JPS6023672A - Fluid seal - Google Patents

Fluid seal

Info

Publication number
JPS6023672A
JPS6023672A JP12792383A JP12792383A JPS6023672A JP S6023672 A JPS6023672 A JP S6023672A JP 12792383 A JP12792383 A JP 12792383A JP 12792383 A JP12792383 A JP 12792383A JP S6023672 A JPS6023672 A JP S6023672A
Authority
JP
Japan
Prior art keywords
seal
shape memory
fluid
fluid seal
memory alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12792383A
Other languages
Japanese (ja)
Other versions
JPH0532633B2 (en
Inventor
Shigenobu Mori
誉延 森
Tetsuo Kuroda
哲郎 黒田
Ryusuke Abe
安部 隆介
Makoto Shimizu
信 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12792383A priority Critical patent/JPS6023672A/en
Publication of JPS6023672A publication Critical patent/JPS6023672A/en
Publication of JPH0532633B2 publication Critical patent/JPH0532633B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gasket Seals (AREA)

Abstract

PURPOSE:To automate the opening/closing of a seal with a simple structure by providing a driving body made of a shape memory alloy in a non-metallic elastic body. CONSTITUTION:The circumference of a metallic inner ring 14 is uniformly divided at three positions, for example, and individual inner rings 14 are connected to each other with clamps 11 made of a shape memory alloy. The elastic force of a cover 12 made of a non-metallic elastic body such as rubber is stronger than the force of the clamps 11 at a low temperature, and the clamps 11 are elliptically deformed. Next, when the temperature of the clamps 11 is increased, the clamps 11 become circular in shape, the inner diameter of a fluid seal is shrinked, and the seal is set to a closed state.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は流体シールに係り、特に高圧の流体の密閉動作
を繰り返し行なう装置の7一ル機械を自動化するのに好
ah流体シールに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fluid seal, and particularly to a fluid seal suitable for automating a machine that repeatedly seals high-pressure fluid.

し発明の背景〕 従来、第1図に示すような、流体3を内蔵するチャンバ
2におりる孔とこの孔を通してはめこまれた円筒体lと
の間のすき間を密閉をするシール4を必要とする装置に
おいては、シール4として第2図に示すような傘型シー
ルが用いられさらにシール4を円筒体lに密着させる手
段として抑圧壌5をもうける方法が深川されできた。
BACKGROUND OF THE INVENTION Conventionally, as shown in FIG. 1, a seal 4 is required to seal the gap between a hole leading into a chamber 2 containing a fluid 3 and a cylindrical body l fitted through the hole. In this apparatus, Fukagawa developed a method in which an umbrella-shaped seal as shown in FIG. 2 is used as the seal 4, and a suppressor 5 is provided as a means for bringing the seal 4 into close contact with the cylindrical body l.

従来例のθを体シールに2ける問題点は密層性を良くす
るために特に高圧の流体でeよシール4を大きく変形す
るので、これを繰り返した場合、材質劣化によって寿命
が短かいことと、シール4を押圧する圧力をヴ6生する
ために窒気圧などで押圧壌5を押すための複雑な機構を
必要とすることなどである。
The problem with the conventional example of setting θ to 2 for the body seal is that the seal 4 is greatly deformed using particularly high-pressure fluid in order to improve its compactness, so if this is repeated, the life of the seal will be shortened due to material deterioration. In addition, in order to generate the pressure to press the seal 4, a complicated mechanism is required to press the pressing pad 5 with nitrogen pressure or the like.

〔発明の目的〕[Purpose of the invention]

本発明の目的は高圧の流体を密閉でき、かつシールの開
閉を単純な機構で自動化できる流体シールを提供するこ
とにおる。
An object of the present invention is to provide a fluid seal that can seal high-pressure fluid and that can automate the opening and closing of the seal with a simple mechanism.

〔発明の概要〕[Summary of the invention]

従来の流体シールは密層させるために大きな変形を必要
とし、また開閉動作ケ自動化はせるのに複雑な機構を必
要とした。このためシール劇に大きな変形が加わらずか
つ単純な機構で開閉動作が可能な流体シールについて検
討した。検討の結果、匠来の流体シールでも使用された
ゴム、プラスチックなどの材質と同様の材質から成るリ
ング状の非金属弾性体の内部に形状記憶台金から成る駆
動体を内蔵する流体シールを考案した。
Conventional fluid seals require large deformations to create a tight layer, and require complex mechanisms to automate opening and closing operations. For this reason, we investigated a fluid seal that does not cause major deformation of the seal and can be opened and closed using a simple mechanism. As a result of our research, we devised a fluid seal in which a driving body made of a shape memory base is built into a ring-shaped non-metallic elastic body made of the same materials as rubber and plastic used in Takumi's fluid seals. did.

