JPS6023691B2 - Method of manufacturing high-impact polystyrene - Google Patents

Method of manufacturing high-impact polystyrene

Info

Publication number
JPS6023691B2
JPS6023691B2 JP52044564A JP4456477A JPS6023691B2 JP S6023691 B2 JPS6023691 B2 JP S6023691B2 JP 52044564 A JP52044564 A JP 52044564A JP 4456477 A JP4456477 A JP 4456477A JP S6023691 B2 JPS6023691 B2 JP S6023691B2
Authority
JP
Japan
Prior art keywords
impact
present
rubber
polymerization
polybutadiene rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52044564A
Other languages
Japanese (ja)
Other versions
JPS53130791A (en
Inventor
明夫 家森
章 斉藤
俊夫 伊原木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP52044564A priority Critical patent/JPS6023691B2/en
Publication of JPS53130791A publication Critical patent/JPS53130791A/en
Publication of JPS6023691B2 publication Critical patent/JPS6023691B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)

Description

【発明の詳細な説明】 本発明は、着色性に優れた耐衝撃性ポリスチレンの製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing impact-resistant polystyrene with excellent colorability.

さらに詳しくは、色剤による着色性ならびに実用的な耐
衝撃性に優れた耐衝撃性ポリスチレンの改良された製造
方法に関する。従来より、耐衝撃性ポリスチレンは未加
硫ゴムをスチレンに溶解し、この溶液を塊状重合または
塊状・懸濁重合する方法により製造されている。
More specifically, the present invention relates to an improved method for producing impact-resistant polystyrene that has excellent colorability with colorants and practical impact resistance. Conventionally, impact-resistant polystyrene has been produced by dissolving unvulcanized rubber in styrene and subjecting this solution to bulk polymerization or bulk/suspension polymerization.

この場合、強轍化剤として通常用いられる未加硫ゴムに
は、ポリブタジエンゴムやスチレンーブタジエンゴムが
あり、とりわけポリブタジエンゴムは、得られる耐衝撃
性ポリスチレンの低温耐衝撃性が優れていることから最
も多用されている。しかしながら、かかるポリブタジェ
ンゴムを強轍化剤とした耐衝撃性ポリスチレンのもつ欠
点の一つに、色剤による着色性の悪さが挙げられる。ポ
リスチレン、すなわち、強鰯化剤を含有しない、いわゆ
る一般ポリスチレンは、本来ポリスチレンなど他の樹脂
に較べて着色性の良好な樹脂であるが、耐衝撃性を改善
する目的でゴム状の強籾化剤がこれに添加されると、そ
の着色性が著しく損なわれる。この傾向は、使用する強
靭化剤がポリブタジェンゴムの場合には特に際立ち、ス
チレンーブタジェンゴムの場合には相当緩和される。一
般に、耐衝撃性ポリスチレンはゴム相とポリスチレン相
から成る二相機造をとっているといわれ、耐衝撃性ポリ
スチレンの着色性減退の一因は、この二相構造にあると
推察される。つまり、二相構造による透明性の低下と分
散するゴム相、特にゴム相の中でもボリブタジェン部分
の着色性の悪さが、耐衝撃性ポリスチレンの着色性減退
の原因と考えられる。しかし、これらについては充分解
明されないといえる。現在のところ、耐衝撃性ポリスチ
レンの有する着色性と耐衝撃性に関していえば、ボリブ
タジェンゴムを強靭化剤に用いた場合には、低温耐衝撃
性の点で優れるものの着色性が悪く、他方、スチレンー
ブタジヱンゴムを用いた場合には、着色性が良いものの
低温耐衝撃性の点で劣ることから、これら低温耐衝撃性
と着色性の両得性に優れた耐衝撃性ポリスチレンは未だ
得られていない。このような状況下で、本発明者らは、
低温耐衝撃・性に優れ、かつ着色性にも優れた耐衝撃性
ポリスチレンを得るべく種々のゴム状強靭化剤について
検討を重ねた。その結果、この分野で強鞭化剤として従
来から知られている種々のポリブタジェンゴム、たとえ
ば、特公昭37−6977号公報、特公昭41−161
85号公報、特公昭45−331斑号公報、特公昭48
一3954号公報、特関昭51−13159び号公報な
どに記載された各種のミクロン構造、粘度、分子量分布
を有するポリブタジェンゴムをそのまま用いたのでは、
耐衝撃性ポリスチレンの着色性を改善することができな
かった。さらに、特公昭41一14234号公報、特公
昭46一15017号公報などに記載された各種のブロ
ック・スチレンーブタジェンゴムやランダム・スチレン
ーブタジエンゴムについては、着色性が改善されるもの
の低温耐衝撃性の点で著しく劣るものであった。結局、
これら耐衝撃性ポリスチレンの強轍化剤として公知のゴ
ムをそのまま用いたのでは、本発明の目的に合致する耐
衝撃性ポリスチレンに到底達すべくもなかった。そこで
、本発明者らは、強轍化剤に使用するポリプタジェンゴ
ムのポリマー構造について、さらに鋭意研究を重ねた結
果、ビニル含量が7〜35%、シス含量が20〜80%
、重量平均分子量(Mw)と数平均分子量(Mn)の比
(Mw/Mn)が2.6以上、ゥィリアムスの回復値が
2.6肋以上であるポリブタジェンゴムをスチレンに溶
解し、かかる溶液を塊状重合または塊状・懸濁重合する
ことにより本発明の目的に合致する耐衝撃性ポリスチレ
ンが得られるこを見し、出し、本発明に到ったものであ
る。
In this case, unvulcanized rubbers that are usually used as strong rutting agents include polybutadiene rubber and styrene-butadiene rubber. In particular, polybutadiene rubber is used because the resulting high-impact polystyrene has excellent low-temperature impact resistance. Most commonly used. However, one of the drawbacks of impact-resistant polystyrene using polybutadiene rubber as a strong rutting agent is poor colorability with colorants. Polystyrene, that is, so-called general polystyrene that does not contain a toughening agent, is a resin that originally has better coloring properties than other resins such as polystyrene. When agents are added to it, its coloring properties are significantly impaired. This tendency is particularly noticeable when the toughening agent used is polybutadiene rubber, and is considerably alleviated when the toughening agent is styrene-butadiene rubber. Generally, high-impact polystyrene is said to have a two-phase structure consisting of a rubber phase and a polystyrene phase, and it is presumed that this two-phase structure is one of the reasons for the decline in colorability of high-impact polystyrene. In other words, the decrease in transparency due to the two-phase structure and the poor colorability of the dispersed rubber phase, especially the voributadiene moiety in the rubber phase, are considered to be the causes of the decrease in colorability of impact-resistant polystyrene. However, it can be said that these issues have not been fully elucidated. At present, regarding the coloring properties and impact resistance of high-impact polystyrene, when polybutadiene rubber is used as a toughening agent, it has excellent low-temperature impact resistance, but has poor coloring properties. When using styrene-butadiene rubber, it has good coloring properties but is inferior in low-temperature impact resistance, so these impact-resistant polystyrenes, which have excellent low-temperature impact resistance and coloring properties, are Haven't gotten it yet. Under these circumstances, the present inventors
In order to obtain impact-resistant polystyrene with excellent low-temperature impact resistance and strength, as well as excellent colorability, we have repeatedly investigated various rubber-like toughening agents. As a result, various polybutadiene rubbers conventionally known as strong whipping agents in this field, for example, Japanese Patent Publication No. 37-6977, Japanese Patent Publication No. 41-161
Publication No. 85, Special Publication No. 1973-331, Special Publication No. 1973
If the polybutadiene rubbers having various micron structures, viscosities, and molecular weight distributions described in Japanese Patent No. 13954 and Tokukan Sho 51-13159 were used as they were,
It was not possible to improve the colorability of impact-resistant polystyrene. Furthermore, various block styrene-butadiene rubbers and random styrene-butadiene rubbers described in Japanese Patent Publication No. 41-14234 and Japanese Patent Publication No. 46-15017 have improved low-temperature resistance. It was significantly inferior in terms of impact resistance. in the end,
If known rubbers were used as they were as strong rut-forming agents for these high-impact polystyrenes, it would have been impossible to achieve high-impact polystyrenes that met the objectives of the present invention. Therefore, the present inventors conducted further intensive research on the polymer structure of polyptadiene rubber used as a strong rutting agent, and found that the vinyl content was 7 to 35% and the cis content was 20 to 80%.
, a polybutadiene rubber having a ratio of weight average molecular weight (Mw) to number average molecular weight (Mn) (Mw/Mn) of 2.6 or more and a Williams recovery value of 2.6 or more is dissolved in styrene, and the It was discovered that impact-resistant polystyrene meeting the object of the present invention could be obtained by bulk polymerization or bulk/suspension polymerization of a solution, and the present invention was developed based on this finding.

