JPS61272259A - Heat-resistant thermoplastic resin composition - Google Patents

Heat-resistant thermoplastic resin composition

Info

Publication number
JPS61272259A
JPS61272259A JP11576385A JP11576385A JPS61272259A JP S61272259 A JPS61272259 A JP S61272259A JP 11576385 A JP11576385 A JP 11576385A JP 11576385 A JP11576385 A JP 11576385A JP S61272259 A JPS61272259 A JP S61272259A
Authority
JP
Japan
Prior art keywords
weight
copolymer
latex
heat
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11576385A
Other languages
Japanese (ja)
Inventor
Yasuyuki Shimozato
康之 下里
Yuichi Hashiguchi
裕一 橋口
Kazumi Nakazawa
和美 中沢
Shinichi Kimura
木村 慎一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
Japan Synthetic Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Synthetic Rubber Co Ltd filed Critical Japan Synthetic Rubber Co Ltd
Priority to JP11576385A priority Critical patent/JPS61272259A/en
Publication of JPS61272259A publication Critical patent/JPS61272259A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a composition containing uniformly dispersed N-substituted maleimide and having excellent heat-resistance and impact-resistance, by compounding a copolymer containing N-substituted maleimide with a copolymer of an aromatic vinyl compound and a vinyl cyanide compound. CONSTITUTION:The objective resin composition can be produced by compounding (A) 15-85(wt)% heat-resistant resin obtained by mixing (i) 5-60% latex of a copolymer composed of 15-70% N-substituted maleimide and 30-85% aromatic vinyl compound and (ii) 40-95% latex of a copolymer composed of 50-82% aromatic vinyl compound, 18-50% vinyl cyanide compound and 0-10% other copolymerizable vinyl monomer with (B) 85-15% copolymer obtained by the graft-polymerization of 20-50% vinyl aromatic compound and 5-20% vinyl cyanide compound to 30-65% rubbery polymer.

Description

【発明の詳細な説明】 a、産業上の利用分野 本発明は、耐熱性、耐衝撃性に優れた熱可塑性樹脂に関
する。さらにくわしくはN−置換マレイミドを含んだ樹
脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application The present invention relates to a thermoplastic resin having excellent heat resistance and impact resistance. More specifically, the present invention relates to a resin composition containing an N-substituted maleimide.

b、従来技術 スチレン−アクリロニトリル共重合体の耐熱性を改良す
る方法として、スチレンの一部または全量をα−メチル
スチレンに置き換えて使用する方法が、一般に行われて
いる。また、ABS樹脂で代表されるゴム変性熱可塑性
樹脂の耐熱性向上のため、グラフトモノマーの一部にα
−メチルスチレンを用いる方法、あるいはα−メチルス
チレンーアクリロニトリル共重合体とアクリロニトリル
−ブタジェン−スチレン共重合体を混合する方法が知ら
れている。これらの熱可塑性樹脂は、自動車あるいは弱
電機器の内装材料として用いられているが、その耐熱性
はまだ不十分であった。そのためα−メチルスチレンの
含量をさらに増やして耐熱性を高くする方法が提案され
ているが、α−メチルスチレン含量が多くなると、重合
体分子中にα−メチルスチレンの三連鎖が多く生成し、
成形時の熱安定性が悪くなる。この結果、α−メチルス
チレンを使用した系では、おのずからその耐熱性に限界
がある。そこでさらに耐熱性を高くするために種々検討
がなされ、N−置換マレイミドを使用すると、耐熱性を
高く出来ることが見出されたた。
b. Prior Art A commonly used method for improving the heat resistance of styrene-acrylonitrile copolymers is to replace part or all of styrene with α-methylstyrene. In addition, in order to improve the heat resistance of rubber-modified thermoplastic resins such as ABS resin, some of the graft monomers are
- A method using methylstyrene or a method of mixing an α-methylstyrene-acrylonitrile copolymer and an acrylonitrile-butadiene-styrene copolymer are known. These thermoplastic resins are used as interior materials for automobiles and light electrical equipment, but their heat resistance is still insufficient. Therefore, a method has been proposed to increase the heat resistance by further increasing the content of α-methylstyrene, but when the content of α-methylstyrene increases, many triple chains of α-methylstyrene are generated in the polymer molecule.
Thermal stability during molding deteriorates. As a result, systems using α-methylstyrene naturally have a limit in their heat resistance. Therefore, various studies were conducted to further increase the heat resistance, and it was discovered that the heat resistance could be increased by using N-substituted maleimide.

すなわちN−置換マレイミドと芳香族ビニル化合物との
共重合体と芳香族ビニル化合物とビニルシアン化合物と
の共重合体を混合することにより耐熱性に優れた熱可塑
性樹脂が得られる。
That is, by mixing a copolymer of an N-substituted maleimide and an aromatic vinyl compound and a copolymer of an aromatic vinyl compound and a vinyl cyanide compound, a thermoplastic resin having excellent heat resistance can be obtained.

C0発明が解決しようとする問題点 しかしながら、従来知られている両者を粉末状で混合す
る方法の場合、均一に分散させることが困難であった。
Problems to be Solved by the C0 Invention However, in the case of the conventionally known method of mixing both in powder form, it was difficult to uniformly disperse them.

またN−置換マレイミドを含有する共重合体は、そのガ
ラス転移温度が高いため、高温で混練しても均一に分散
させることは容易ではなかった。
Furthermore, since the copolymer containing N-substituted maleimide has a high glass transition temperature, it is not easy to uniformly disperse the copolymer even when kneaded at a high temperature.

