JPS60237735A - Locating system for fault point - Google Patents

Locating system for fault point

Info

Publication number
JPS60237735A
JPS60237735A JP59093042A JP9304284A JPS60237735A JP S60237735 A JPS60237735 A JP S60237735A JP 59093042 A JP59093042 A JP 59093042A JP 9304284 A JP9304284 A JP 9304284A JP S60237735 A JPS60237735 A JP S60237735A
Authority
JP
Japan
Prior art keywords
optical
circuit
light
repeater
fault point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59093042A
Other languages
Japanese (ja)
Inventor
Teruo Hata
畑 輝男
Osamu Maeda
理 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP59093042A priority Critical patent/JPS60237735A/en
Publication of JPS60237735A publication Critical patent/JPS60237735A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/071Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using a reflected signal, e.g. using optical time domain reflectometers [OTDR]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Optical Communication System (AREA)

Abstract

PURPOSE:To allow a fault point locating circuit which detects reflected light of a light pulse sent out to an optical transmission line to locate the reflected light of the light pulse, and calculate the distance from a specified repeater to a fault point by providing each optical repeater with the fault point locating circuit. CONSTITUTION:Each optical repeater is provided with a photoelectric conversion part 20, identification and regeneration part 30, photoelectric conversion part 40, and fault point locating circuit 50. The conversion part 20 converts a light pulse from a terminal station or leading repeater into an electric signal, the regeneration part 30 identifies the pulse, and the conversion part 40 outputs a light pulse with a constant level. This light pulse is applied to optical switch circuits 51 and 52 of the circuit 50 and the circuits 51 and 52 are switched with a control signal identified by a control circuit 36. A light pulse from a light emitting element 43 is sent out by said switching to a transmission line through the switch 51, a directional coupler 53, and the switch 52. Backward scattered light of this transmission line is applied to and branched by the counter 53 by the switch 52 and converted by a photoelectric converting element 54 into an electric signal, which is processed by an averaging processing circuit 56.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、光デイジタル中継伝送方式に於ける中継器間
の障害点を容易に探索できるようにした障害点探索方式
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field of the Invention The present invention relates to a fault point search method that makes it possible to easily search for fault points between repeaters in an optical digital relay transmission system.

従来技術と問題点 光ファイバに破断点がある場合に、入射端から光パルス
を入射させると、破断点からのフレネル反射光と、レイ
リー散乱光のうちの軸方向に戻る後方散乱光とが入射端
に戻ることになる。従って、入射光に対するフレネル反
射光を利用して破断点を検出することができる。しかし
、フレネル反射量は、理想的な破断面でも約4%(−1
4dB)であり、海底光フアイバケーブルに適用した場
合の破断点に海水が浸入すると、フレネル反射量は零に
近い値となり、破断点検出が不可能に近いものとなる。
Conventional technology and problems When an optical fiber has a break point and a light pulse is input from the input end, Fresnel reflected light from the break point and backscattered Rayleigh scattered light that returns in the axial direction are incident. It will bring you back to the edge. Therefore, the breaking point can be detected using the Fresnel reflected light with respect to the incident light. However, the amount of Fresnel reflection is approximately 4% (-1
4 dB), and when seawater enters the break point when applied to a submarine optical fiber cable, the amount of Fresnel reflection becomes close to zero, making detection of the break point nearly impossible.

一方後方散乱光は、光ファイバのあらゆる点から一様に
生じるが、破断点の先からは生じないので、その後方散
乱光を測定して破断点を検出することが提案されている
。例えば、第1図は後方散乱光測定による破断点検出装
置の要部ブロック図であり、変調駆動回路1からレーザ
ダイオード2を正弦波により直接変調駆動し、このレー
ザダイオード2の出力光を光方向性結合器3を介して被
測定光ファイバ9に入射させる。この被測定光ファイバ
9の終端をマツチングオイル10に浸漬して、光ファイ
バの破断点に海水が浸入した状態を模擬している場合を
示すものである。
On the other hand, backscattered light is uniformly generated from all points on the optical fiber, but is not generated from beyond the break point, so it has been proposed to measure the backscattered light to detect the break point. For example, FIG. 1 is a block diagram of the main parts of a break point detection device based on backscattered light measurement, in which a modulation drive circuit 1 directly modulates and drives a laser diode 2 with a sine wave, and directs the output light of the laser diode 2 in the optical direction. The optical fiber is made to enter the optical fiber 9 to be measured via the optical coupler 3. This figure shows a case in which the terminal end of the optical fiber 9 to be measured is immersed in matching oil 10 to simulate a state in which seawater has entered the break point of the optical fiber.

