JPS60237304A - Shape measuring sensor - Google Patents
Shape measuring sensorInfo
- Publication number
- JPS60237304A JPS60237304A JP9359284A JP9359284A JPS60237304A JP S60237304 A JPS60237304 A JP S60237304A JP 9359284 A JP9359284 A JP 9359284A JP 9359284 A JP9359284 A JP 9359284A JP S60237304 A JPS60237304 A JP S60237304A
- Authority
- JP
- Japan
- Prior art keywords
- detection
- circuit
- signal
- section
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は形状測定装置に係り、特に複数個の検出素子全
適宜に配列することによシ仮測定物体の8次元形状を非
接触で認識でき、自動化専用機器に好適な形状測定用セ
ンサに関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a shape measuring device, and particularly to a shape measuring device for non-contact recognition of the 8-dimensional shape of a temporarily measured object by appropriately arranging a plurality of detection elements. The present invention relates to a shape measuring sensor suitable for automation-only equipment.
(従来技術)
一般に、形状測定用センサとして、撮象管素子を用いた
テレビカメラや、固体撮象素子を用いたテレビカメラに
よる信号伝送方式(OCD、)等によって被測定物体の
形状全測定するものが知られている。しかるに、この種
のセンサは、1次元。(Prior art) Generally, as a shape measurement sensor, the entire shape of the object to be measured is measured using a signal transmission method (OCD) using a television camera using an imaging tube element or a television camera using a solid-state imaging device. something is known. However, this type of sensor is one-dimensional.
2次元的な形状測定には有効でおるが、自動化奮進める
にあたって仮測定物体の3次元形状を測定するには複数
台のテレビカメラ金必要とする。し九がって、複数台の
テレビカメラによって3次元的な形状を認識するに社複
雑な操作を必要とし、測定装置が大がかりなものとなる
とともに、測定装置が高価なものとなるばかりでなく、
特殊な形状だ−とえば3次元的にかつ厚さ方向に変位し
た形状や比較的小径の穴の形状を認識することは不可能
であった。Although it is effective for measuring two-dimensional shapes, multiple television cameras are required to measure the three-dimensional shape of temporary measurement objects as automation is promoted. Therefore, recognizing a three-dimensional shape using multiple television cameras requires complicated operations, which not only makes the measuring device large-scale and expensive. ,
It was impossible to recognize special shapes - for example, shapes that were displaced three-dimensionally and in the thickness direction, or the shape of holes with relatively small diameters.
(発明が解決しようとする問題点)
本発明は上記従来の形状測定用センサの問題点を解決す
るとともに、仮測定物体からの距離に対応した信号を発
生する検出素子をマトリックス状に配置した検出部を所
要形状に形成し、該検出部の各検出素子からの信号を未
査選択することによシ、1次元、2次元的な形状はもと
よシ3次元的な各種の形状を高性能に認識可能な形状測
定用セ/すを得ることである。(Problems to be Solved by the Invention) The present invention solves the above-mentioned problems of the conventional shape measurement sensor, and also uses a detection element arranged in a matrix that generates a signal corresponding to the distance from the temporary measurement object. By forming the part into a desired shape and selecting untested signals from each detection element of the detection part, it is possible to enhance not only one-dimensional and two-dimensional shapes but also various three-dimensional shapes. The object of the present invention is to obtain a shape measuring device with recognizable performance.
(、、問題を解決しようとするための手段と作用)本発
明は被測定物体の形状に対応する値の信号を得る複数個
の検出素子をマトリックス状に配置した検出部と、該検
出部の各検出素子によって得られた信号を基準信号に重
畳させて前記被測定物体と検出部までの距離に対応した
検出信号を得る検出操作部と、該検出部に前記基準信号
を選択的に供給する検出制御部と、前記検出操作部の検
出信号を選択的に出力させる検出(N号出力部とによっ
てセンサを構成したものである。(Means and effects for solving the problem) The present invention includes a detection unit in which a plurality of detection elements are arranged in a matrix to obtain a signal of a value corresponding to the shape of an object to be measured, and a detection unit in which a plurality of detection elements are arranged in a matrix. a detection operation section that superimposes the signal obtained by each detection element on a reference signal to obtain a detection signal corresponding to the distance between the object to be measured and the detection section; and selectively supplies the reference signal to the detection section. A sensor is constituted by a detection control section and a detection (No. N output section) that selectively outputs the detection signal of the detection operation section.