本発明者らは、上記問題を解決すべく検討し、N−置換
マレイミドと芳香族ビニル化合物との共重合体(A)お
よび芳香族ビニル化合物とビニルシアン化合物との共重
合体(B)とをラテックス状態で混合することにより、
N−置換マレイミドが均一に分散しかつ耐熱性に優れた
樹脂を得ることが出来、さらにゴムとのグラフト体と混
合することにより耐衝撃性、加工性に優れた樹脂を得る
ことが出来ることを見出し、本発明に到達した。
The present inventors have studied to solve the above problems, and have developed a copolymer (A) of an N-substituted maleimide and an aromatic vinyl compound, and a copolymer (B) of an aromatic vinyl compound and a vinyl cyan compound. By mixing in latex state,
It is possible to obtain a resin in which N-substituted maleimide is uniformly dispersed and has excellent heat resistance, and furthermore, by mixing it with a rubber graft, it is possible to obtain a resin with excellent impact resistance and processability. Heading, we arrived at the present invention.

d3問題点を解決するための手段 本発明は、上記問題点を解決するために、(i)(a)
N−置換マレイミド15〜70重量%および芳香族ビニ
ル化合物30〜85重量%からなる共重合体ラテックス
(A)と 山)芳香族ビニル化合物50〜82重量%、ビニルシア
ン化合物18〜50重量%および他の共重合可能なビニ
ルモノマー0〜10重量%からなる共重合体ラテックス
(B) を固形分重量換算で、(A)5〜60重量%、(B)4
0〜95重量%の割合で混合してなる耐熱性樹脂(I)
15〜゛85重量% および (ii )芳香族ビニル化合物20〜50重量%、ビニ
ルシアン化合物5〜20重量%をゴム状重合体30〜6
5重量%にグラフト重合させてなる共重合体(II)1
5〜85重量% とを含有してなる耐熱性熱可塑性樹脂組成物を提供する
ものである。
d3 Means for Solving Problems In order to solve the above problems, the present invention provides (i) (a)
Copolymer latex (A) consisting of 15-70% by weight of N-substituted maleimide and 30-85% by weight of aromatic vinyl compound; Copolymer latex (B) consisting of 0 to 10% by weight of other copolymerizable vinyl monomers (A) 5 to 60% by weight, (B) 4
Heat-resistant resin (I) mixed in a proportion of 0 to 95% by weight
(ii) 20-50% by weight of an aromatic vinyl compound, 5-20% by weight of a vinyl cyanide compound, and 30-6% by weight of a rubbery polymer.
Copolymer (II) 1 obtained by graft polymerization of 5% by weight
The object of the present invention is to provide a heat-resistant thermoplastic resin composition containing 5 to 85% by weight.

まず耐熱性樹脂(I)について述べる。First, the heat-resistant resin (I) will be described.

共重合体(A)中の共重合成分であるN−置換マレイミ
ドは、15重量%〜70重量%、好ましくは56〜70
重量%使用される。15重量%未満では耐熱性が低下す
るため、好ましくないし、また70重量%を越えると流
動性が低下するため好ましくない。
The N-substituted maleimide which is a copolymerization component in the copolymer (A) is 15% to 70% by weight, preferably 56 to 70% by weight.
% by weight used. If it is less than 15% by weight, the heat resistance will be lowered, which is not preferable, and if it exceeds 70% by weight, the fluidity will be lowered, which is not preferable.

56〜70重量%の範囲であると耐熱性と耐衝撃性の優
れたものが得られる。一方、芳香族ビニル化合物は30
〜85重量%、好ましくは30〜44重量%使用される
。芳香族ビニル化合物が、30重量%未満では流動性が
低下し、また85重量%を越えると耐熱性が低下するの
で好ましくない。
When the content is in the range of 56 to 70% by weight, products with excellent heat resistance and impact resistance can be obtained. On the other hand, aromatic vinyl compounds have 30
~85% by weight, preferably 30-44% by weight is used. If the aromatic vinyl compound is less than 30% by weight, fluidity will decrease, and if it exceeds 85% by weight, heat resistance will decrease, which is not preferable.

ラテックス(A)の製造は、例えば乳化重合により行な
われ、その重合方法は芳香族ビニル化合物とN−置換マ
レイミドとを一括して反応器中に仕込んだのち、重合を
開始する方法、芳香族ビニル化合物を仕込んだのちN−
置換マレイミドの一部または全部を連続的に添加する方
法、もしくは逆に芳香族ビニル化合物の一部または全部
を連続的に添加する方法、または芳香族ビニル化合物お
よびN−置換マレイミドの両者の一部または全部を連続
的に仕込む方法などがあり、いずれの方法によってもよ
い。乳化重合に使用される乳化剤は、マレイミドの加水
分解を抑えるために、pH7以下で安定なものが好まし
い。具体的にはドデシルベンゼンスルホン酸ナトリウム
、ラウリル硫酸ナトリウムなどのアニオン系乳化剤が好
適に用いられる。
The latex (A) is produced, for example, by emulsion polymerization, in which the aromatic vinyl compound and the N-substituted maleimide are charged into a reactor all at once, and then polymerization is started. After charging the compound, N-
A method of continuously adding part or all of the substituted maleimide, or conversely, a method of continuously adding part or all of the aromatic vinyl compound, or a part of both the aromatic vinyl compound and the N-substituted maleimide. Alternatively, there is a method of continuously preparing all of the ingredients, and any method may be used. The emulsifier used in emulsion polymerization is preferably one that is stable at pH 7 or lower in order to suppress hydrolysis of maleimide. Specifically, anionic emulsifiers such as sodium dodecylbenzenesulfonate and sodium lauryl sulfate are preferably used.