そして、本発明の方法によって得られる耐衝撃性ポリス
チレンは、低温耐衝撃性と色剤による着色性の両特性が
極めて優れており、この特徴は、従来公知のゴム状強靭
化剤を用いては全く得られないものである。
The impact-resistant polystyrene obtained by the method of the present invention has extremely excellent properties of both low-temperature impact resistance and colorability with coloring agents, and this characteristic cannot be achieved by using conventionally known rubber-like toughening agents. It is completely unobtainable.

すなわち、本発明のポリブタジェンゴムを用いて得られ
る耐衝鰯性ポリスチレンは、従釆公知のポリブタジェン
ゴムを用いた場合に比して、その着色性の点で極めて優
れており、また低温耐衝撃性の点でも、これを凌駕する
ものである。そして、従来公知のスチレンーブタジェン
ゴムを用いた場合に比しても、低温耐衝撃性はもちろん
のこと着色性の点でも擬れている。さらに驚くべきこと
に、本発明の方法は、上記の特徴以外にも全く予期でき
ない副次的な結果をもたらすことがわかった。すらわち
、本発明のポリブタジェンゴムを強轍化剤に用いると、
耐衝撃性ポリスチレン中のゴム相の占める体積が、従来
公知のゴムを用いた場合に比して著しく高められること
である。
That is, the impact-resistant polystyrene obtained using the polybutadiene rubber of the present invention is extremely superior in terms of colorability compared to the case where conventionally known polybutadiene rubbers are used. It also surpasses this in terms of low-temperature impact resistance. Moreover, when compared with the case where conventionally known styrene-butadiene rubber is used, it is superior not only in low-temperature impact resistance but also in terms of colorability. Even more surprisingly, it has been found that the method of the present invention, in addition to the above-mentioned characteristics, also produces completely unexpected side effects. In other words, when the polybutadiene rubber of the present invention is used as a strong rutting agent,
The volume occupied by the rubber phase in high-impact polystyrene is significantly increased compared to when conventionally known rubbers are used.