又レーザダイオード2の出力光をハーフミラ−或いは両
方向に出力される出力光の一方をフォトダイオード4に
入射させ、その出力信号を増幅器5で増幅し、又先方向
性結合器3で分岐した被測定光ファイバ9の後方散乱光
をフォトダイオード6に入射させ、その出力信号を増幅
器7で増幅し、増幅器5.7の出力信号を利得位相測定
回路8に加えて、被測定光ファイバ9の周波数特性を測
定し、且つフーリエ逆変換を行って破断点の検出を行う
ものである。
In addition, the output light of the laser diode 2 is input into a half mirror, or one of the output lights output in both directions is inputted into the photodiode 4, the output signal is amplified by the amplifier 5, and the signal to be measured is split by the directional coupler 3. The backscattered light of the optical fiber 9 is made incident on the photodiode 6, its output signal is amplified by the amplifier 7, and the output signal of the amplifier 5.7 is applied to the gain and phase measuring circuit 8 to determine the frequency characteristics of the optical fiber 9 to be measured. The breaking point is detected by measuring and performing inverse Fourier transform.

光ファイバの光伝播損失の大部分は、コア内部の屈折率
のゆらぎによって生じるレイリー散乱光によるものであ
り、このレイリー散乱光のうちの軸方向に戻る光が後方
散乱光である。この後方散乱光の時間軸応答は、例えば
、第2図に示すものとなり、被測定光ファイバ9の破断
点までの長さに対応した時間Tの後方散乱光が存在し、
この後方散乱光が光方向結合器3により分岐されてフォ
トダイオード6に入射されるものである。この後方散乱
光の電力をPb、入射光電力をPi、後方散乱光電力を
Rh、光フアイバ内の光の群速度をV、光フアイバ定数
をαとすると、0くt≦Tに於いて、 Pb (tl= (Pi Rb v/ 2) exp’
(−cx v t )・・・(1) により後方散乱光電力Pbが表される。
Most of the light propagation loss in an optical fiber is due to Rayleigh scattered light caused by fluctuations in the refractive index inside the core, and the light that returns in the axial direction of this Rayleigh scattered light is backscattered light. The time axis response of this backscattered light is, for example, as shown in FIG.
This backscattered light is branched by the optical direction coupler 3 and is incident on the photodiode 6. If the power of this backscattered light is Pb, the incident light power is Pi, the backscattered light power is Rh, the group velocity of light in the optical fiber is V, and the optical fiber constant is α, then 0t≦T, Pb (tl= (Pi Rb v/ 2) exp'
(-cx v t )...(1) The backscattered light power Pb is expressed.

後方散乱光の周波数応答は、前述の(1)式で表される
波形のフーリエ変換で与えられることになる。即ち、 exp(−+2πf t) d t −−+2)で表さ
れる。
The frequency response of the backscattered light is given by Fourier transform of the waveform expressed by the above-mentioned equation (1). That is, it is expressed as exp(-+2πft)dt--+2).

この後方散乱光の周波数応答に於いtは、利得及び位相
特性にリップルが生じるものであり、第3図はこの後方
散乱光の周波数特性(利得)の−例を示すものである。
In the frequency response of this backscattered light, t causes ripples in the gain and phase characteristics, and FIG. 3 shows an example of the frequency characteristics (gain) of this backscattered light.

同図に於いて、横軸は周波数f、縦軸は後方散乱光電力
pbであり、Δrはリップルの大きさ、Δfはリップル
の周期を示す。このリップルの周期Δfは、光ファイバ
長く入射端から破断点までの距離)をLとすると、Δf
=v/2L ・・・・(3) の関係がある。従って、このリップル周期Δfを測定す
ることにより、光ファイバの破断点を検出することがで
きる。又リップルの大きさΔrは、光ファイバ長が長(
なる程小さくなり、又リップルの周期Δfは、光ファイ
バ長が長くなる程短くなる。又周波数が高くなるに従っ
て後方散乱光のレベルは低くなる。周波数領域に於ける
位相特性は、フレネル反射が殆どない場合に、4πfL
/Vの周期でリップルが生じるものである。
In the figure, the horizontal axis is the frequency f, the vertical axis is the backscattered light power pb, Δr is the ripple size, and Δf is the ripple period. The period Δf of this ripple is defined as Δf
=v/2L (3) There is a relationship as follows. Therefore, by measuring this ripple period Δf, the break point of the optical fiber can be detected. In addition, the ripple size Δr is determined by the length of the optical fiber (
The ripple period Δf becomes smaller as the length of the optical fiber becomes longer. Also, as the frequency increases, the level of backscattered light decreases. The phase characteristic in the frequency domain is 4πfL when there is almost no Fresnel reflection.
A ripple occurs at a period of /V.