本発明に使用される芳香族ビニル化合物としては、スチ
レン、○−メチルスチレン、m−メチルスチレン、P−
メチルスチレン、クロルスチレン、ジクロルスチレン、
ブロムスチレン、ジブロムスチレン、α−メチルスチレ
ン、α−エチルスチレン、メチル−α−メチルスチレン
、ジメチルスチレン、ビニルナフタリンなどが挙げられ
る。この中でスチレン、P−メチルスチレン、ζ−メチ
ルスチレンが好ましく、さらに好ましくはスチレン、α
−メチルスチレンあるいはこれらの混合物である。
Aromatic vinyl compounds used in the present invention include styrene, ○-methylstyrene, m-methylstyrene, P-methylstyrene,
Methylstyrene, chlorstyrene, dichlorostyrene,
Examples include bromustyrene, dibromustyrene, α-methylstyrene, α-ethylstyrene, methyl-α-methylstyrene, dimethylstyrene, vinylnaphthalene, and the like. Among these, styrene, P-methylstyrene, and ζ-methylstyrene are preferred, and styrene and α-methylstyrene are more preferred.
- methylstyrene or mixtures thereof.

本発明に使用されるN−置換マレイミドとしては、N−
フェニルマレイミド、N−メチルマレイミド、N−エチ
ルマレイミド、N−t−ブチルマレイミド、N−シクロ
ヘキシルマレイミド、N−P−クロロフェニルマレイミ
ド、N−ナフチルマレイミドなどである。なかでもN−
フェニルマレイミド、N−シクロヘキシルマレイミド、
N−0−メチルフェニルマレイミドなどが好適に用いら
れる。
The N-substituted maleimide used in the present invention includes N-
These include phenylmaleimide, N-methylmaleimide, N-ethylmaleimide, Nt-butylmaleimide, N-cyclohexylmaleimide, N-P-chlorophenylmaleimide, N-naphthylmaleimide, and the like. Especially N-
Phenylmaleimide, N-cyclohexylmaleimide,
N-0-methylphenylmaleimide and the like are preferably used.

ラテックス(A)を製造する時の重合開始剤としては、
通常の乳化重合開始剤が用いられる0例えば、過硫酸カ
リウム、過硫酸アンモニウムなどの過硫酸塩系、過酸化
水素系、クメンヒドロペルオキシド、ジイソプロピルベ
ンゼンハイドロパーオキシドなどのハイドロパーオキシ
ド系の重合開始剤を用いることが出来る。還元剤として
は、スルホキシレート処方、デキストローズ処方などを
使用することが出来る。
As a polymerization initiator when producing latex (A),
Ordinary emulsion polymerization initiators are used.For example, persulfate-based polymerization initiators such as potassium persulfate and ammonium persulfate, hydrogen peroxide-based polymerization initiators, and hydroperoxide-based polymerization initiators such as cumene hydroperoxide and diisopropylbenzene hydroperoxide are used. It can be used. As the reducing agent, sulfoxylate formulations, dextrose formulations, etc. can be used.

ラテックス(A)の製造で、乳化型合法以外の方法とし
ては、N−置換マレイミド系共重合体を溶媒に溶解した
溶液、あるいは溶液重合により得られる重合体溶液を、
例えば前述の乳化剤等を用いて乳化することによりラテ
ックス(A)を製造することができる。これらのうちで
は、乳化重合法で製造するのが好ましい。
In the production of latex (A), methods other than the emulsion method include a solution of an N-substituted maleimide copolymer dissolved in a solvent, or a polymer solution obtained by solution polymerization.
For example, latex (A) can be produced by emulsifying using the above-mentioned emulsifier or the like. Among these, it is preferable to manufacture by emulsion polymerization method.

ラテックス(A)中の共重合体の固有粘度〔η〕は、0
.05〜0.5(メチルエチルケトン中30℃)  d
l17gであるのが好ましい。0.05未満では衝撃強
度が低下し、0.5を超えると流動性が低下する。また
ラテックス(A)の粒径は、ラテックス(B)との均一
混合分散の点から5000Å以下が好ましい。
The intrinsic viscosity [η] of the copolymer in the latex (A) is 0
.. 05-0.5 (30℃ in methyl ethyl ketone) d
Preferably, it is 117 g. If it is less than 0.05, impact strength will decrease, and if it exceeds 0.5, fluidity will decrease. Further, the particle size of latex (A) is preferably 5000 Å or less from the viewpoint of uniform mixing and dispersion with latex (B).

ラテックス(B)中の共重合成分は、芳香族ビニル化合
物は、50〜82重量%、好ましくは70.5〜82重
量%、ビニルシアン化合物18〜50重量%、好ましく
は18〜29.5重量%、他の共重合可能なビニルモノ
マー0〜10重量%が使用される。これらの範囲外では
物性の低下をきたすので好ましくない。
The copolymerization components in the latex (B) include an aromatic vinyl compound of 50 to 82% by weight, preferably 70.5 to 82% by weight, and a vinyl cyanide compound of 18 to 50% by weight, preferably 18 to 29.5% by weight. % and 0 to 10% by weight of other copolymerizable vinyl monomers are used. Outside these ranges, physical properties deteriorate, which is not preferable.

ラテックス(B)゛に使用される芳香族ビニル化合物は
、ラテックス(A)と同じ単量体が使用される。
The aromatic vinyl compound used in latex (B) is the same monomer as latex (A).