本発明によれば一挙動の操作で検出部可能であシ、マト
リックス状の検出素子により形状認識を行なうと共に非
接触で変位計測を行なうことによりデータ処理が簡単に
なる。また、検出部においては使用検出素子を単に平面
的に配列するだけでなく、 測定物体の形状に合せて配
列すればよい。According to the present invention, the detection unit can be operated with one operation, and data processing is simplified by performing shape recognition using a matrix of detection elements and performing non-contact displacement measurement. Furthermore, in the detection section, the detection elements used may not only be arranged in a plane, but may be arranged in accordance with the shape of the object to be measured.
さらに使用検出素子の大きさを変えることにより。Furthermore, by changing the size of the detection element used.
平面形状に対する分解能を向上させる等の特殊な利用法
も含んでいる。It also includes special uses such as improving the resolution of planar shapes.
(実施例の構成)
以下に本発明の実施例TI:第1図〜第7図によって説
明するつ
第1図は本発明の実施例に係る形状測定用センサを示し
、この形状測定用センサは1本質的に、被測定物体の形
状に対応する検出信号81を得る検出部Aと、検出部A
からの検出信号S、を入力とし検出制御Oからの制御信
号S!に応じて選択的に検出操作信号S3を出力する検
出操作部Bと、検出操作部Bからの検出操作信号を入力
とし検出動作制御部Oの制御信号s3に同期して検出出
力信号B4を出力する検出信号出力部りとによって構成
されている。(Configuration of Embodiment) Embodiment TI of the present invention will be explained below with reference to FIGS. 1 to 7. FIG. 1 shows a shape measurement sensor according to an embodiment of the present invention. 1 Essentially, a detection section A that obtains a detection signal 81 corresponding to the shape of the object to be measured;
The detection signal S, from the detection control O is input, and the control signal S! from the detection control O! A detection operation section B selectively outputs a detection operation signal S3 according to the detection operation section B, and a detection operation signal from the detection operation section B is input, and a detection output signal B4 is output in synchronization with the control signal s3 of the detection operation control section O. It is composed of a detection signal output section and a detection signal output section.
第2図は第1図に示す形状測定用センサの具体例を示す
もので、検出部Aは後述するように複数個の検出素子を
マトリックス状に配列したものである。検出操作部nは
検出部Aの検出素子に対応した複数の共振回路2a−λ
nを有する。各共振回路Ja−,2nd、それぞれ、コ
ンデンサ3〜S。FIG. 2 shows a specific example of the shape measurement sensor shown in FIG. 1, and the detection section A has a plurality of detection elements arranged in a matrix as described later. The detection operation section n includes a plurality of resonant circuits 2a-λ corresponding to the detection elements of the detection section A.
It has n. Each resonance circuit Ja-, 2nd, each capacitor 3-S.
ダイオード4.7を有し、コンデンサ3とコンデンサを
間には検出部Aの検出素子たとえばダストコアコイル/
が接続されている。ダストコアコイル/とコンデンサダ
の接続点Jにはコンデンサ5を介してダイオード乙のア
ノード電極が接続さ札ダイオード7と抵抗tも図示のよ
うに接続されている。It has a diode 4.7, and between the capacitor 3 and the capacitor, there is a detection element of the detection section A, such as a dust core coil/
is connected. The anode electrode of the diode B is connected to the connection point J between the dust core coil and the capacitor 5 through the capacitor 5, and the tag diode 7 and the resistor t are also connected as shown.