このような周波数特性についてフーリエ逆変換処理を行
うことにより、破断点を検出することも提案されている
。このフーリエ逆変換は、次式に従って行われる。即ち
、 Pb (t)=2 J Pb (f) exp(+2 
πf t) d f光ファイバの破断点までの距#Lに
対応した後方散乱光電力pbの特性が得られる。この第
4図からも判るように、入射端を含む複数のピーク点が
生じるが、入射端を除く最大ピーク点が光ファイバ長り
を示すものとなる。従って、海底光フアイバケーブルに
適用した場合に、破断点に海水が浸入してフレネル反射
が零に近い状態となっても、後方散乱光を検出して処理
することにより、破断点を検出することができる。
It has also been proposed to detect a breaking point by performing inverse Fourier transform processing on such frequency characteristics. This inverse Fourier transform is performed according to the following equation. That is, Pb (t)=2 J Pb (f) exp(+2
πf t) d f A characteristic of the backscattered light power pb corresponding to the distance #L to the break point of the optical fiber is obtained. As can be seen from FIG. 4, a plurality of peak points including the input end occur, but the maximum peak point excluding the input end indicates the length of the optical fiber. Therefore, when applied to submarine optical fiber cables, even if seawater enters the break point and Fresnel reflection is close to zero, the break point can be detected by detecting and processing the backscattered light. I can do it.

利得位相測定回路8は、前述の後方散乱光の周波数特性
を測定し、リップル周期Δfから破断点までの距離りを
測定する構成、或いは、更にフーリエ逆変換処理を行っ
て、その変換出力のピーク点により破断点までの距離り
を測定する構成とすることができるものであり、例えば
、レーザダイオード2を変調する正弦波周波数を5’0
OKHzとし、後方散乱光の周波数特性を10KHz毎
に測定し、その測定データについてフーリエ逆変換処理
を行い、処理結果データから最大値をめて、その最大値
となる距離を破断点と判断する構成とした場合に、後方
散乱光利得の測定誤差が0.1dB、位相測定誤差が1
度の場合に、測定距離分解能は±15rn以内となった
。このような利得位相測定回路8は、マイクロプロセッ
サ等により構成し、プログラム処理によりフーリエ逆変
換処理を実行させることができる。
The gain phase measurement circuit 8 has a configuration that measures the frequency characteristics of the backscattered light described above and measures the distance from the ripple period Δf to the breaking point, or further performs inverse Fourier transform processing to determine the peak of the transformed output. It can be configured to measure the distance to the breaking point by points, for example, the sine wave frequency that modulates the laser diode 2 is set to 5'0.
OKHz, and measures the frequency characteristics of backscattered light every 10kHz, performs inverse Fourier transform processing on the measured data, calculates the maximum value from the processed data, and determines the distance at which the maximum value occurs as the breaking point. In this case, the measurement error of backscattered light gain is 0.1 dB, and the phase measurement error is 1 dB.
In the case of degrees, the measurement distance resolution was within ±15rn. Such a gain-phase measurement circuit 8 is configured by a microprocessor or the like, and can perform inverse Fourier transform processing through program processing.

前述のような光ファイバの破断点の検出方式は、OF 
D R(Optical Frequency Dom
ainRef Iectometry) (周波数領域
光反射測定)と称されるものであり、端局からの光ファ
イバの破断点を検出する場合に有効な方法である。又光
アナログ中継方式に於いては、後方散乱光を端局まで転
送することが可能であるから、0FDR方式を適用する
ことも可能であるが、光デイジタル中継伝送方式に於い
て−は、各中継器でパルス波形の再生中継を行うもので
あるから、後方散乱光を中継転送することは不可能であ
る。従って、光デイジタル中継伝送方式に0FDR方式
を適用することができないものとされていた。
The optical fiber break point detection method described above is OF
DR (Optical Frequency Dom)
This is called ainRef Iectometry (frequency domain optical reflection measurement), and is an effective method for detecting the break point of an optical fiber from an end station. In addition, in the optical analog relay system, it is possible to transfer backscattered light to the terminal station, so it is also possible to apply the 0FDR system, but in the optical digital relay transmission system, each Since the repeater regenerates and repeats the pulse waveform, it is impossible to repeat and transfer backscattered light. Therefore, it has been considered that the 0FDR method cannot be applied to the optical digital relay transmission method.