またビニルシアン化合物は、アクリロニトリル、メタク
リロニトリル、クロルアクリロニトリルなどが使用され
る。
Further, as the vinyl cyanide compound, acrylonitrile, methacrylonitrile, chloroacrylonitrile, etc. are used.

ラテックス(B)の製造は、溶液重合により得られた共
重合体溶液を例えば前述の乳化剤で乳化する方法、懸濁
重合により得られた共重合体を例えば前述の乳化剤等で
乳化する方法や、乳化重合によりラテックスを製造する
方法などがあり、いずれの方法によっても良いが、乳化
重合が特に好ましい。耐熱性をさらに高めるために、芳
香族ビニルの全量をα−メチルスチレンに変えることも
可能であり、特に好ましい。
The latex (B) can be produced by a method of emulsifying a copolymer solution obtained by solution polymerization with, for example, the above-mentioned emulsifier, a method of emulsifying a copolymer obtained by suspension polymerization with, for example, the above-mentioned emulsifier, There are methods of producing latex by emulsion polymerization, and any method may be used, but emulsion polymerization is particularly preferred. In order to further improve heat resistance, it is also possible, and particularly preferred, to change the entire amount of aromatic vinyl to α-methylstyrene.

ラテックス(B)中の共重合体の固有粘度〔η〕は、0
.2〜0.8  d lt /g  が好ましく、更に
好ましくは0.25〜0.6  d1/g  である。
The intrinsic viscosity [η] of the copolymer in latex (B) is 0
.. It is preferably 2 to 0.8 dlt/g, more preferably 0.25 to 0.6 d1/g.

〔η〕が小さすぎると衝撃強度が低く、大きすぎると流
動性が低下する。
If [η] is too small, the impact strength will be low, and if it is too large, the fluidity will be reduced.

ラテックス(B)の乳化重合に使用される乳化剤は特に
制限はない。また重合開始剤も通常の開始剤が使用され
、特に制限なく、ラテックス(A)の製造に用いるもの
と同一のものでも良い。
The emulsifier used in the emulsion polymerization of latex (B) is not particularly limited. Further, a common polymerization initiator may be used, and there are no particular restrictions, and the same initiator as used for producing latex (A) may be used.

ラテックス(A)とラテックス(B)とはラテックス状
態のま−で混合される。各ラテックスを凝固させてから
混合しても、目的とする効果は得られない。
Latex (A) and latex (B) are mixed until they form a latex state. Even if each latex is solidified and then mixed, the desired effect cannot be obtained.

ラテックス(B)と混合するラテックス(A)の量は固
形分換算で5〜60重量%の含量である。5重量%未満
では耐熱性が損なわれ、・60重量%を越えると流動性
が低下するので好ましくない。
The amount of latex (A) mixed with latex (B) is 5 to 60% by weight in terms of solid content. If it is less than 5% by weight, heat resistance will be impaired, and if it exceeds 60% by weight, fluidity will be reduced, which is not preferable.

共重合体(II)を構成するグラフト共重合体は、芳香
族ビニル化合物20〜50重量%、ビニルシアン化合物
5〜20重量%をゴム状重合体30〜65重量%にグラ
フト重合させたものである。グラフト重合させる単量体
混合物の混合割合は、上記範囲外では熱可塑性樹脂とし
ての物性が損われるので好ましくない。またゴム状重合
体の含量が30重量%未満では耐熱性が低下し、65重
量%を越えると耐衝撃性が低下するので好ましくない。
The graft copolymer constituting copolymer (II) is obtained by graft polymerizing 20 to 50% by weight of an aromatic vinyl compound and 5 to 20% by weight of a vinyl cyanide compound to 30 to 65% by weight of a rubbery polymer. be. If the mixing ratio of the monomer mixture to be graft-polymerized is outside the above range, the physical properties of the thermoplastic resin will be impaired, which is not preferable. Further, if the content of the rubbery polymer is less than 30% by weight, the heat resistance will decrease, and if it exceeds 65% by weight, the impact resistance will decrease, which is not preferable.

共重合体(II)に使用される芳香族ビニル化合物は、
前述の芳香族ビニル化合物が使用される。またシアン化
ビニル化合物も同じく前述のシアン化ビニル化合物が使
用される。
The aromatic vinyl compound used in copolymer (II) is
The aromatic vinyl compounds mentioned above are used. Further, as the vinyl cyanide compound, the above-mentioned vinyl cyanide compound is also used.

ゴム状重合体としては、ブタジェンゴム、スチレン−ブ
タジェン共重合ゴム、クロロプレンゴム、天然ゴム、ア
クリルゴム、エチレン−プロピレン共重合ゴムなどが使
用される。
As the rubbery polymer, butadiene rubber, styrene-butadiene copolymer rubber, chloroprene rubber, natural rubber, acrylic rubber, ethylene-propylene copolymer rubber, etc. are used.

共重合体(II)の製造は、ゴム状重合体のラテックス
に上記単量体混合物をグラフトさせる乳化重合による方
法、ゴム状重合体の溶液中で上記単量体をグラフト重合
させる溶液重合法などいずれの方法によってもよい。
The copolymer (II) can be produced by emulsion polymerization in which the monomer mixture is grafted onto a latex of a rubbery polymer, or by a solution polymerization method in which the monomers are grafted in a solution of a rubbery polymer. Any method may be used.