検出制御部Oは基準信号発生器たとえば基準発振回路り
と、この基準発振回路りに接続された第1の切替回路1
0aと第2の切替回路10 b 、およびこれらの第1
と第2の切替回路/(7aと10bの選択的に切替制御
を行なうタイミング回路l/によって構成されている。The detection control unit O includes a reference signal generator, such as a reference oscillation circuit, and a first switching circuit 1 connected to this reference oscillation circuit.
0a and the second switching circuit 10b, and their first
and a second switching circuit/(7a and 10b), and a timing circuit l/ for selectively controlling switching.
したがって共振回路Ja−Jnはそれぞれ第1および第
2の切替回路/□aと10bを介して基本発振回路9に
接続される。検出信号出力部りは検出操作部Bからの検
出走査信号S3(S81 * 832 +”’ + ”
Rn)を選択的に切替える第8の切替回路/2と、この
第3の切替回路lコを通して入力される信号の利得を調
整するゲイン調整と
回路/3によって構成されている。Therefore, the resonant circuits Ja-Jn are connected to the basic oscillation circuit 9 via the first and second switching circuits /□a and 10b, respectively. The detection signal output section receives the detection scanning signal S3 (S81 * 832 + "' + ") from the detection operation section B.
The circuit is comprised of an eighth switching circuit /2 that selectively switches the Rn) and a gain adjustment circuit /3 that adjusts the gain of the signal input through the third switching circuit.
検出部ムにおいては、第3図に示すように、1112’
付枠/4Lに複数個のダストコアコイルlがマ)lック
ス状に配設固定されている。各ダストコアコイル/は第
2図に示すように共振回路Ja−Jnの一部を構成する
。In the detection unit, as shown in FIG.
A plurality of dust core coils l are arranged and fixed in a matrix on the attached frame/4L. Each dust core coil/ constitutes a part of a resonant circuit Ja-Jn as shown in FIG.
(実施例の作用)
上記構成の形状測定用セ/すにおいて、検出制御部Cの
基本発振回路7から第1の切替回路loaと第2のアナ
ログスイッチ回路lObを通して基準発振回路日1が検
出操作部Bの各共振回路Ja〜2nに入力される。検出
制御部0のタイミング回路l/は所定のタイミングをと
って第1と第2の切替回路/□aと10bのスイッチを
切替えて共振回路2a−Jnを選択させる。各共振回路
Ja−,2nは基゛準発振回路りの基準発振信号Slを
検出部Aからの各ダストコアコイル/からの信号振幅変
調する。この振幅変調された信号は波形成形された後、
検出信号出力部りの第8の切替回路/2に入力される。(Operation of the Embodiment) In the shape measurement cell having the above configuration, the reference oscillation circuit 1 is operated from the basic oscillation circuit 7 of the detection control unit C through the first switching circuit loa and the second analog switch circuit lOb. The signal is input to each of the resonant circuits Ja to 2n of section B. The timing circuit l/ of the detection control unit 0 switches the switches of the first and second switching circuits /□a and 10b at a predetermined timing to select the resonant circuit 2a-Jn. Each resonant circuit Ja-, 2n modulates the reference oscillation signal Sl of the reference oscillation circuit in the amplitude of the signal from each dust core coil from the detection section A. After this amplitude modulated signal is shaped into a waveform,
The signal is input to the eighth switching circuit/2 of the detection signal output section.
この第3の切替回路lコはタイミング回路l/のタイミ
ング信号S2により検出制御部Cの第1、第2の切替回
路/□a、10bと同期して検出操作部Bからの各出力
信号を選択してゲイン調整回路13に入力させる。ゲイ
ン調整回路13の出力は形状検出信号B4として各処理
部Eに入力される。This third switching circuit 10 receives each output signal from the detection operation section B in synchronization with the first and second switching circuits/□a, 10b of the detection control section C by the timing signal S2 of the timing circuit 1/. It is selected and inputted to the gain adjustment circuit 13. The output of the gain adjustment circuit 13 is input to each processing section E as a shape detection signal B4.