発明の目的 本発明は、0FDR方式を光デイジタル中継伝送方式に
適用して、中継器間の光ファイバの破断点を精度良く検
出できるようにすることを目的とするものである。
OBJECTS OF THE INVENTION It is an object of the present invention to apply the 0FDR method to an optical digital relay transmission method to enable accurate detection of a break point in an optical fiber between repeaters.

発明の構成 本発明は、光ディジクル中継伝送方式に於ける各光中継
器に、光フアイバ伝送路に送出した光パルスによって生
じた反射光を検出する障害点探索回路を設け、端局から
キャリア周波数で変調した光パルスを送出し、該光パル
スを前記各光中継器で中継送出し、且つ前記端局から指
定した光中継器の前記障害点探索回路を動作状態とし、
前記中継送出した光パルスによる反射光を該障害点探索
回路で検出し、該反射光の検出情報を前記端局へ転送し
て、前記反射光の前記キャリア周波数に対する周波数特
性を測定して、前記指定された中継器から障害点までの
距離を標定するものであり、以下実施例について詳細に
説明する。
Structure of the Invention The present invention provides a failure point search circuit for detecting reflected light generated by an optical pulse sent to an optical fiber transmission line in each optical repeater in an optical digital repeater transmission system, and detects a carrier frequency from a terminal station. transmitting a modulated optical pulse, transmitting the optical pulse through each of the optical repeaters, and setting the failure point search circuit of the optical repeater designated by the terminal station to an operating state,
The reflected light from the relayed optical pulse is detected by the failure point search circuit, the detection information of the reflected light is transferred to the terminal station, the frequency characteristic of the reflected light with respect to the carrier frequency is measured, and the This method locates the distance from a designated repeater to a failure point, and an embodiment will be described in detail below.

発明の実施例 第5図は、本発明の実施例の光デイジタル中継伝送方式
のブロック図であり、11は端局、12−1.12−2
. ・・・・12−1は光中継器、13は下り光フアイ
バ伝送路、14は上り光フアイバ伝送路、15は介在線
又は電源線である。各光中継器12−1.12−2. 
・・・12−1に後述の障害点探索回路を設けて、端局
11から順次光中継器を指定するが、或いは推測される
障害点の手前の光中継器を指定し、その光中継器に設け
た障害点探索回路を動作状態とし、端局11がら下り光
フアイバ伝送路13に、キャリア周波数で変調した光パ
ルスを送出する。
Embodiment of the invention FIG. 5 is a block diagram of an optical digital relay transmission system according to an embodiment of the invention, in which 11 is a terminal station, 12-1, 12-2
.. . . . 12-1 is an optical repeater, 13 is a down optical fiber transmission line, 14 is an up optical fiber transmission line, and 15 is an intervening line or power line. Each optical repeater 12-1.12-2.
... 12-1 is provided with a failure point search circuit to be described later, and the optical repeaters are sequentially specified from the terminal station 11, or the optical repeater before the estimated failure point is specified, and the optical repeater is The fault point search circuit provided in the terminal station 11 is activated, and an optical pulse modulated at the carrier frequency is sent from the terminal station 11 to the downlink optical fiber transmission line 13.

例えば、光中継器12−2を指定したとすると、端局1
1から第6図の(a)に示すようにキャリア周波数fc
で変調した光パルスを下り光フアイバ伝送路13に送出
する。この光パルスは光中継器12−1で中継伝送され
、光中継器12−2に於いても中継送出する。この光中
継器12−2の障害点探索回路では、光フアイバ伝送路
の反射光として、例えば、第6図の(b)に示す後方散
乱光が検出される。この後方散乱光の検出情報を符号化
によりディジタル信号に変換し、介在線又は電源線15
によって端局11へ転送する。端局11では周波数特性
を測定し、例えば第6図の(c)に示す周波数fの特性
が得られるたとすると、リップル周期Δfにより、光中
継器12−2から障害点までの距離りは、 L=v/ (2Δf) ・・・・(5)によりめること
ができる。
For example, if optical repeater 12-2 is specified, terminal station 1
1 to 6 (a), the carrier frequency fc
The modulated optical pulse is sent to the down optical fiber transmission line 13. This optical pulse is relayed and transmitted by the optical repeater 12-1, and also relayed and transmitted by the optical repeater 12-2. The fault point search circuit of the optical repeater 12-2 detects, for example, the backscattered light shown in FIG. 6(b) as reflected light from the optical fiber transmission line. The detection information of this backscattered light is converted into a digital signal by encoding, and the intervening line or power line 15
The data is transferred to the terminal station 11 by. If the terminal station 11 measures the frequency characteristics and obtains, for example, the characteristics of the frequency f shown in FIG. L=v/(2Δf) It can be determined from (5).