一般に、耐衝撃性ポリスチレン中に存在するゴムそのも
のの量は、通常数%程度であるが、トルェン等の溶剤不
溶分として測定される耐衝撃性ポリスチレン中に占める
ゴム相の体積は、ゴムそのものの数倍に増大することが
知られている。これは耐衝撃性ポリスチレンの重合過程
で、ポリスチレンがゴム相中に吸蔵された結果と考えら
れている。したがって、本発明のポリブタジェンゴムを
用いた場合には、従釆公知のゴムを用いた場合より多く
のポリスチレンが吸蔵され、その結果、ゴム相の体積が
より増大化されたもの考えられる。ゴム相の体積が増大
するこの本発明の特徴は、同一の耐衝撃性を得るのに少
量のゴム添加量で済むことから、重合溶液の粘度低下が
図れて重合制御が容易となり、さらにゴムの使用量が少
なくて経済的なこと、あるいは極めて高い実用的な耐衝
撃性が得られることなど、従来の耐衝撃性ポリスチレン
の製造方法を大中に改良するものであり、その工業上の
波及効果は大きいといえる。
In general, the amount of rubber itself present in high-impact polystyrene is usually on the order of a few percent, but the volume of the rubber phase in high-impact polystyrene measured as the insoluble content in solvents such as toluene is the same as that of the rubber itself. It is known to increase several times. This is thought to be the result of polystyrene being occluded into the rubber phase during the polymerization process of high-impact polystyrene. Therefore, when the polybutadiene rubber of the present invention is used, more polystyrene is occluded than when conventional rubbers are used, and as a result, it is thought that the volume of the rubber phase is increased. The feature of the present invention in which the volume of the rubber phase increases is that a small amount of rubber is required to obtain the same impact resistance, which reduces the viscosity of the polymerization solution and facilitates polymerization control. This is a major improvement over the conventional manufacturing method of impact-resistant polystyrene, such as being economical due to the small amount used and achieving extremely high practical impact resistance, and its industrial ripple effects. can be said to be large.

以下、本発明をさらに詳しく説明する。The present invention will be explained in more detail below.

まず、本発明の強籾化剤に用いるポリブタジヱンゴムに
ついて述べる。
First, the polybutadiene rubber used in the rice grain toughening agent of the present invention will be described.

本発明で用いるポリブタジエンゴムは、たとえば、n−
ブチルリチウムなどの有機リチウム触媒の存在下、シグ
oヘキサンなどの炭化水素溶剤中で溶液重合される。本
発明で用いるポリブタジェンゴムのビニル含量は7〜3
5%、好ましくは10〜25%、さらに好ましくは、1
0〜20%である。
The polybutadiene rubber used in the present invention is, for example, n-
It is solution polymerized in a hydrocarbon solvent such as hexane in the presence of an organolithium catalyst such as butyllithium. The vinyl content of the polybutadiene rubber used in the present invention is 7 to 3.
5%, preferably 10-25%, more preferably 1
It is 0-20%.

ビニル含量が7%未満では、得られる耐衝撃性ポリスチ
レンの着色性が劣るとともにゴム相の増大傾向が顕著で
なく、ビニル含量が35%を超えると、その低温耐衝撃
性が劣る。本発明で用いるポリブタジェンゴムのシス含
量Jは20〜80%、好ましくは25〜45%である。
If the vinyl content is less than 7%, the coloring properties of the resulting impact-resistant polystyrene will be poor and the tendency for the rubber phase to increase will not be noticeable, and if the vinyl content exceeds 35%, the low-temperature impact resistance will be poor. The cis content J of the polybutadiene rubber used in the present invention is 20 to 80%, preferably 25 to 45%.

シス舎量が20%禾満では、得られる耐衝撃性ポリスチ
レンの低温耐衝鱗性が劣り、シス舎量が80%を超える
と、その着色性が劣る。本発明で用いるポリブタジェン
ゴムの重量平均Z分子量と数平均分子量の比(Mw/M
n)は2.6以上、好ましくは2.9〜5である。
If the cis content is less than 20%, the resulting impact-resistant polystyrene will have poor low-temperature impact resistance, and if the cis content exceeds 80%, its colorability will be poor. The ratio of the weight average Z molecular weight to the number average molecular weight (Mw/M
n) is 2.6 or more, preferably 2.9 to 5.

Mw/Mn2.6未満では、得られる耐衝撃性ポリスチ
レンの着色性が劣る。本発明で用いるポリブタジェンゴ
ムのウイリア2ムスの回復値(R,)は26側以上、好
ましくは3.0〜5.仇奴である。
If Mw/Mn is less than 2.6, the resulting impact-resistant polystyrene will have poor coloring properties. The Williams 2 Mus recovery value (R,) of the polybutadiene rubber used in the present invention is 26 or higher, preferably 3.0 to 5. He is an enemy.