耐熱性樹脂(1)と共重合体(II)の混合方法は、前
述の方法で回収された耐熱性樹脂(I)とラテックス状
の共重合体(II)をラテックス状態で混合する方法、
あるいは(I)と(I[)をそれぞれ凝固回収したのち
、粉末状で混合する方法などがありいずれでも良い。(
1)と(If)の混合割合は耐熱性樹脂(1)を15〜
85重景%、共重合体(II)を85〜15重量%であ
る。(I)の含有量が15重量%未満では耐熱性が低く
好ましくなく、85重量%を越えると加工性が低下する
ので好ましくない。また(II)の含有量が15重量%
未満では耐衝撃性が低下するため好ましくなく、85重
量%を越えると耐熱性が低下するので好ましくない。
The method of mixing the heat-resistant resin (1) and the copolymer (II) is a method of mixing the heat-resistant resin (I) recovered by the above method and the latex-like copolymer (II) in a latex state;
Alternatively, there is a method of coagulating and recovering (I) and (I[), respectively, and then mixing them in powder form. Either method may be used. (
The mixing ratio of 1) and (If) is 15 to 15% of the heat-resistant resin (1).
85% by weight, and 85-15% by weight of copolymer (II). If the content of (I) is less than 15% by weight, the heat resistance will be low, which is not preferable, and if it exceeds 85% by weight, the processability will be reduced, which is not preferable. In addition, the content of (II) is 15% by weight
If it is less than 85% by weight, the impact resistance will decrease, which is not preferable, and if it exceeds 85% by weight, the heat resistance will decrease, which is not preferable.

このようにして得られた本発明の耐熱性、熱可塑性樹脂
にさらに耐熱性を有する熱可塑性樹脂、例えばポリフェ
ニレンオキシド、ポリエチレンテレフタレート、ポリブ
チレンテレフタレート、ポリアセタール、ポリアミド、
スチレン−無水マレイン酸共重合体、ポリカーボネート
などを混合してもよい。
In addition to the heat resistant thermoplastic resin of the present invention thus obtained, a thermoplastic resin having further heat resistance, such as polyphenylene oxide, polyethylene terephthalate, polybutylene terephthalate, polyacetal, polyamide,
Styrene-maleic anhydride copolymer, polycarbonate, etc. may be mixed.

以下に本発明を実施例を用いて具体的に説明する。The present invention will be specifically explained below using Examples.

e、実施例 実施例1 耐熱性樹脂(1)を以下のようにして合成した。e. Example Example 1 Heat-resistant resin (1) was synthesized as follows.

イオン交換水150重量部、ドデシルベンゼンスルホン
酸ナトリウム2.0重量部に、固体状態のN−フェニル
マレイミド20重量部、α−メチルスチレン15.0重
量部およびt−ドデシルメルカプタン0.4重量部を仕
込み、フラスコ内温を60℃に昇温したのち、エチレン
ジ゛アミン四酢酸ナトリウム0.1重量部、硫酸第一鉄
7水和物0.003重量部、ナ) IJウムホルムアル
デヒドスルホキシレート0.2重量部をイオン交換水2
0重量部に溶解した溶液を加え、ジイソプロピルベンゼ
ンハイドロパーオキシド0.1重量部を加えて重合を開
始し、湯浴温度を60℃に保って2時間重合させた。重
合転化率は98%であった。これをラテックス(A) 
とする。
20 parts by weight of solid N-phenylmaleimide, 15.0 parts by weight of α-methylstyrene and 0.4 parts by weight of t-dodecylmercaptan were added to 150 parts by weight of ion-exchanged water and 2.0 parts by weight of sodium dodecylbenzenesulfonate. After charging and raising the internal temperature of the flask to 60°C, 0.1 part by weight of sodium ethylenediaminetetraacetate, 0.003 part by weight of ferrous sulfate heptahydrate, and 0.0 parts by weight of IJ formaldehyde sulfoxylate were added. 2 parts by weight of ion-exchanged water 2
0 parts by weight of the solution was added, and 0.1 parts by weight of diisopropylbenzene hydroperoxide was added to start polymerization, and the water bath temperature was maintained at 60° C. for 2 hours. The polymerization conversion rate was 98%. This is latex (A)
shall be.

これとは別に、イオン交換水220重量部、ドデシルベ
ンゼンスルホン酸ナトリウム3重量部、α−メチルスチ
レン71重量部、アクリロニトリル29重量部、t−ド
デシルメルカプタン0.4重量部を加えてフラスコ内温
を60℃に昇温したのち、エチレンジアミン四酢酸ナト
リウム0.1重量部、硫酸第一鉄7水和物0.003重
量部、ナトリウムホルムアルデヒドスルホキシレート0
.2重量部をイオン交換水20重量部に溶解した溶液を
加え、ジイソプロピルベンゼンハイドロパーオキシド0
.1重量部を加えて重合を開始し、湯浴温度を60℃に
保って3時間重合させた。重合転化率は99%であった
Separately, 220 parts by weight of ion-exchanged water, 3 parts by weight of sodium dodecylbenzenesulfonate, 71 parts by weight of α-methylstyrene, 29 parts by weight of acrylonitrile, and 0.4 parts by weight of t-dodecylmercaptan were added to adjust the flask internal temperature. After raising the temperature to 60°C, 0.1 part by weight of sodium ethylenediaminetetraacetate, 0.003 part by weight of ferrous sulfate heptahydrate, and 0 part by weight of sodium formaldehyde sulfoxylate.
.. Add a solution of 2 parts by weight dissolved in 20 parts by weight of ion-exchanged water, and add 0 parts by weight of diisopropylbenzene hydroperoxide.
.. 1 part by weight was added to start polymerization, and the water bath temperature was maintained at 60° C. for 3 hours. The polymerization conversion rate was 99%.