形状記憶台金は温度が上昇していく時、ある温縫で急に
大きな形状変化と力の発生を示す性質がある。形状記憶
合金にこのような性質のあることはたとえは雑読「機械
設計」の第24巻、第10号(1981年8月号)の6
7ページから73ページに「形状1C憶合金とその機械
部品への応用」と屈して解説されている。形状記憶合金
の形状変化および力の発生を流体シールに用いた場合、
従来のような複雑な機構によらずとも流体の密閉動作が
可能であり、またシールの非金属弾性体に加わる変形量
も非常に小さくできる。
Shape-memory base metal has the property of suddenly exhibiting a large change in shape and the generation of force at certain warm stitches when the temperature rises. The fact that shape-memory alloys have such properties is illustrated in the miscellaneous reading ``Machine Design'', Volume 24, No. 10 (August 1981 issue), 6.
On pages 7 to 73, there is a detailed explanation of ``Shape 1C memory alloy and its application to mechanical parts''. When the shape change and force generation of shape memory alloys are used for fluid seals,
It is possible to seal the fluid without using a complicated mechanism as in the past, and the amount of deformation applied to the non-metallic elastic body of the seal can be extremely small.

本発明の流体シールに用いられる形状記憶合金の駆動は
形状記憶合金に常温から100C程度の温度範囲の熱サ
イクルを与えることによってなされる。
The shape memory alloy used in the fluid seal of the present invention is driven by subjecting the shape memory alloy to a thermal cycle in a temperature range from room temperature to about 100C.

本発明の流体シールにおいてシールの開閉動作のうち閉
動作は形状記憶合金自身の力で行なわれるが、一方間動
作は非金属弾性体もしくは金属弾性体の力を用いて行な
われる。
In the fluid seal of the present invention, among the opening and closing operations of the seal, the closing operation is performed by the force of the shape memory alloy itself, while the closing operation is performed using the force of a nonmetallic elastic body or a metallic elastic body.

〔発明の実施例〕[Embodiments of the invention]

以下、本うら明の一実施例を第3図によ如説明する。第
3図はり/グ形状紫した流体シールの内径が収縮めるい
は膨張することによって開閉動作を行なうタイプの流体
シールでおる。
Hereinafter, one embodiment of the present invention will be explained with reference to FIG. Fig. 3 Beam/Gang Shape This is a type of fluid seal that opens and closes by contracting or expanding the inner diameter of the purple fluid seal.

第3図において金属製の内環14は円周を3等分する位
置で分割でれている。この分割の数は任意であり、数が
多いほど流体シールとしての密着性は向上する。クラン
プ11は形状記憶合金によってつくられておシ円壌14
同志ケ接続する。クラップ11の外観は第4図に示すよ
うな形状である。クラップ11はマルチ/サイトに態T
M度が50C前後のTI合金もしくはCu合金の形状記
憶合金でつくられる。クラップ11の断面形状は第5図
に示すように温麓によって変化する。低温たとえは20
Cにおいてはゴムなどの非金属弾性体でつくられている
カバー12の弾性力の方がクラップ11の力よシ強いた
めに、クランプ11は楕円形状に変形している。クラッ
プ11の形状変化がカバー12の弾性力のみでeま不足
する場合には、第6図に示すように、内−m14の分割
置所に’ri)g%製のスプリング16のような弾性体
をはめこんでやり、その反力を利用してクラップ11を
楕円形状とする。クラ7プ11の形状が楕円形状となる
と流体プールの内形は膨張し、シールは開状態となる。
In FIG. 3, the metal inner ring 14 is divided into three equal parts of the circumference. The number of divisions is arbitrary, and the greater the number, the better the adhesion as a fluid seal. The clamp 11 is made of shape memory alloy and the clamp 14 is made of shape memory alloy.
Comrades ke connect. The appearance of the clap 11 is as shown in FIG. Clap 11 is multi/site mode T
It is made of shape memory alloy such as TI alloy or Cu alloy with M degree of around 50C. The cross-sectional shape of the clap 11 changes depending on the temperature, as shown in FIG. Low temperature analogy is 20
In C, the elastic force of the cover 12 made of a non-metallic elastic body such as rubber is stronger than the force of the clamp 11, so the clamp 11 is deformed into an elliptical shape. If the elastic force of the cover 12 alone is insufficient to change the shape of the clap 11, as shown in FIG. The body is inserted, and the reaction force is used to make the clap 11 into an elliptical shape. When the shape of the clasp 7 becomes elliptical, the inner shape of the fluid pool expands and the seal becomes open.

つぎにクラップ11の温度が^温だとえl−1:80C
になると、クランプ11自身が円形状ケ記憶させられて
いるので、この温度ではカバー12.f)るいはスプリ
ング16のような弾性体よりも強い形状復帰力が作用し
、クシ7プ11の形状は円形状となる。このとき流1本
ゾールの内径は1区縮し、シールは開状態となる。
Next, if the temperature of Clap 11 is ^warm, then l-1: 80C.
At this temperature, the clamp 11 itself has a circular shape memorized, so at this temperature the cover 12. f) Or, a force for restoring the shape stronger than that of an elastic body such as the spring 16 acts, and the shape of the comb 7 becomes circular. At this time, the inner diameter of the single flow sol contracts by one section, and the seal becomes open.