ウィリアムスの回復値が2.6肌未満では、得られる耐
衝撃性ポリスチレンの着色性が劣るとともに、ゴム相の
織大便向が顕著でない。ウィリアムスの回復値はAST
M−D926−56に記載の方法に準拠し、ウィリアム
ス平行板可塑度計を用いて測定した値であり、この値は
ポリプタジェンゴムの粘弾性を示す一つの尺度である。
また本発明で用いるポリブタジェンゴムはムーニー粘度
(M L,十4(100qo)が20〜80,2yoで
測定した5重量%のスチレン溶液粘度が荷40〜20比
psの範囲となることが、得られる耐衝撃性ポリスチレ
ンの物性バランス上から好ましい。このようなポリブタ
ジェンゴムを製造する方法は、上記構造になるような方
法であれば従来公知のいかなる方法でもよいが、たとえ
ば、従来公知のエーテル類などのビニル化剤、特公昭4
1一36957号公報に記載の四塩化珪素などの分岐化
剤等を用いてもよいし、また袴公昭49一18475号
公報に記載の方法等を用いて分子量分布を調節してもよ
い。一方、本発明の耐衝撃性ポリスチレンの実際の製造
方法としては、特公昭46一15017号公報などに記
載された公知の塊状重合法または塊状・懸濁重合法が有
利に用いられる。たとえば、本発明のポリブタジェンゴ
ムをスチレンに溶解し、過酸化物などの触媒の存在下も
しくは不存在下に、この溶液を加熱してラジカル重合さ
せ、そのまま塊状重合を続けて重合を実質的に完結させ
てよいし、あるいは重合途中に重合溶液を水中に懸濁し
て重合を続け、実質的に重合を完結させてもよい。この
際、メルカプタンなどの分子量調節剤、トルェンなどの
溶剤、鉱物油などの可塑剤を必要に応じて適宜使用する
こともできる。以上の他、これらの方法の改変、改良は
、本発明の効果を損なわれない範囲で可能である。
If the Williams recovery value is less than 2.6, the resulting impact-resistant polystyrene will have poor coloring properties and the texture of the rubber phase will not be noticeable. Williams' recovery value is AST
This value was measured using a Williams parallel plate plasticity meter in accordance with the method described in M-D926-56, and is a measure of the viscoelasticity of polyptadiene rubber.
In addition, the polybutadiene rubber used in the present invention has a Mooney viscosity (ML, 100qo) of 20 to 80, and the viscosity of a 5% by weight styrene solution measured at 2yo may be in the range of 40 to 20 ps. is preferable from the viewpoint of the physical property balance of the resulting impact-resistant polystyrene.The method for producing such polybutadiene rubber may be any conventionally known method as long as it produces the above structure. Vinylizing agents such as ethers of
A branching agent such as silicon tetrachloride described in Japanese Patent No. 1-36957 may be used, or the molecular weight distribution may be adjusted using the method described in Hakama Kosho No. 49-18475. On the other hand, as an actual method for producing the impact-resistant polystyrene of the present invention, the known bulk polymerization method or bulk/suspension polymerization method described in Japanese Patent Publication No. 46-15017 and the like is advantageously used. For example, the polybutadiene rubber of the present invention is dissolved in styrene, and this solution is heated to undergo radical polymerization in the presence or absence of a catalyst such as peroxide, and then bulk polymerization is continued to substantially inhibit the polymerization. Alternatively, the polymerization solution may be suspended in water during the polymerization to continue the polymerization and substantially complete the polymerization. At this time, a molecular weight regulator such as mercaptan, a solvent such as toluene, and a plasticizer such as mineral oil may be used as appropriate. In addition to the above, modifications and improvements to these methods are possible without impairing the effects of the present invention.

たとえば、本発明で用いるポリブタジェンゴムを形成す
る1,3ーブタジェンの一部を、ィソプレン等の他の単
量体で置き換えてもよいし、このポリブタジェンゴムに
他のゴムを併用することもまた可能である。また本発明
の耐衝撃性ポリスチレンを形成するスチレンの一部を、
Qーメチルスチレン、アクリロニトリル、メタクリロニ
トリルなどのスチレンとラジカル共重合しうる単量体で
置き換えてもよい。
For example, a part of 1,3-butadiene forming the polybutadiene rubber used in the present invention may be replaced with other monomers such as isoprene, or other rubbers may be used in combination with this polybutadiene rubber. is also possible. In addition, a part of the styrene forming the impact-resistant polystyrene of the present invention,
It may be replaced with a monomer capable of radical copolymerization with styrene, such as Q-methylstyrene, acrylonitrile, and methacrylonitrile.

このようにして得られる本発明の耐衝撃性ポリスチレン
は、従来の耐衝撃性ポリスチレンに比し、低温耐衝撃性
および色剤による着色性に極めて優れ、射出成形、押出
成形等の加工法で成形されて各種の用途、特に低温で用
いられる着色製品に好適である。
The impact-resistant polystyrene of the present invention obtained in this way has extremely superior low-temperature impact resistance and colorability with coloring agents compared to conventional impact-resistant polystyrene, and is molded by processing methods such as injection molding and extrusion molding. It is suitable for a variety of applications, especially colored products used at low temperatures.

また加工の際に、色剤以外にも必要に応じて酸化防止剤
、紫外線吸収剤、糟剤、離形剤、充填剤、さらに他の熱
可塑性樹脂等を本発明の耐衝撃性ポリスチレンに混合す
ることにより、多種多様な用途に用いることもできる。
この他にも、色剤を添加しない一般の射出成形用途、シ
ート用途、発泡体用途においても好適に用いることがで
きる。しかも、本発明の方法は、従来公知の製造方法に
比して、重合制御性あるいは経済性の面でも優れており
、その利用価値は多種多様である。
In addition to coloring agents, antioxidants, ultraviolet absorbers, thickening agents, mold release agents, fillers, and other thermoplastic resins are also mixed into the impact-resistant polystyrene of the present invention during processing. By doing so, it can be used for a wide variety of purposes.
In addition, it can also be suitably used in general injection molding applications, sheet applications, and foam applications in which no coloring agent is added. Furthermore, the method of the present invention is superior to conventionally known production methods in terms of polymerization controllability and economic efficiency, and its utility value is wide-ranging.

したがって、本発明の工業的意義は極めて大きいといえ
る。0 以下に若干の実施例を示し、本発明の具体的実
施態様を示すが、これは本発明の趣旨をより具体的に説
明するためのものであって、本発明を限定するものでは
ない。
Therefore, it can be said that the industrial significance of the present invention is extremely large. 0 Some Examples are shown below to show specific embodiments of the present invention, but these are for more specifically explaining the gist of the present invention, and are not intended to limit the present invention.

実施例 1〜3、比較例 1〜6 本発明において規定される構造を有するポリブタジェン
ゴム(試料A)を、以下に示す条件で重合反応の完了し
た重合体溶液の一部を再循環させる連続重合法によって
得た。
Examples 1 to 3, Comparative Examples 1 to 6 Polybutadiene rubber (sample A) having the structure defined in the present invention was subjected to the following conditions by recycling a portion of the polymer solution after the polymerization reaction was completed. Obtained by continuous polymerization method.