第7図は、本発明の実施例の光中継器の要部ブロック図
であり、20は光電変換部、3oは等化再生部、40は
電光変換部、5oは障害点探索回路、21はアバランシ
ェフォトダイオード等の光電変換素子、22は前置増幅
回路、23はバイアス制御回路、31は等化増幅回路、
32は識別再生回路、33はタイミング抽出回路、34
はピークi[4Jl路、3 s ハAa cm増m’r
sra、41はパルス電流駆動回路、42は合成回路、
43はレーザダイオード等の発光素子、44は発光素子
43の出力光を監視する為の光電変換素子、45は比較
回路、46は基準電圧、47はバイアス電流駆動回路で
ある。
FIG. 7 is a block diagram of the main parts of the optical repeater according to the embodiment of the present invention, in which 20 is a photoelectric conversion section, 3o is an equalization reproduction section, 40 is an electro-optic conversion section, 5o is a fault point search circuit, and 21 is a photoelectric conversion section. A photoelectric conversion element such as an avalanche photodiode, 22 a preamplifier circuit, 23 a bias control circuit, 31 an equalization amplifier circuit,
32 is an identification reproduction circuit, 33 is a timing extraction circuit, 34
is the peak i[4Jl road, 3 s HaAa cm increase m'r
sra, 41 is a pulse current drive circuit, 42 is a synthesis circuit,
43 is a light emitting element such as a laser diode, 44 is a photoelectric conversion element for monitoring the output light of the light emitting element 43, 45 is a comparison circuit, 46 is a reference voltage, and 47 is a bias current drive circuit.

障害点探索回路50を除(構成は、既に公知の光中継器
の構成であり、端局11又は前位の光中継器からの光パ
ルスは、光電変換部20の光電変換素子21により電気
信号に変換され、前置増幅回路22により増幅されて等
化再生部30に加えられる。この等化再生部30に於い
ては、等化増幅回路31により増幅された等化増幅出力
信号が識別再生回路32.タイミング抽出回路33及び
ピーク電圧検出回路34に加えられる。ピーク電圧検出
回路34で検出されたピーク値が一定となるようにAG
C用増幅回路35から等化増幅回路31及びバイアス制
御回路23を制御する。又タイミング抽出回路33によ
り抽出したタイミング信号により識別再生回路32はパ
ルス識別を行い、識別再生パルスを電光変換部40のパ
ルス電流駆動回路41に加える。又抽出したタイミング
信号は障害点探索回路50にも加えられる。
Except for the failure point search circuit 50 (the configuration is that of a known optical repeater, the optical pulse from the terminal station 11 or the preceding optical repeater is converted into an electrical signal by the photoelectric conversion element 21 of the photoelectric conversion unit 20). and is amplified by the preamplifier circuit 22 and applied to the equalization reproducing section 30.In the equalizing reproducing section 30, the equalized amplified output signal amplified by the equalizing amplifier circuit 31 is identified and reproduced. Circuit 32. Added to the timing extraction circuit 33 and the peak voltage detection circuit 34. AG is added so that the peak value detected by the peak voltage detection circuit 34 is constant.
The equalization amplifier circuit 31 and the bias control circuit 23 are controlled from the C amplifier circuit 35. Further, the identification/reproduction circuit 32 performs pulse identification based on the timing signal extracted by the timing extraction circuit 33 and applies the identification/reproduction pulse to the pulse current drive circuit 41 of the electro-optical converter 40 . The extracted timing signal is also applied to the failure point search circuit 50.

電光変換部40に於いては、発光素子43の出力光を光
電変換素子44で検出し、比較回路45で基準電圧46
と比較して、比較出力信号をバイアス電流駆動回路47
に加えて、このバイアス電流駆動回路47からのバイア
ス電流と、パルス電流駆動回路41からのパルス電流と
を、合成回路42で合成して発光素子43に加え、バイ
アス電流の制御により一定レベルの光パルスが出力され
るように制御される。
In the electro-optical conversion section 40, the output light of the light emitting element 43 is detected by the photoelectric conversion element 44, and the comparison circuit 45 detects the output light from the reference voltage 46.
The comparison output signal is sent to the bias current drive circuit 47.
In addition, the bias current from the bias current drive circuit 47 and the pulse current from the pulse current drive circuit 41 are combined by a synthesis circuit 42 and applied to the light emitting element 43, and a constant level of light is generated by controlling the bias current. It is controlled so that pulses are output.