さらに詳しくは、第3図に示すように被測定物体/6を
載置した測定台17を検出部Aに対して速度日で移動さ
せると、被測定物体16が検出部Aの下を通過する。通
過時において検出部ムの所定のダストコアコイルlと被
測定物体14までの距離は第5図に示す如<Ds−us
のように変化する。被測定物体16が検出部Aのダスト
コイル/に近接すると、該被測定物体16にはダストコ
イル/からの磁束により渦電流が発生し、2次磁界が誘
起される。タストコアコイル/においては2次磁界の影
響を受けて電圧が変化するその電圧変化分はダストコア
コイル/から被測定物体の76の表面までの距離りの関
数として表われる。ダストコアコイル/の電圧変化によ
り共振回路、Za−、Znの3点の電圧信号は第4図の
ように振幅変調される。第。More specifically, as shown in FIG. 3, when the measuring table 17 on which the object to be measured 6 is placed is moved at a speed relative to the detection part A, the object to be measured 16 passes under the detection part A. . The distance between the predetermined dust core coil l of the detection unit and the object to be measured 14 at the time of passing is as shown in FIG.
It changes like this. When the object to be measured 16 approaches the dust coil / of the detection section A, an eddy current is generated in the object to be measured 16 due to the magnetic flux from the dust coil /, and a secondary magnetic field is induced. In the dust core coil/, the voltage changes under the influence of the secondary magnetic field, and the voltage change appears as a function of the distance from the dust core coil/ to the surface 76 of the object to be measured. The voltage signals at three points of the resonant circuit, Za- and Zn, are amplitude-modulated as shown in FIG. 4 due to voltage changes in the dust core coil. No.
図の曲線!!は通常時の3点の電圧信号であり、曲線1
1 zatti距陥り、に対応し、λ2ゎは距離D!に
対応する。Figure curve! ! is the voltage signal at three points during normal operation, and curve 1
1 corresponding to zatti distance fall, λ2ゎ is the distance D! corresponds to
第6図は被測定物体14が検出部Aを通過時の電圧信号
を示す。この電圧信号はダイオードtに整流されて第6
図曲線巴4のようになる。す女わち。FIG. 6 shows a voltage signal when the object to be measured 14 passes through the detection section A. This voltage signal is rectified by the diode t
The figure will look like curve Tomoe 4. I'm a woman.
第6図において曲MIt sはダストコイル/の特性を
示し、”4は検出操作部Bの出力特性を示す。In FIG. 6, the song MIt s indicates the characteristic of the dust coil /, and "4" indicates the output characteristic of the detection operation section B.
第す図に示す如く、被測定物体16の形状に応じて該被
測定物体16から検出部Aのダストコアコイル/までの
距離をDl + Dl + D3 とすると、共振回j
% 2 a −2n (7) 出力電圧信号はvl 、
v、lv3になる。これらの電圧信号■1〜v3は検出
信号出力部りの第3の切替回路12を通してゲイン調整
回路13によりゲインを調整した後処理部Eに入力する
。前述したように検出操作部Bの各共振回路コa−コn
は検出制御部Cによって走査選択される。走査選択によ
って検出部Aの各ダストコアコイル/の検出信号も走査
選択され、共振回路Ja〜コnから被測定物体16形状
に対応した信号が出力される。なシ本実施例では測定手
段がアナログ的手法であるため分解能が優れている。As shown in the figure, if the distance from the object to be measured 16 to the dust core coil/of the detection unit A is Dl + Dl + D3 according to the shape of the object to be measured 16, then the resonance frequency j
% 2 a −2n (7) The output voltage signal is vl,
v, it becomes lv3. These voltage signals (1-v3) are inputted to the post-processing section E through which the gain is adjusted by the gain adjustment circuit 13 through the third switching circuit 12 of the detection signal output section. As mentioned above, each resonant circuit core a to n of the detection operation section B
are scanned and selected by the detection control section C. The scanning selection also scans and selects the detection signals of each dust core coil/ of the detection section A, and a signal corresponding to the shape of the object to be measured 16 is output from the resonance circuits Ja to Kon. However, in this embodiment, the measuring means is an analog method, so the resolution is excellent.