重合条件 重合器:内容積10そ縄梓器およびジャケット付モノマ
ー溶液:ブタジェン2の重量%含有のシクロヘキサン溶
液触 媒:n−ブチルリチウムをモノマー100重量部
に対し0.0り重量部モノマー溶液供給速度:300の
‘/分 重合器温度:120〜130℃ 循環重合液量:3の重量% 重合体溶液処理法:重合体10の重量部あたり0.5重
量部のジ−企てt−ブチル−p−クレゾールを添加後、
加熱ロール上で溶媒 除去 試料Aを分析したところ、シス含量は35.3%、ピニ
ル含量は12.4%、Mw/Mnは3.21,R,は3
.84肋であった。
Polymerization conditions Polymerization vessel: Internal volume: 10 with rope scaler and jacket Monomer solution: Cyclohexane solution containing 2% by weight of butadiene Catalyst: 0.0 part by weight of n-butyl lithium per 100 parts by weight of monomer supplied as monomer solution Speed: 300'/min Polymerization vessel temperature: 120-130°C Circulating polymerization liquid amount: 3% by weight Polymer solution treatment method: 0.5 parts by weight of di-t-butyl per 10 parts by weight of polymer -After adding p-cresol,
When the solvent-removed sample A was analyzed on a heating roll, the cis content was 35.3%, the pinyl content was 12.4%, Mw/Mn was 3.21, and R was 3.
.. It had 84 ribs.

シス含量およびピニル含量は、赤外分光光度計(日本分
光製、IRA−2型)を用い、二硫化炭素を溶媒として
赤外線スペクトルを測定し、モレロ法〔D.Morer
oら、Chim.elnd.41, 758(1959
)〕によってそれぞれ計算した。
The cis content and pinyl content were determined by measuring the infrared spectrum using an infrared spectrophotometer (manufactured by JASCO Corporation, model IRA-2) using carbon disulfide as a solvent, and by the Morello method [D. Morer
o et al., Chim. elnd. 41, 758 (1959
)] respectively.

Mw/Mnは、GPC(島津製作所製、LC−1)を用
い、下記の条件で測定した。
Mw/Mn was measured using GPC (LC-1, manufactured by Shimadzu Corporation) under the following conditions.

溶媒:テトラハイドロフラン カラム:島津製作所製HSG−60,HSG−50,H
SG−40,50の、各1本 3カラム陣
温槽温度:50oo送液圧力:80k9′の 試料濃度:0.1重量% 試料液量:0.5叫 検出器:示差屈折計 3またR
,はASTM−D‐926−56に示されるウイリアム
ス平行板可塑計を用いて、次の如く測定した。
Solvent: Tetrahydrofuran Column: Shimadzu HSG-60, HSG-50, H
1 each of SG-40 and SG-50 3-column temperature bath temperature: 50oo Liquid feeding pressure: 80k9' Sample concentration: 0.1% by weight Sample liquid volume: 0.5cm Detector: Differential refractometer 3 or R
, was measured as follows using a Williams parallel plate plastometer specified in ASTM-D-926-56.

直径14.3肋、高12.7柵の円柱状の試験片に5k
9の荷重をかけ、3分後の試料の高さを測定した4後、
直ちに試料を可塑度計より取り出し、室温で1分間放置
した後の試料の高さを測定する。
5k on a cylindrical specimen with a diameter of 14.3 ribs and a height of 12.7 ribs.
After applying a load of 9 and measuring the height of the sample after 3 minutes,
Immediately remove the sample from the plasticity meter and measure the height of the sample after leaving it at room temperature for 1 minute.

この1分間放置の前後の試料の高さの差が回復値(R,
)であり、側の単位で表わす。また以下に示す試料B,
C,D,E,F,G,日,1,Jを用意した。
The difference in height of the sample before and after leaving it for 1 minute is the recovery value (R,
) and is expressed in side units. In addition, sample B shown below,
I prepared C, D, E, F, G, day, 1, and J.

表2には、これら試料の物性を示した。試料B:高シス
ポリブタジェンゴム、タクテン12028(pol$e
r社製)試料C:低シスポリブタジヱンゴム、インテン
4州FA(ISR社製)試料D:乳化重合ポリブタジェ
ンゴム、ミリオポール100(保土ケ谷化学製)試料E
:乳化重合スチレンーブタジェンゴムニポール1006
(日本ゼオン社製)試料F:シクロヘキサン溶媒中でブ
チルリチウムを触媒としてブタジヱンを重合し、この活
性末端を四塩化ケイ素でシャン ピングさせたポリブタジエンゴム 試料G,日,1,J:試料Aを得たのと同等の重合方式
で、重合液の循環量および重合温度を変更して得られた
ポリブタジ エンコ−ム 試料A〜Jの物性値を表1に示した。
Table 2 shows the physical properties of these samples. Sample B: High cis polybutadiene rubber, Tactene 12028 (pol$e
(Manufactured by R Company) Sample C: Low cis polybutadiene rubber, Inten Shishu FA (Manufactured by ISR Company) Sample D: Emulsion polymerized polybutadiene rubber, Myriopol 100 (Manufactured by Hodogaya Chemical) Sample E
: Emulsion polymerized styrene-butadiene rubber Nipol 1006
(manufactured by Nippon Zeon Co., Ltd.) Sample F: Polybutadiene rubber obtained by polymerizing butadiene in a cyclohexane solvent using butyl lithium as a catalyst, and shampooing the active end with silicon tetrachloride. Sample G, 1, 1, and J: Sample A was obtained. Table 1 shows the physical property values of polybutadiene comb samples A to J obtained using the same polymerization method as above, but changing the circulation amount of the polymerization solution and the polymerization temperature.

これらのゴムを強轍化剤として、以下に述べる塊状重合
法によって、実施例1〜4、比較例1〜6の耐衝撃性ポ
リスチレン組成物を得た。
Using these rubbers as strong rutting agents, impact-resistant polystyrene compositions of Examples 1 to 4 and Comparative Examples 1 to 6 were obtained by the bulk polymerization method described below.