第8図は、本発明の実施例の障害点探索回路のブロック
図であり、51.52は光ファイバを機械的に移動させ
るか、又は光学的な切換えを行う光スィッチ、53は光
方向性結合器、54は光電変換素子、55は増幅器、5
6は平均化処理回路、57は符号化処理回路、36はタ
イミング抽出回路33を含む制御回路である。制御回路
36からの制御信号により、光スイッチ51.52を実
線矢印のように切換えると、発光素子゛43から出力さ
れた光パルスは、光方向性結合器53を通ることなく、
光フアイバ伝送路に送出される。
FIG. 8 is a block diagram of a fault point search circuit according to an embodiment of the present invention, in which 51 and 52 are optical switches that mechanically move or optically switch optical fibers, and 53 is an optical switch that controls optical direction. A coupler, 54 a photoelectric conversion element, 55 an amplifier, 5
6 is an averaging processing circuit, 57 is an encoding processing circuit, and 36 is a control circuit including the timing extraction circuit 33. When the optical switches 51 and 52 are switched in the direction of the solid arrow by the control signal from the control circuit 36, the light pulse output from the light emitting element 43 does not pass through the optical directional coupler 53.
It is sent out to an optical fiber transmission line.

障害探索の為に指定された光中継器に於いては、障害探
索回路50が動作状態にされるもので、制御線により伝
送された制御信号或いは光フアイバ伝送路を介して伝送
された光ディジクル信号による制御信号を、制御回路3
6で識別し、光スィッチ51.52を点線矢印で示すよ
うに切換える。それにより発光素子43から出力された
光パルスは、光スィッチ51、光方向性結合器53、光
スィッチ52を介して光フアイバ伝送路に送出される。
In the optical repeater designated for fault detection, the fault detection circuit 50 is activated, and the fault detection circuit 50 is activated by the control signal transmitted via the control line or the optical digital signal transmitted via the optical fiber transmission line. The control signal is sent to the control circuit 3.
6, and switch the optical switches 51 and 52 as indicated by the dotted arrows. Thereby, the light pulses output from the light emitting element 43 are sent out to the optical fiber transmission line via the optical switch 51, the optical directional coupler 53, and the optical switch 52.

この光フアイバ伝送路の反射光である後方散乱光が光ス
ィッチ52を介して光方向性結合器53に加えられ、分
岐された後方散乱光は光電変換素子54に加えられて電
気信号に変換される。
Backscattered light, which is reflected light from this optical fiber transmission line, is applied to an optical directional coupler 53 via an optical switch 52, and the branched backscattered light is applied to a photoelectric conversion element 54, where it is converted into an electrical signal. Ru.

この変換された信号は増幅器55により増幅されて平均
化処理回路56に加えられる。
This converted signal is amplified by an amplifier 55 and applied to an averaging processing circuit 56.

端局11から送出された光パルスは、障害探索時にキャ
リア周波数で変調されたものであり、キャリア周波数は
、タイミング抽出回路33のバンドパスフィルタの通過
帯域の範囲内で変化させるものであり、又光パルスは所
定の時間間隔で複数回送出されるものであるから、例え
ば第6図の(b)に示す後方散乱光が複数回検出される
ことになる。そこで、平均化処理回路56で平均化して
、後方散乱光情報を符号化処理回路57で符号化し、介
在線又は電源線15を介して端局11ヘデイジタル信号
で転送する。端局11ではこの符号化された後方散乱光
情報を処理して、第6図のTC)に示す周波数特性をめ
、リップル周期Δfから破断点までの距離りをめるもの
である。更には、フーリエ逆変換を行って、最大値の点
を破断点と判断する処理を行うものである。
The optical pulses sent out from the terminal station 11 are modulated with a carrier frequency when searching for a fault, and the carrier frequency is changed within the passband of the bandpass filter of the timing extraction circuit 33. Since the optical pulse is sent out multiple times at predetermined time intervals, the backscattered light shown in FIG. 6(b), for example, is detected multiple times. Therefore, the backscattered light information is averaged by an averaging processing circuit 56, encoded by an encoding processing circuit 57, and transferred to the terminal station 11 as a digital signal via an intervening line or power line 15. The terminal station 11 processes this encoded backscattered light information to determine the frequency characteristic shown in TC in FIG. 6, and calculates the distance from the ripple period Δf to the breaking point. Furthermore, inverse Fourier transform is performed to determine the point of maximum value as the breaking point.

