請求の範囲第1項記載の熱交換装
置。 (4)交番電力の供給を断続的に行なうことを特徴とす
る特許請求の範囲第1項記載の熱交換装置。
[Claims] (G) A heat transfer body is arranged so that two types of fluids having different flow paths can exchange heat with each other without being mixed with each other,
A heat exchange device characterized in that an ultrasonic transducer is installed in contact with one of the fluids near the heat transfer body, and alternating power is supplied to the ultrasonic transducer. (2) The heat exchange device according to claim 1, wherein the ultrasonic transducer is a ferroelectric vibrator. (3) The heat exchange device according to claim 1, wherein the ultrasonic transducer is a ferromagnetic vibrator. (4) The heat exchange device according to claim 1, wherein alternating power is supplied intermittently.
JP58131269A 1983-07-18 1983-07-18 Heat exchange device Pending JPS6023794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58131269A JPS6023794A (en) 1983-07-18 1983-07-18 Heat exchange device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58131269A JPS6023794A (en) 1983-07-18 1983-07-18 Heat exchange device

Publications (1)

Publication Number Publication Date
JPS6023794A true JPS6023794A (en) 1985-02-06

Family

ID=15053973

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58131269A Pending JPS6023794A (en) 1983-07-18 1983-07-18 Heat exchange device

Country Status (1)

Country Link
JP (1) JPS6023794A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236951A (en) * 1989-03-10 1990-09-19 Matsushita Electric Ind Co Ltd Cell
WO2007136697A2 (en) * 2006-05-19 2007-11-29 Exxonmobil Research And Engineering Company Mitigation of in-tube fouling in heat exchangers using controlled mechanical vibration
WO2011111512A1 (en) 2010-03-10 2011-09-15 オムロン株式会社 Electronic part, method of manufacture for electronic part and digital thermometer
US8037928B2 (en) 2005-12-21 2011-10-18 Exxonmobil Research & Engineering Company Chromium-enriched oxide containing material and preoxidation method of making the same to mitigate corrosion and fouling associated with heat transfer components
CN102445104A (en) * 2011-12-08 2012-05-09 姚光纯 Method for improving heat transfer coefficient of heat exchanger by utilizing medium shear force
US8201619B2 (en) 2005-12-21 2012-06-19 Exxonmobil Research & Engineering Company Corrosion resistant material for reduced fouling, a heat transfer component having reduced fouling and a method for reducing fouling in a refinery
US8349267B2 (en) 2007-10-05 2013-01-08 Exxonmobil Research And Engineering Company Crude oil pre-heat train with improved heat transfer
JP5597723B2 (en) * 2010-12-03 2014-10-01 三菱電機株式会社 Water heater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134749B1 (en) * 1971-05-31 1976-09-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5134749B1 (en) * 1971-05-31 1976-09-28