これをラテックス(B) とする。This is called latex (B).

このようにして得られた(^)、(B)両ラテックスを
固形分重量換算で(A)/(B) =35/65の混合
比で混合したのち、塩化カルシウムを用いて加圧凝固法
により凝固し、水洗、乾燥して回収した。これを耐熱性
樹脂(1)とする。
Both latexes (^) and (B) thus obtained were mixed at a mixing ratio of (A)/(B) = 35/65 in terms of solid weight, and then subjected to pressure coagulation using calcium chloride. It was solidified, washed with water, dried, and collected. This is referred to as heat-resistant resin (1).

別にフラスコにポリブタジェンゴムラテックスを固形分
重量換算で60重量部加え、イオン交換水150重量部
、スチレン7重量部、アクリロニトリル3重量部を加え
て、フラスコ内温を60℃に昇温したのち、ビロリン酸
ナトリウム0.2重量部、硫酸第一鉄7水和物0.01
重量部、ぶどうII0.4重量部をイオン交換水20重
量部に溶解した溶液を加え、キュメンハイドロパーオキ
シド0.05重量部を加えて重合を開始し、温浴温度を
70℃に保った。1時間重合させたのち、スチレン21
重量部、アクリロニトリル9重量部、キュメンハイドロ
パーオキシド0.05重量部を3時間かけて連続的に添
加し、さらに1時間重合させて反応を終結させた。得ら
れた共重合体は、塩化カルシウムを用いて凝固し、水洗
、乾燥した。これを共重合体(II)とする。
Separately, 60 parts by weight of polybutadiene rubber latex (calculated as solid weight) was added to a flask, 150 parts by weight of ion-exchanged water, 7 parts by weight of styrene, and 3 parts by weight of acrylonitrile were added, and the internal temperature of the flask was raised to 60°C. , sodium birophosphate 0.2 parts by weight, ferrous sulfate heptahydrate 0.01
A solution prepared by dissolving 0.4 parts by weight of Grape II in 20 parts by weight of ion-exchanged water was added, and 0.05 parts by weight of cumene hydroperoxide was added to start polymerization, and the bath temperature was maintained at 70°C. After polymerizing for 1 hour, styrene 21
parts by weight, 9 parts by weight of acrylonitrile, and 0.05 parts by weight of cumene hydroperoxide were continuously added over a period of 3 hours, and polymerization was further carried out for 1 hour to terminate the reaction. The obtained copolymer was coagulated using calcium chloride, washed with water, and dried. This is referred to as copolymer (II).

耐熱性樹脂(I)/共重合体(II) =75/25の
重量比で混合してペレット化したのち、インジェクショ
ンにより成形した。成形物の物性測定結果を表−■に示
した。
Heat-resistant resin (I)/copolymer (II) was mixed at a weight ratio of 75/25, pelletized, and then molded by injection. The results of measuring the physical properties of the molded product are shown in Table-■.

実施例2 実施例1で得られたラテックス(八)とラテックス(B
)の混合比を(A)/(B) =24.8/75.2(
固形分重量換算)にした他は実施例1と同様にした。
Example 2 Latex (8) obtained in Example 1 and latex (B
) mixing ratio (A)/(B) =24.8/75.2(
The procedure was the same as in Example 1 except that the weight of the solid content was changed.

実施例3 実施例1で得られたラテックス(A)とラテックス(B
)の混合重量比を(A)/(B) =12.8/87.
2にした他は実施例1と同様にした。
Example 3 Latex (A) and latex (B) obtained in Example 1
) The mixing weight ratio of (A)/(B) = 12.8/87.
The procedure was the same as in Example 1 except that the number was changed to 2.

実施例4 実施例1のラテックス(A)中のα−メチルスチレン1
5重量部の替りにα−メチルスチレン7.5部、スチレ
ン7.5重量部を用いた他は実施例1と同様にした。
Example 4 α-methylstyrene 1 in latex (A) of Example 1
The procedure of Example 1 was repeated except that 7.5 parts by weight of α-methylstyrene and 7.5 parts by weight of styrene were used instead of 5 parts by weight.

実施例5 実施例1のラテックス(B)中のα−メチルスチレン7
1重量部の替りに、α−メチルスチレン36重量部、ス
チレン35重量部を用いた他は実施例1と同様にした。
Example 5 α-methylstyrene 7 in latex (B) of Example 1
The procedure of Example 1 was repeated except that 36 parts by weight of α-methylstyrene and 35 parts by weight of styrene were used instead of 1 part by weight.

実施例6 以下の方法によりAES重合体を製造した。Example 6 An AES polymer was produced by the following method.