従って、光デイジタル中継伝送方式に於いて、中継器間
の破断点も容易に精度良く検出することが可能となる。
Therefore, in the optical digital relay transmission system, it becomes possible to easily and accurately detect the breaking point between repeaters.

発明の詳細 な説明したように、本発明は、光デイジタル中継伝送方
式における光中継器12−1.li2、・・・に、光フ
アイバ伝送路に送出した光パルスによって生じる反射光
即ち後方散乱光を検出する障害点探索回路50を設け、
端局11からキャリア周波数で変調した光パルスを送出
して、光中継器でこの光パルスを中継送出し、端局11
から指定された光中継器の障害点探索回路50を動作状
態として光フアイバ伝送路の反射光を検出し、その検出
情報を端局11へ転送して、キャリア周波数に対する周
波数特性を測定して、指定された中継器から障害点まで
の距離を標定するものであり、後方散乱光を用いること
により、光フアイバ伝送路の破断点に海水等が浸入して
、フレネル反射が零に近い状態となっても、破断点を精
度良く標定することができる。又各光中継器には、比較
的簡単な障害点探索回路50を設けるだけであり、光フ
アイバケーブルの介在線或いは光中継器の電力供給用の
電源線15を利用して、指定された光中継器の障害点探
索回路50で検出した検出情報を端局11へ転送するも
のであるから、端局に於ける障害点探索を精度良く行う
ことができる利点がある。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, the present invention provides optical repeaters 12-1 . A failure point search circuit 50 is provided in li2, .
The terminal station 11 sends out an optical pulse modulated with a carrier frequency, the optical repeater relays and sends out this optical pulse, and the terminal station 11
The failure point search circuit 50 of the optical repeater designated by is activated, detects the reflected light of the optical fiber transmission line, transfers the detection information to the terminal station 11, measures the frequency characteristics with respect to the carrier frequency, This method locates the distance from a designated repeater to a fault point, and by using backscattered light, seawater, etc. can enter the break point of the optical fiber transmission line and the Fresnel reflection will be close to zero. However, the fracture point can be located with high accuracy. In addition, each optical repeater is only provided with a relatively simple failure point search circuit 50, and a specified optical Since the detection information detected by the fault point search circuit 50 of the repeater is transferred to the terminal station 11, there is an advantage that the fault point search at the terminal station can be performed with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は0FDR方式の測定装置のブロック図1、第2
図は後方散乱光の時間軸応答特性曲線図、第3図は後方
散乱光の周波数応答特性曲線図、第4図はフーリエ逆変
換処理結果の曲線図、第5図は本発明の実施例の光デイ
ジタル中継伝送方式の要部ブロック図、第6図は障害点
探索動作の説明図、第7図は本発明の実施例の光中継器
の要部ブロック図、第8図は本発明の実施例の障害点探
索回路の要部ブロック図である。 11は端局、12−1.12−2. ・・は光中継器、
15は介在線又は電源線、2oは光電変換部、30は識
別再生部、4oは電光変換部、5゜は障害点探索回路で
ある。 特許出願人 富士通株式会社 代理人弁理士 相 谷 昭 司 代理人弁理士 渡 邊 弘 − 第1図 第 2 図 第3図 第4図 0 光フ・イバの長3L 第5図 1り 第6図
Figure 1 shows block diagrams 1 and 2 of the 0FDR method measuring device.
Figure 3 is a time axis response characteristic curve diagram of backscattered light, Figure 3 is a frequency response characteristic curve diagram of backscattered light, Figure 4 is a curve diagram of the Fourier inverse transform processing result, and Figure 5 is a diagram of a curve diagram of the results of the Fourier inverse transform process. A block diagram of the main parts of the optical digital relay transmission system, FIG. 6 is an explanatory diagram of the failure point search operation, FIG. 7 is a block diagram of the main parts of the optical repeater according to the embodiment of the present invention, and FIG. 8 is a diagram showing the implementation of the present invention. FIG. 2 is a block diagram of main parts of an example failure point search circuit. 11 is a terminal station, 12-1.12-2. ...is an optical repeater,
15 is an intervening line or power supply line, 2o is a photoelectric conversion section, 30 is an identification/reproduction section, 4o is an electro-optical conversion section, and 5° is a fault point search circuit. Patent Applicant Fujitsu Ltd. Representative Patent Attorney Shoji Aitani Representative Patent Attorney Hiroshi Watanabe - Figure 1, Figure 2, Figure 3, Figure 4, 0, Mitsufu Iba Naga 3L, Figure 5, 1, and Figure 6