本発明の形状測定用センサによれば、被測定物体の種々
の形状を測定することが可能である。形状認識の対象と
しては、2次元的なプレス抜きの部品、8次元的に厚さ
方向に加わった形状および穴部のように3次元的な内部
形状などがある。According to the shape measurement sensor of the present invention, it is possible to measure various shapes of an object to be measured. Objects of shape recognition include two-dimensional press-cut parts, eight-dimensional shapes added in the thickness direction, and three-dimensional internal shapes such as holes.
第7図は本発明の形状測定用センサを用いて穴部の内部
形状を測定する場合の例を示すもので、被測定対象とし
ては穴部/Aaを有する被測定物体16である。検出部
Aは穴部76 aの内径に適合した外径を有す円筒状の
取付枠/4Laに複数個のダストコアコイルlをマトリ
ックス円筒形状に配設したものである。形状測定にあた
っては、穴部/A aの内部において検出部Aを所定速
度Sで移動させる。FIG. 7 shows an example of measuring the internal shape of a hole using the shape measuring sensor of the present invention, and the object to be measured is an object 16 having a hole /Aa. The detection part A has a plurality of dust core coils l arranged in a matrix cylindrical shape in a cylindrical mounting frame/4La having an outer diameter that matches the inner diameter of the hole 76a. When measuring the shape, the detection section A is moved at a predetermined speed S inside the hole/Aa.
なお、第7図において距@dは検出素子の検出能力範囲
すなわち測定変位量の範囲を示すものである。Note that in FIG. 7, the distance @d indicates the detection capability range of the detection element, that is, the range of the measured displacement amount.
第8図は本発明の他の実施例に係る形状測定用センサを
示し、第2図に示すセンサと相異する点は、検出操作部
Bにおいて1個の共振回路2のみを用い、この共振回路
コに検出部Aの各ダストコアコイル/からの信号を第4
の切替回路部l弘を通して選択的に走査入力するように
したものである。FIG. 8 shows a shape measuring sensor according to another embodiment of the present invention, which differs from the sensor shown in FIG. The signals from each dust core coil of the detection part A are sent to the fourth circuit.
The scanning input is selectively inputted through the switching circuit section lhiro.
第9図は本発明の形状測定用センサのさら圧他の例を示
すもので、とのセンサにおいては検出信号出力部りのゲ
イン調整回路をレベルアンプitとフィルターアンプ/
qとKよって構成し、処理IHcをディジタル処理部と
演算部によって構成する。FIG. 9 shows another example of the shape measuring sensor of the present invention, in which the gain adjustment circuit of the detection signal output section is connected to the level amplifier IT and filter amplifier/
q and K, and the processing IHc is composed of a digital processing section and an arithmetic section.
すなわち20は検出信号出力部りの出力信号を所定の時
間間隔でサンプリングするサンプルホールド回路1.2
/はサンプルホールド回路20のサンプリングデータを
ディジタルデータに変換するアナログ−ディジタル変換
回路、刀は入出力回路である。That is, 20 is a sample hold circuit 1.2 that samples the output signal of the detection signal output section at predetermined time intervals.
/ is an analog-digital conversion circuit that converts the sampling data of the sample and hold circuit 20 into digital data, and sword is an input/output circuit.
これらのサンプルホールド回路20 、アナログ−ディ
ジタル変換回路ηによってディジタル処理部を形成する
。演算部としては中央処理装置(CPU)評、主メモリ
Jおよび補助メモリ26を用いる。These sample hold circuit 20 and analog-digital conversion circuit η form a digital processing section. A central processing unit (CPU), main memory J, and auxiliary memory 26 are used as the arithmetic unit.