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236951A (en) * 1989-03-10 1990-09-19 Matsushita Electric Ind Co Ltd Cell
US8211548B2 (en) 2005-12-21 2012-07-03 Exxonmobil Research & Engineering Co. Silicon-containing steel composition with improved heat exchanger corrosion and fouling resistance
US8470097B2 (en) 2005-12-21 2013-06-25 Exxonmobil Research And Engineering Company Silicon-containing steel compostition with improved heat exchanger corrosion and fouling resistance
US8469081B2 (en) 2005-12-21 2013-06-25 Exxonmobil Research And Engineering Company Corrosion resistant material for reduced fouling, a heat transfer component having reduced fouling and a method for reducing fouling in a refinery
US8465599B2 (en) 2005-12-21 2013-06-18 Exxonmobil Research And Engineering Company Chromiun-enriched oxide containing material and preoxidation method of making the same to mitigate corrosion and fouling associated with heat transfer components
US8037928B2 (en) 2005-12-21 2011-10-18 Exxonmobil Research & Engineering Company Chromium-enriched oxide containing material and preoxidation method of making the same to mitigate corrosion and fouling associated with heat transfer components
US8286695B2 (en) 2005-12-21 2012-10-16 Exxonmobil Research & Engineering Company Insert and method for reducing fouling in a process stream
US8201619B2 (en) 2005-12-21 2012-06-19 Exxonmobil Research & Engineering Company Corrosion resistant material for reduced fouling, a heat transfer component having reduced fouling and a method for reducing fouling in a refinery
US7836941B2 (en) 2006-05-19 2010-11-23 Exxonmobil Research And Engineering Company Mitigation of in-tube fouling in heat exchangers using controlled mechanical vibration
WO2007136697A3 (en) * 2006-05-19 2008-01-24 Exxonmobil Res & Eng Co Mitigation of in-tube fouling in heat exchangers using controlled mechanical vibration
WO2007136697A2 (en) * 2006-05-19 2007-11-29 Exxonmobil Research And Engineering Company Mitigation of in-tube fouling in heat exchangers using controlled mechanical vibration
US8349267B2 (en) 2007-10-05 2013-01-08 Exxonmobil Research And Engineering Company Crude oil pre-heat train with improved heat transfer
WO2011111512A1 (en) 2010-03-10 2011-09-15 オムロン株式会社 Electronic part, method of manufacture for electronic part and digital thermometer
JP5597723B2 (en) * 2010-12-03 2014-10-01 三菱電機株式会社 Water heater
CN102445104A (en) * 2011-12-08 2012-05-09 姚光纯 Method for improving heat transfer coefficient of heat exchanger by utilizing medium shear force

Similar Documents

Publication Publication Date Title
CN101443618B (en) Mitigation of in-tube fouling in heat exchangers using controlled mechanical vibration
US9796609B2 (en) Method for preventing scale deposits and removing contaminants from fluid columns
ES2771350T3 (en) Ultrasonic cleaning of vessels and tubes
CN102225390B (en) Full-automatic ultrahigh-power ultrasonic anti-scaling and de-scaling device
JPS6023794A (en) Heat exchange device
KR101601835B1 (en) Sea water desalting apparatus capable of physical removal of scale
Hoang et al. Effects of process parameters on gypsum scale formation in pipes
US20180238646A1 (en) Methods For Negating Deposits Using Cavitation Induced Shock Waves
RU2110489C1 (en) Method for elimination of deposits of sulfates of alkaline-earth metals
CN206747150U (en) A kind of hinge type ultrasound wave descaling and sound composite cleaning system
CN103864161A (en) Device for producing hydrodynamic cavitation by using tapered pore plate to inactivate microorganisms in water
JP6410603B2 (en) Method for physically treating and / or heating a medium, in particular a liquid, and an apparatus for carrying out the method
KR102110402B1 (en) Apparatus for plate type heat exchanger cleaning using ultrasonic wave without separation
KR100704421B1 (en) Three-dimensional electronic anti-fouling device and method thereof
JPH08192150A (en) Device for preventing shellfish fouling
Ashley Preventing deposition on heat exchange surfaces with ultrasound
CN106348463A (en) Ultrasonic scale inhibiting device
JP2001096243A (en) Ultrasonic nozzle unit and device and method for treating with ultrasonic wave using the same
AU2004232620B2 (en) Method for flow improvement and reduction of fouling in process equipment
RU2312290C2 (en) Method of the magnetoacoustic treatment of the water systems and the device for the method realization
Qian et al. Study on characteristics of ultrasonic descaling and heat transfer enhancement in sewage source heat pump system
CN204495165U (en) Ultrasonic for scale prevention and removal device
CN103239877A (en) High-efficiency hot air source evaporator
JP2000308884A (en) Water purification accelerating method and water purifying device
BR102021011947A2 (en) TOOL ASSISTED BY HIGH POWER ULTRASOUND APPLIED TO THE PREVENTION OF DIRT INCRUSTATION IN PIPES AND EQUIPMENT IN THE OIL AND GAS INDUSTRY