リボン製攪拌翼を備えた内容積5iのステンレス製オー
トクレーブに、予め均一溶液にしたヨウ素価15、ムー
ニー粘度42、ジエン成分として5−エチリデン−2−
ノルボルネンを含むEPDM (日本合成ゴム社製JS
REP22)35重量部、スチレン45.5重量部、ト
ルエン120重量部、t−ドデシルメルカプタン0.1
重量部を仕込み、攪拌しながら昇温し50℃にて、アク
リロニトリル19.5重量部、ベンゾイルパーオキシド
0.5重量部、ジクミルパー牙キシド0.1重量部を添
加し、更に昇温し、80℃に達したのち、反応温度を8
0℃一定に制御しながら攪拌回転数100rpn+にて
重合反応を行なった。
A homogeneous solution of 5-ethylidene-2- with an iodine value of 15, a Mooney viscosity of 42, and 5-ethylidene-2- as the diene component was prepared in advance into a stainless steel autoclave with an internal volume of 5 i equipped with a ribbon stirring blade.
EPDM containing norbornene (JS manufactured by Japan Synthetic Rubber Co., Ltd.)
REP22) 35 parts by weight, 45.5 parts by weight of styrene, 120 parts by weight of toluene, 0.1 parts by weight of t-dodecylmercaptan
19.5 parts by weight of acrylonitrile, 0.5 parts by weight of benzoyl peroxide, and 0.1 parts by weight of dicumyl peroxide were added, and the temperature was raised to 80°C while stirring. After reaching ℃, the reaction temperature was increased to 8℃.
The polymerization reaction was carried out at a stirring rotation speed of 100 rpm+ while controlling the temperature to be constant at 0°C.

反応開始後6時間目から1時間を要して120℃まで昇
温し、さらに2時間反応を行なって反応を終了した。重
合転化率は97%であった。100℃まで冷却したのち
、2.2′−メチレン−ビス(4−メチル−6−t−ブ
チルフェノール)0.2重量部を添加し、混合したのち
、反応混合物をオートクレーブより抜き出し、水蒸気蒸
溜により大部分の未反応単量体と溶媒を留去し、細かく
粉砕したのち、40mφベント押出機(220℃、77
00mHg真空)にて実質的に揮発分を留去するととも
に、重合体をペレットとして回収した。
The temperature was raised to 120° C. over 1 hour from 6 hours after the start of the reaction, and the reaction was continued for an additional 2 hours to complete the reaction. The polymerization conversion rate was 97%. After cooling to 100°C, 0.2 parts by weight of 2,2'-methylene-bis(4-methyl-6-t-butylphenol) was added and mixed. The reaction mixture was extracted from the autoclave and evaporated by steam distillation. After distilling off a portion of the unreacted monomer and solvent and finely pulverizing, a 40 mφ vented extruder (220°C, 77
The volatiles were substantially distilled off (00 mHg vacuum) and the polymer was recovered as pellets.

上記グラフト体(共重合体(■))および実施例1にお
ける耐熱製樹脂(I)とをI / II −57,1/
42.9の比で混合後、ペレット化し成形してその物性
を測定した。
The above graft body (copolymer (■)) and the heat-resistant resin (I) in Example 1 were combined into I/II-57,1/
After mixing at a ratio of 42.9, the mixture was pelletized and molded, and its physical properties were measured.

比較例1 実施例1のラテックス(A)およびラテックスCB)を
それぞれ別々に凝固し、これらと共重合体(II)とを
実施例1の混合割合で混合し、ペレット化後、成形して
その物性を評価した。結果を表−1に示す。このように
、粉末同士で混合すると、耐衝撃強度が大きく低下し、
実用に供することができない。
Comparative Example 1 Latex (A) and latex CB) of Example 1 were coagulated separately, and these and copolymer (II) were mixed at the mixing ratio of Example 1, pelletized, and then molded. Physical properties were evaluated. The results are shown in Table-1. In this way, when powders are mixed together, the impact strength decreases significantly,
It cannot be put to practical use.

10発明の効果 本発明で得られた耐熱性熱可塑性樹脂は自動車の内装部
品や、電気製品などの耐熱性を必要とする分野に使用す
ることができる。
10 Effects of the Invention The heat-resistant thermoplastic resin obtained by the present invention can be used in fields requiring heat resistance such as interior parts of automobiles and electrical products.

Claims (4)

【特許請求の範囲】[Claims] (1)(i)(a)N−置換マレイミド15〜70重量
%および芳香族ビニル化合物30〜85重量%からなる
共重合体ラテックス(A)と (b)芳香族ビニル化合物50〜82重量%、ビニルシ
アン化合物18〜50重量%および他の共重合可能なビ
ニルモノマー0〜10重量 %からなる共重合体ラテックス(B) を固形分重量換算で、(A)5〜60重量%、(B)4
0〜95重量%の割合で混合してなる耐熱性樹脂( I
)15〜85重量% および (ii)芳香族ビニル化合物20〜50重量%、ビニル
シアン化合物5〜20重量%をゴム状重合体30〜65
重量%にグラフト重合させてなる共重合体(II)85〜
15重量% とを含有してなる耐熱性熱可塑性樹脂組成物。
(1) (i) Copolymer latex (A) consisting of (a) 15-70% by weight of N-substituted maleimide and 30-85% by weight of aromatic vinyl compound and (b) 50-82% by weight of aromatic vinyl compound , a copolymer latex (B) consisting of 18 to 50% by weight of a vinyl cyanide compound and 0 to 10% by weight of other copolymerizable vinyl monomers (A) 5 to 60% by weight, (B) in terms of solid content weight. )4
Heat-resistant resin (I) mixed in a proportion of 0 to 95% by weight
) 15 to 85% by weight and (ii) 20 to 50% by weight of an aromatic vinyl compound and 5 to 20% by weight of a vinyl cyanide compound to 30 to 65% by weight of a rubbery polymer.
Copolymer (II) obtained by graft polymerization to 85% by weight
15% by weight of a heat-resistant thermoplastic resin composition.
(2)芳香族ビニル化合物が、スチレン、α−メチルス
チレンまたはその混合物である特許請求の範囲第(1)
項記載の耐熱性熱可塑性樹脂組成物。
(2) Claim No. 1, wherein the aromatic vinyl compound is styrene, α-methylstyrene, or a mixture thereof.
The heat-resistant thermoplastic resin composition described in 1.
(3)N−置換マレイミドが、N−フェニルマレイミド
である特許請求の範囲第(1)項記載の耐熱性熱可塑性
樹脂組成物。
(3) The heat-resistant thermoplastic resin composition according to claim (1), wherein the N-substituted maleimide is N-phenylmaleimide.
(4)ラテックス(A)が、N−置換マレイミド56〜
70重量%および芳香族ビニル化合物30〜44重量%
を共重合して得られる共重合体である特許請求の範囲第
(1)項記載の耐熱性熱可塑性樹脂組成物。
(4) Latex (A) is N-substituted maleimide 56-
70% by weight and 30-44% by weight of aromatic vinyl compounds
The heat-resistant thermoplastic resin composition according to claim (1), which is a copolymer obtained by copolymerizing.
JP11576385A 1985-05-29 1985-05-29 Heat-resistant thermoplastic resin composition Pending JPS61272259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11576385A JPS61272259A (en) 1985-05-29 1985-05-29 Heat-resistant thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11576385A JPS61272259A (en) 1985-05-29 1985-05-29 Heat-resistant thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPS61272259A true JPS61272259A (en) 1986-12-02