第9図の形状測定用センサにおいて、ディジタル処理部
では検出信号出力部りの出力信号をサンプルホールド回
路Jによってサンプルホールドし、このサンプルホール
ドされたアナログ値をアナログ−ディジタル変換回路2
/によってディジタルデータに変換する。変換されたデ
ィジタルデータを入出力回路nを通してOP U 2u
に導びく。CPUUはディジタルデータに基づいて所定
の演算処理を実行し、入出力回路2/を通して種々の指
令信号。In the shape measurement sensor shown in FIG. 9, the digital processing section samples and holds the output signal from the detection signal output section using the sample and hold circuit J, and the sampled and held analog value is transferred to the analog-digital conversion circuit 2.
/ to convert to digital data. The converted digital data is passed through the input/output circuit n.
lead to. The CPUU executes predetermined arithmetic processing based on digital data and sends various command signals through the input/output circuit 2/.
表示信号などを出力回路力に転送する。Transfer display signals etc. to output circuit power.
(発明の効果)
以上説明したように本発明においては、被測定物体まで
の距離に対応した値の信号を得る複数個の検出素子をマ
トリックス状に配設して検出部を形成し、この検出部の
各検出素子の出力信号を走査選択して基準信号に重畳さ
せて前記被測定物体から検出部までの距離に対応した複
数の検出信号を得るよう形状測定用センサを構成したか
ら1個の検出部で被測定物体の8次元の形状を高精度に
して経済的に測定可能なセンサを得ることができる。(Effects of the Invention) As explained above, in the present invention, a plurality of detection elements that obtain signals of values corresponding to the distance to the object to be measured are arranged in a matrix to form a detection section, and the detection The shape measurement sensor is configured to scan and select the output signals of each detection element of the section and superimpose them on a reference signal to obtain a plurality of detection signals corresponding to the distance from the object to be measured to the detection section. It is possible to obtain a sensor that can measure the eight-dimensional shape of the object to be measured with high accuracy in the detection section and economically.
第1図は本発明の形状測定用センサのブロック結線図、
第2図は本発明の実施例に係る形状測定用センサの電気
結線図、第3図は検出例を示す説明図、第4図は第2図
のセンサの特性図、第5図は第2図のセンサの形状検出
例を示す説明図、第6図は第2図のセンサの特性図、第
7図は本発明の形状測定用センサの検出例を示す説明図
、第8図は本発明の他の実施例による形状測定用センサ
の電気結線図、第9図は本発明による形状測定用センサ
を用いた装置の一例を示すブロック結線図である。
/・・・検出素子であるダストコアコイル、2.2a〜
、2n・・・共振回路、9・・・基本発振回路、10a
、10b・・・切替回路部、ii・・・タイミング回路
、/2・・・第2の切替回路部、13・・・ゲイン調整
回路、/4L・・第3の切替回路部、 /4・・・被測
定物体、A・・・検出部、B・・・検出操作部、C・・
・検出制御部、D・・・検出信号出力部。
第5図
1
第6図
■
第7図
ムFIG. 1 is a block wiring diagram of the shape measurement sensor of the present invention.
Fig. 2 is an electrical wiring diagram of a shape measuring sensor according to an embodiment of the present invention, Fig. 3 is an explanatory diagram showing a detection example, Fig. 4 is a characteristic diagram of the sensor shown in Fig. 2, and Fig. 5 is a 6 is a characteristic diagram of the sensor in FIG. 2, FIG. 7 is an explanatory diagram showing an example of detection by the sensor for shape measurement of the present invention, and FIG. 8 is an explanatory diagram showing an example of shape detection by the sensor of the present invention. FIG. 9 is a block wiring diagram showing an example of a device using the shape measuring sensor according to the present invention. /...Dust core coil which is a detection element, 2.2a~
, 2n... Resonance circuit, 9... Basic oscillation circuit, 10a
, 10b...Switching circuit section, ii...Timing circuit, /2...Second switching circuit section, 13...Gain adjustment circuit, /4L...Third switching circuit section, /4. ...Object to be measured, A...detection section, B...detection operation section, C...