塊状重合の条件 重合溶液組成:スチレン80重量部 チレンベンゼン 7.5重量部 ゴム 5 重量部 ジーにrtーブチルーp−クレゾール 0.5重量部 重合器:内容積5そジャケットおよび蝿梓器付重合温度
:燈梓数:重合時間125q○:4仇pm: 4時間 150q0:1びpm: 2時間 170午○: 8pm: 2時間 末反応物除去:220℃減圧、1時間 以上の条件によって得られた組成物を粉砕し、押出機に
てべレット状とした。
Conditions for bulk polymerization Polymerization solution composition: 80 parts by weight of styrene, 7.5 parts by weight of styrene benzene, 5 parts by weight, 0.5 parts by weight of RT-butyl-p-cresol, Polymerization vessel: Internal volume: 5, with jacket and flywheel polymerization temperature : Toazusa number: Polymerization time 125q○: 4pm: 4 hours 150q0: 1pm: 2 hours 170pm○: 8pm: Removal of reactants at the end of 2 hours: Obtained under the conditions of 220°C reduced pressure and 1 hour or more The composition was pulverized and made into pellets using an extruder.

なお、これら組成物中の強靭化剤の量を回収したスチレ
ンおよびエチルベンゼンから計算したところ、いずれも
6.0〜6.a重量%であった。これら組成物の物性を
表2に示す。物性測定を以下の如く行った。得られた組
成物を圧縮成形し、JIS−K−6871にしたがって
、アィゾット衝撃強度、引張強度、破断時伸びを測定し
た。
In addition, when the amount of toughening agent in these compositions was calculated from the recovered styrene and ethylbenzene, they were all 6.0 to 6.0. a% by weight. Table 2 shows the physical properties of these compositions. Physical properties were measured as follows. The resulting composition was compression molded, and its Izod impact strength, tensile strength, and elongation at break were measured according to JIS-K-6871.

また15仇舷×15仇舷、厚さ3肋の片ピンゲート付金
型を用いて射出成形を行ない、25ooおよび一30午
0における落錘衝撃強度の測定を行った。着色性は樹脂
10戊鋤こ対しミクロカーボンブラックを0.3部添加
し、150肋×150肋、厚さ2側の片ピンゲート付金
型で射出成形を行ない、これらの組成物中で、着色性が
最もすぐ*れるものを4、着色性が最も劣るものを1と
し、その中間を3および2の評価とした。また得られた
組成物1夕をトルェン30凧‘に溶解し、不溶部を遠心
分離してトルェン不溶部量を測定した。なお、トルェン
不綾部量は実質的にゴム相の体積に相当する。表 1 ※ BR:ボリブタジエンゴム SBR:スチレンープタジエンゴム 表 2 表2の塊状重合の結果から、以下おことが明らかである
Injection molding was also carried out using a mold with a single pin gate measuring 15 m. Coloring property was determined by adding 0.3 parts of micro carbon black to 10 pieces of resin and injection molding in a 150 rib x 150 rib mold with a single pin gate on the 2-sided thickness. A rating of 4 was given for the property with the best quality, a rating of 1 was given for the poorest coloring property, and a rating of 3 and 2 was given for those in between. Further, one night of the obtained composition was dissolved in 30 kg of toluene, and the insoluble portion was centrifuged to measure the amount of toluene insoluble portion. Note that the amount of toluene misalignment substantially corresponds to the volume of the rubber phase. Table 1 *BR: Polybutadiene rubber SBR: Styrene-butadiene rubber Table 2 From the bulk polymerization results in Table 2, the following is clear.

【11 シス含量が本発明で限定する範囲よりも多く、
またピニル含量が本発明で限定する範囲よりも少ない試
料Bを用いた比較例1の組成物は、本発明の限定内のシ
ス含量の試料Aを用いた組成物に比して着色性が劣る。
[11 The cis content is greater than the range limited by the present invention,
Furthermore, the composition of Comparative Example 1 using Sample B whose pinyl content is less than the range defined by the present invention has inferior coloring properties compared to the composition using Sample A whose cis content is within the range defined by the present invention. .

【2)シス含量が本発明で限定する範囲よりも少ない試
料Dを用いた比較例3の組成物は、シス含量が本発明の
範囲の試料Aを用いた組成物に比して、低温における耐
衝撃性が劣る{3;シス含量およびビニル合量が本発明
で限定する範囲内であっても、MwノMnが本発明の範
囲外である試料CおよびFを用いた比較例2および5の
組成物、R,が本発明の範囲外である試料CおよびGを
用いた比較例2および6の組成物は、Mw/Mnおよび
R,が本発明の範囲内である試料A,日,1およびJを
用いた実施例1〜4の組成物に比較して、着色性が劣る
[2] The composition of Comparative Example 3 using Sample D, which has a cis content lower than the range defined by the present invention, has a higher temperature at low temperatures than the composition using Sample A, which has a cis content within the range of the present invention. Poor impact resistance {3; Comparative Examples 2 and 5 using samples C and F in which Mw and Mn are outside the range of the present invention even if the cis content and total vinyl content are within the range limited by the present invention The compositions of Comparative Examples 2 and 6 using Samples C and G, in which R, is outside the range of the present invention, are different from those in Sample A, R, which is within the range of the present invention. Compared to the compositions of Examples 1 to 4 using No. 1 and J, the colorability is inferior.