Claims (1)

【特許請求の範囲】[Claims] 光デイジタル中継伝送方式に於ける各光中継器に、光フ
アイバ伝送路に送出した光パルスによって生じた反射光
を検出する障害点探索回路を設け、端局からキャリア周
波数で変調した光パルスを送出し、該光パルスを前記各
光中継器で中継送出し、且つ前記端局から指定した光中
継器の前記障害点探索回路を動作状態とし、前記中継送
出した光パルスによる反射光を該障害点探索回路で検出
し、該反射光の検出情報を前記端局へ転送して、前記反
射光の前記キャリア周波数に対する周波数特性を測定し
て、前記指定された中継器から障害点までの距離を標定
することを特徴とする障害点探索方式。
Each optical repeater in the optical digital relay transmission system is equipped with a failure point search circuit that detects the reflected light generated by the optical pulse sent to the optical fiber transmission line, and the optical pulse modulated at the carrier frequency is sent from the terminal station. Then, the optical pulse is relayed by each of the optical repeaters, and the fault point search circuit of the optical repeater designated by the terminal station is activated, and the reflected light from the relayed optical pulse is sent to the fault point. Detect it with a search circuit, transfer the detection information of the reflected light to the terminal station, measure the frequency characteristics of the reflected light with respect to the carrier frequency, and locate the distance from the specified repeater to the fault point. This is a failure point search method that is characterized by:
JP59093042A 1984-05-11 1984-05-11 Locating system for fault point Pending JPS60237735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59093042A JPS60237735A (en) 1984-05-11 1984-05-11 Locating system for fault point

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59093042A JPS60237735A (en) 1984-05-11 1984-05-11 Locating system for fault point

Publications (1)

Publication Number Publication Date
JPS60237735A true JPS60237735A (en) 1985-11-26

Family

ID=14071444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59093042A Pending JPS60237735A (en) 1984-05-11 1984-05-11 Locating system for fault point

Country Status (1)

Country Link
JP (1) JPS60237735A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510732A (en) * 2012-02-16 2015-04-09 アルカテル−ルーセント Method and device for locating impairments in telecommunications lines

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015510732A (en) * 2012-02-16 2015-04-09 アルカテル−ルーセント Method and device for locating impairments in telecommunications lines

Similar Documents

Publication Publication Date Title
CN102025416B (en) Method, repeater and communication system for positioning submarine cable failure
EP0554126B1 (en) Optical amplification repeating system
CN104569741A (en) Transmission line fault location method based on optical fiber composite overhead ground wire
GB2273623A (en) Supervisory system for an optical transmission system
US4207561A (en) Intruder alarm arrangement for an optical communication system
CN113358206A (en) Distributed optical fiber vibration sensing system and multipoint positioning method thereof
SE456190B (en) PROCEDURE THAT IN A FIBER OPTICAL TRANSMISSION SYSTEM META THE DISPERSION OF THE TRANSMITTING OPTICAL FIBER
JPS60237735A (en) Locating system for fault point
CN111121873A (en) Distributed optical fiber sensing device
JPH02119526A (en) Earth accident detection for underground transmission line and its detector
CN113639847A (en) Pulse modulation and demodulation module and distributed optical fiber vibration sensing positioning method
US4317235A (en) System for transmitting optical binary data signals through an optical fiber with pilot pulses inserted between two wide spaced successions of data signals
JPS59142479A (en) Transmission line monitoring method
CN110514413A (en) A kind of disconnected fine rapid detection method of fiber fence and system
CN110657878A (en) Sound collection distributed optical fiber sensing system based on Mach-Zehnder interferometer and phi-OTDR
JPS6351424B2 (en)
JPS6114213Y2 (en)
US6519028B2 (en) Optical characteristic measuring apparatus, the method thereof and recording medium
CA2379900C (en) Method and devices for time domain demultiplexing of serial fiber bragg grating sensor arrays
CN220709742U (en) Defense area type optical fiber perimeter security system based on optical fiber vibration detection
JPH02103478A (en) Fault locator
CN220508230U (en) Real-time fault detection equipment in transformer substation
JP3388586B2 (en) Detection method and device
JP3060510B2 (en) Optical submarine repeater monitoring control signal transmission system
CN112002092B (en) High-speed railway platform anti-border-crossing distributed optical fiber early warning system