- Detection control section, D... detection signal output section. Figure 5 1 Figure 6 ■ Figure 7 M
Claims (1)
検出素子をマトリックス状に配置してなる検出部と、該
検出部の各検出素子によって得られた信号に基づいて前
記仮測定物体と検出部までの距離に対応した検出信号を
選択的に出力する検出操作部と、該検出操作部に基準信
号を選択的に供給する検出制御部と、前記検出操作部の
検出信号を選択的に出力させる検出信号出力部とからな
ること全特徴とする形状測定用センサ。gL A detecting section formed by arranging a plurality of detecting elements in a matrix to obtain a signal having a value corresponding to the shape of the measuring object, and detecting the temporary measuring object based on the signal obtained by each detecting element of the detecting section. a detection operation section that selectively outputs a detection signal corresponding to a distance to the detection section; a detection control section that selectively supplies a reference signal to the detection operation section; and a detection control section that selectively outputs a detection signal of the detection operation section. A shape measurement sensor characterized by comprising a detection signal output section for outputting a detection signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9359284A JPS60237304A (en) | 1984-05-10 | 1984-05-10 | Shape measuring sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9359284A JPS60237304A (en) | 1984-05-10 | 1984-05-10 | Shape measuring sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60237304A true JPS60237304A (en) | 1985-11-26 |
Family
ID=14086568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9359284A Pending JPS60237304A (en) | 1984-05-10 | 1984-05-10 | Shape measuring sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60237304A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5146152A (en) * | 1974-10-18 | 1976-04-20 | Osaka Seimitsu Kikai Kk | KEIJOSOKUTEIKI |
JPS5486368A (en) * | 1977-12-08 | 1979-07-09 | Westinghouse Electric Corp | Surface measuring device |
-
1984
- 1984-05-10 JP JP9359284A patent/JPS60237304A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5146152A (en) * | 1974-10-18 | 1976-04-20 | Osaka Seimitsu Kikai Kk | KEIJOSOKUTEIKI |
JPS5486368A (en) * | 1977-12-08 | 1979-07-09 | Westinghouse Electric Corp | Surface measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10142305B4 (en) | Device for detecting an offset | |
US5682019A (en) | Position detecting apparatus and position pointing device including elapsed time period build up detector | |
JPS5924390A (en) | Detection of transmission coil position | |
US4290018A (en) | Magnetic field strength measuring apparatus with triangular waveform drive means | |
CN105467377A (en) | Three-dimensional imaging radar read-out circuit based on self-mixing detector | |
US5446379A (en) | Method and system for searching and sensing reinforcing steel in concrete by employing an oscillator driver sensor coil | |
JPH0643994A (en) | Optimum scanning sequence for high-frequency magnetic digitizer | |
GB2208440A (en) | Method of measuring length and apparatus therefor wherein secondary output can be multiplied | |
US7417424B2 (en) | Magnetic-field-measuring device | |
JPH0623944B2 (en) | Device and method for determining the position of a coil relative to the active area | |
JPS60237304A (en) | Shape measuring sensor | |
JP2007033027A (en) | Method of diagnosing ferrous material in concrete structure with ferrous material embedded therein | |
RU2743151C1 (en) | Multielement eddy current converter | |
SU656012A1 (en) | Electromagnetic metal locator | |
SU1654735A1 (en) | Monitor-type magnetic-field flaw detector | |
SU1120234A1 (en) | Device for measuring mechanical stresses in ferromagnetic articles | |
RU2085932C1 (en) | Eddy-current flaw detector | |
JPH03204717A (en) | Cordless tablet | |
JPH02296108A (en) | Position detecting apparatus | |
RU2073233C1 (en) | Magnetic field converter | |
SU938124A1 (en) | Electromagnetic device for checking inner diameter of ferromagnetic pipes | |
SU1368752A1 (en) | Method of nmr-tomography | |
SU1656443A1 (en) | Magnetically sensitive assembly for flaw detectors | |
RU1803850C (en) | Eddy-current device | |
SU1437810A1 (en) | Linear converter of magnetic field |