【4} 本発明で限定するシス含量、ビニル含量、Mw
/Mn,R,を有する試料A,日,1およびJを用いた
実施例1〜4の組成物は、従釆着色性が優れるとされて
いたスチレンーブタジェンゴムである試料Eを用いた比
較例4の組成物と同等ないしそれ以上の着色性であった
、かつ低溢における耐衝撃性がはるかに優れる。■ 本
発明で限定される構造のポリプタジェンを用いた実施例
1〜4の組成物は、トルェン不落部の値に示される如く
、同一ゴム含量であるにもかかわらず、他の組成物に比
較してゴム相の体積が多い。
[4} Cis content, vinyl content, Mw limited in the present invention
The compositions of Examples 1 to 4 using Samples A, 1, and J having /Mn,R, used Sample E, which is a styrene-butadiene rubber that was said to have excellent secondary coloring properties. The coloring property was equal to or better than that of the composition of Comparative Example 4, and the impact resistance at low overflow was far superior. ■ The compositions of Examples 1 to 4 using polyptadiene having the structure defined by the present invention are compared to other compositions despite having the same rubber content, as shown in the value of toluene dropout area. and the volume of the rubber phase is large.

{6’本発明で限定される構造のポリプタジェンを用い
た実施例1〜4の組成物は、比較例の組成物に比してア
ィゾット衝撃強度および蕗錘衝撃強度のいずれも優れて
いる。
{6' The compositions of Examples 1 to 4 using polyptadiene having the structure defined in the present invention are superior to the compositions of the comparative examples in both Izod impact strength and slender weight impact strength.

以上の如く、本発明において用いるポリプタジェンのシ
ス含量、ビニル含量、Mw/Mn,R,を汗※限定する
ことは、本発明の目的を達成する上で極めて重要である
As described above, it is extremely important to limit the cis content, vinyl content, Mw/Mn, and R of the polyptadiene used in the present invention in order to achieve the object of the present invention.

このように、本発明の方法によって得られる耐衝撃性ポ
リスチレン組成物は、着色性および低温における耐衝撃
性が優れた組成物である。
As described above, the impact-resistant polystyrene composition obtained by the method of the present invention is a composition with excellent colorability and impact resistance at low temperatures.

実施例 5、比較例 7〜9 試料A,B,C,Eを用いて以下に示す塊状一懸濁重合
法により、実施例5および比較例7〜8の耐衝撃性ポリ
スチレン組成物を得た。
Example 5, Comparative Examples 7-9 Impact-resistant polystyrene compositions of Example 5 and Comparative Examples 7-8 were obtained by the bulk suspension polymerization method shown below using Samples A, B, C, and E. .

内容積20その重合器に、スチレン9虹重量部、ゴム5
.5重量部、ジーteれ−ブチル−pークレゾール0.
42重量部、tsれ−ドデシルメルカプタン0.08重
量部の組成の重合用溶液で、温度115℃、澄梓数5仇
pmの条件で、スチレンの反応率が約40%になるまで
重合させる。
Inner volume: 20 In the polymerization vessel, 9 parts by weight of styrene, 5 parts by weight of rubber.
.. 5 parts by weight, 0.5 parts by weight of di-butyl-p-cresol.
Using a polymerization solution having a composition of 42 parts by weight and 0.08 parts by weight of TS-dodecyl mercaptan, polymerization was carried out at a temperature of 115 DEG C. and a clearness number of 5 pm until the styrene reaction rate reached about 40%.

次いで、この溶液10の重量部あたり0.1重量部のジ
ーtert−プチルパーオキサィドを添加し、さらに懸
濁安定剤として、0.15重量部のポリビニルアルコー
ル、0.05重量部のドデシルベンゼンスルホン酸ナト
リウムを含む100重量部の水を加え、鷹梓下に懸濁さ
せる。この懸濁混合物を縄拝しつつ、120qoで3時
間、140℃で3時間、最後に150ooで2時間加熱
して、スチレンの重合を実質的に完了させた。得られた
ビーズ状の組成物を遠心分離により反応混合物より分離
し、水洗処理後、乾燥して、実施例1と同様な方法で物
性測定を行ったその結果を表3に示す。表 3表3の結
果より明らかな如く、塊状−懸濁重合法によっても、本
発明で限定されるシス含量、ビニル含量、Mw/Mn,
R,を有するポリブタジェンゴムの試料Aを用いた実施
例5の組成物は、本発明で限定される範囲外の試料B,
Cポリブタジェンゴムを用いた比較例7および8の組成
物に比して、着色性が陵れ、かつゴム相の体積が多く、
また試料Eのスチレンーブタジェンゴムを用いた比較例
9の組成物と同等の着色性であり、かつ低温における耐
衝撃性がはるかに優れる。
Next, 0.1 parts by weight of di-tert-butyl peroxide was added per 10 parts by weight of this solution, and further 0.15 parts by weight of polyvinyl alcohol and 0.05 parts by weight of dodecyl were added as suspension stabilizers. Add 100 parts by weight of water containing sodium benzenesulfonate and suspend under the water. The suspended mixture was heated under heating at 120 qo for 3 hours, at 140° C. for 3 hours, and finally at 150 oo for 2 hours to substantially complete the polymerization of styrene. The resulting bead-like composition was separated from the reaction mixture by centrifugation, washed with water, dried, and measured for physical properties in the same manner as in Example 1. The results are shown in Table 3. Table 3 As is clear from the results in Table 3, even by the bulk-suspension polymerization method, the cis content, vinyl content, Mw/Mn,
The composition of Example 5 using sample A of polybutadiene rubber having R,
Compared to the compositions of Comparative Examples 7 and 8 using C polybutadiene rubber, the colorability was lower and the volume of the rubber phase was larger,
Further, it has the same coloring properties as the composition of Comparative Example 9 using the styrene-butadiene rubber of Sample E, and has far superior impact resistance at low temperatures.