Family

ID=14670438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11576385A Pending JPS61272259A (en) 1985-05-29 1985-05-29 Heat-resistant thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS61272259A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236442A (en) * 1985-08-09 1987-02-17 Japan Synthetic Rubber Co Ltd Heat-resistant resin composition
JPS63223056A (en) * 1987-03-11 1988-09-16 Sumitomo Naugatuck Co Ltd Resin composition
JPS63223057A (en) * 1987-03-11 1988-09-16 Sumitomo Naugatuck Co Ltd Resin composition
JPS63248840A (en) * 1987-04-02 1988-10-17 Sumitomo Naugatuck Co Ltd Resin composition
JPH01229060A (en) * 1988-03-08 1989-09-12 Daicel Chem Ind Ltd N-substituted maleimide-containing thermoplastic resin composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147534A (en) * 1981-03-06 1982-09-11 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPS604544A (en) * 1983-06-24 1985-01-11 Toray Ind Inc Thermoplastic resin composition
JPS6023438A (en) * 1983-07-19 1985-02-06 Denki Kagaku Kogyo Kk Thermoplastic resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57147534A (en) * 1981-03-06 1982-09-11 Denki Kagaku Kogyo Kk Thermoplastic resin composition
JPS604544A (en) * 1983-06-24 1985-01-11 Toray Ind Inc Thermoplastic resin composition
JPS6023438A (en) * 1983-07-19 1985-02-06 Denki Kagaku Kogyo Kk Thermoplastic resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6236442A (en) * 1985-08-09 1987-02-17 Japan Synthetic Rubber Co Ltd Heat-resistant resin composition
JPS63223056A (en) * 1987-03-11 1988-09-16 Sumitomo Naugatuck Co Ltd Resin composition
JPS63223057A (en) * 1987-03-11 1988-09-16 Sumitomo Naugatuck Co Ltd Resin composition
JPS63248840A (en) * 1987-04-02 1988-10-17 Sumitomo Naugatuck Co Ltd Resin composition
JPH01229060A (en) * 1988-03-08 1989-09-12 Daicel Chem Ind Ltd N-substituted maleimide-containing thermoplastic resin composition

Similar Documents

Publication Publication Date Title
JPS6284109A (en) Production of thermoplastic resin composition
US5352728A (en) Process for preparation of impact resistance and high gloss thermoplastic resin
KR20120061173A (en) Method for Preparing Graft-copolymer Latex Having GoodThermo Stability
JPH0791341B2 (en) Maleimide-based copolymer and method for producing the same
JPS61272259A (en) Heat-resistant thermoplastic resin composition
JPS6039687B2 (en) Thermoplastic resin manufacturing method
KR101161486B1 (en) ABS Graft copolymer, Method for Preparation Thereof and ABS Resin Composition Using the Same
JP3561088B2 (en) Styrene resin composition using rubber-containing resin composition
JP3109378B2 (en) Method for producing impact-resistant resin composition
KR102543169B1 (en) Method for preparing diene based graft copolymer
JP3286971B2 (en) Styrene-based copolymer, thermoplastic resin composition containing the copolymer, and methods for producing them
US3641209A (en) Emulsion polymerization employing azoacyl catalysts
KR100205059B1 (en) A process for preparing heat-resistant thermoplastic in compositions
KR20000014172A (en) Preparing method for heat-resisting thermoplastic resin with good shock resistance and heat stability
KR20200111466A (en) Method for preparing graft copolymer
JP3177151B2 (en) Method for producing rubber-like polymer latex, method for producing graft copolymer using the same, and ABS resin composition using graft copolymer
KR100569755B1 (en) Method for preparing acrylonitrile-butadiene-styrene resin
JPS63243156A (en) Thermoplastic resin composition
JPH0379386B2 (en)
JPS61296011A (en) Production of maleimide based copolymer
JPH0762099B2 (en) Manufacturing method of resin composition
JPS6236442A (en) Heat-resistant resin composition
KR20180073061A (en) Abs graft copolymer, method for preparing the graft copolymer, abs resin composition and molding product comprising the graft copolymer
KR20210111042A (en) Method for preparing graft copolymer, graft copolymer, and thermoplastic resin coposition comprising the same
KR20040105047A (en) The Method of Manufacturing ABS Resin Having Improved Whiteness and Thermal Stability