Claims (1)

【特許請求の範囲】 1 ポリブタジエンゴムをスチレンに溶解し、かかる溶
液を塊状重合または塊状・懸濁重合するに際し、上記ポ
リブタジエンゴムの(1) ビニル含量が7〜35%、
シス含量が20〜80%(2) 重量平均分子量(Mw
)と数平均分子量(Mn)の比(Mw/Mn)が2.6
以上(3) ウイルアムスの回復値(R_1)が2.6
mm以上であることを特徴とする耐衝撃性ポリスチレン
の製造方法。 2 ポリブタジエンゴムのシス含量が25〜45%であ
る特許請求の範囲第1項記載の耐衝撃性ポリスチレンの
製造方法。 3 ポリブタジエンゴムのビニル含量が10〜25%で
ある特許請求の範囲第2項記載の耐衝撃性ポリスチレン
の製造方法。 4 ポリブタジエンゴムの重量平均分子量と数平均分子
量の比が2.9〜5である特許請求の範囲第2項記載の
耐衝撃性ポリスチレンの製造方法。 5 ポリブタジエンゴムのウイリアムスの回復値が3.
0〜5.0mmである特許請求の範囲第2項記載の耐衝
撃性ポリスチレンの製造方法。
[Claims] 1. When polybutadiene rubber is dissolved in styrene and the solution is subjected to bulk polymerization or bulk/suspension polymerization, (1) the vinyl content of the polybutadiene rubber is 7 to 35%;
Cis content is 20-80% (2) Weight average molecular weight (Mw
) and number average molecular weight (Mn) (Mw/Mn) is 2.6
Above (3) Williams recovery value (R_1) is 2.6
A method for producing impact-resistant polystyrene, characterized in that the polystyrene has a polystyrene impact resistance of 1 mm or more. 2. The method for producing impact-resistant polystyrene according to claim 1, wherein the polybutadiene rubber has a cis content of 25 to 45%. 3. The method for producing high-impact polystyrene according to claim 2, wherein the vinyl content of the polybutadiene rubber is 10 to 25%. 4. The method for producing high-impact polystyrene according to claim 2, wherein the polybutadiene rubber has a ratio of weight average molecular weight to number average molecular weight of 2.9 to 5. 5 Williams recovery value of polybutadiene rubber is 3.
The method for producing impact-resistant polystyrene according to claim 2, which has a thickness of 0 to 5.0 mm.
JP52044564A 1977-04-20 1977-04-20 Method of manufacturing high-impact polystyrene Expired JPS6023691B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52044564A JPS6023691B2 (en) 1977-04-20 1977-04-20 Method of manufacturing high-impact polystyrene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52044564A JPS6023691B2 (en) 1977-04-20 1977-04-20 Method of manufacturing high-impact polystyrene

Publications (2)

Publication Number Publication Date
JPS53130791A JPS53130791A (en) 1978-11-15
JPS6023691B2 true JPS6023691B2 (en) 1985-06-08

Family

ID=12694981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52044564A Expired JPS6023691B2 (en) 1977-04-20 1977-04-20 Method of manufacturing high-impact polystyrene

Country Status (1)

Country Link
JP (1) JPS6023691B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187345A (en) * 1981-05-12 1982-11-18 Mitsui Toatsu Chem Inc Rubber-modified styrene resin composition
JPS60130613A (en) * 1983-12-16 1985-07-12 Asahi Chem Ind Co Ltd Rubber-modified aromatic monovinyl polymer resin composition
JP2584211B2 (en) * 1986-06-30 1997-02-26 日本エラストマ−株式会社 Impact resistant styrenic resin composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918475A (en) * 1972-06-09 1974-02-18
JPS52117347A (en) * 1976-03-26 1977-10-01 Monsanto Co Improved polymeric polyblends composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4918475A (en) * 1972-06-09 1974-02-18
JPS52117347A (en) * 1976-03-26 1977-10-01 Monsanto Co Improved polymeric polyblends composition

Also Published As

Publication number Publication date
JPS53130791A (en) 1978-11-15

Similar Documents

Publication Publication Date Title
EP0716664B9 (en) Improved rubber modified polystyrene
US4567232A (en) Continuous preparation of rubber-modified polymers of vinyl-aromatics
JPH0635500B2 (en) Rubber-Reinforced Polymer of Monovinylidene Aromatic Compound Having Unique Balance of Gloss and Physical Strength Properties and Process for Producing the Same
AU606645B2 (en) Rubber-reinforced monovinylidene aromatic polymer resins and a method for their preparation
EP0924256A1 (en) Polybutadiene rubber and impact-resistant aromatic vinyl resin compositions
US3976721A (en) Method of producing polystyrene composition
JPS581683B2 (en) Manufacturing method of impact resistant resin
US6410654B1 (en) Highly rigid, high-tenacity impact-resistant polystyrene
JPS6023691B2 (en) Method of manufacturing high-impact polystyrene
US3373227A (en) Polymerization of abs resins in the presence of low molecular weight, thermally initiated polystyrene
AU624737B2 (en) Rubber-reinforced polymer composition incorporating grafting agent
US4082820A (en) High softening maleic anhydride copolymers
US6825271B2 (en) Anionically polymerized, impact-resistant polystyrene with capsule particle morphology
JPS6023693B2 (en) Method for producing impact resistant polystyrene composition
JPS62179548A (en) Impact-resistant polystyrene resin
US3100198A (en) Blend of an alpha-methylstyrene/acrylonitrile copolymer with a copolymer of alpha-methylstyrene and a diolefin having styrene and acrylonitrile grafted thereon
JPS6152844B2 (en)
JPS61272259A (en) Heat-resistant thermoplastic resin composition
JPH06166729A (en) Rubber-modified aromatic vinyl copolymer resin and its production
JPS6023692B2 (en) Method of manufacturing high impact polystyrene compositions
US3465066A (en) Process for the production of shock resisting polymers
US3531548A (en) Two-step polymerization processes for the production of high impact abstype resins
KR20050027678A (en) Method for preparing acrylonitrile-butadiene-styrene resin
JP2004250679A (en) Styrene resin composition
JPH1030047A (en) Rubber-modified styrene resin composition