クラップllを高面シに加熱するには、第7図に示すよ
うにクラ7プ11の表面に抵抗線17をはりつけ、これ
に−流を流して発熱させる方法もしくは第3図のバイブ
15よシ渦水青の湿温流体を導入して流体シール内部を
満たず方法を用いる。
In order to heat the clap 11 to a high surface, a resistance wire 17 is attached to the surface of the clap 11 as shown in FIG. A method is used in which a wet and warm fluid such as vortex water is introduced to fill the inside of the fluid seal.

クラップll’を低温に冷却する方法としては、電流し
ゃ断、わるいは高温流体排出後自然冷却するかもしく 
Ii比3図のパイプ15よシ冷水寺の低温流体音流体シ
ール内部に褥人する。
As a method of cooling Clap ll' to a low temperature, it is possible to cut off the current, or to cool it naturally after discharging the high temperature fluid.
Pipe 15 of Figure Ii Ratio 3 is placed inside the cryogenic fluid sound fluid seal of Reisui Temple.

なおりジ/ゾ11に用いる形状記憶合金に可逆的形状記
憶処理’tfh山すことによって第5図に示す低温時の
形状を記憶させることができる。可逆的形状記憶処理を
〃瓜ずには/(とえは第8図に示すように、至温て円形
状ケ准している形状記憶合金20に対し、加工冶具21
によって強夏の変形を与えてやシ楕円形状とする。この
変形量は形状記憶合金の表面ひずみで3九以上である。
By applying reversible shape memory treatment to the shape memory alloy used for Naoriji/Zo 11, it is possible to memorize the shape at low temperatures as shown in FIG. 5. In order to perform reversible shape memory treatment (for example, as shown in FIG. 8, the processing jig 21
By giving a strong summer deformation, it becomes an elliptical shape. This amount of deformation is 39 or more in surface strain of the shape memory alloy.

以上の処埋を与えると第8図(C)に示す円形状の高温
形状と第8図(d)に示す瑣円状の低温形状が記憶され
、高温形状と低温形状は合雀の温跣叢化に応じて繰シ返
し再現される。以上の司通約形状記憶処理ヶ与えられた
クランプ11を使用する場合には第6図に示すスプリン
グ16に必要とされた反力は小さくなる。このためスプ
リング16は省略または小型化できる。
When the above processing is applied, the circular high temperature shape shown in FIG. 8(C) and the triangular low temperature shape shown in FIG. It is reproduced repeatedly according to the clustering. When using the clamp 11 which has been subjected to the above-described shape memory treatment, the reaction force required for the spring 16 shown in FIG. 6 is reduced. Therefore, the spring 16 can be omitted or downsized.

なお第3図において外環13は笠属装の円環でめり、流
体シールのカバー12の外佳曲が流体チャンバの孔の内
面に密巻して接するのを容易にするだめにもうけられて
いる。
In addition, in FIG. 3, the outer ring 13 is fitted with the ring of the cap fitting, and is provided to facilitate the outer curve of the cover 12 of the fluid seal to tightly wrap and contact the inner surface of the hole of the fluid chamber. ing.

本実施例によれは流体シールを閉状態にした時、非金属
弾性体でつくられているカバー12の受ける変形量は従
来の傘型シールのような流体シールの受ける変形量より
も非常に小さい。このため非金属弾性体の材質劣化によ
る寿命は従来の流体シールよりも著しく改善される。ま
た本実施例によれば、流体シールの内部にg動機構が内
蔵されるため、寸法を小型にできる。また駆動の手段と
して熱的夏化のみ全周いているので流体シールの開閉動
作を自動化するのに袂する機構は従来よりも簡単である
According to this embodiment, when the fluid seal is closed, the amount of deformation that the cover 12, which is made of a non-metallic elastic body, undergoes is much smaller than the amount of deformation that a fluid seal such as a conventional umbrella-shaped seal undergoes. . Therefore, the life of the non-metallic elastic body due to material deterioration is significantly improved compared to conventional fluid seals. Further, according to this embodiment, since the g-motion mechanism is built inside the fluid seal, the size can be reduced. In addition, since only thermal summerization is used as a driving means, the mechanism used to automate the opening and closing operations of the fluid seal is simpler than in the past.

第9図は本発明の第2の実施例金示す。第9図において
コイル18は形状記憶合金でつくられでいる。コイル1
8の数は必ずしも2個でるる必要はなく、1個でも同様
の効果が得られる。しρ・しコイル18の数を多くする
ほど流体シールの密着性は向上する。コイル18は高温
状態では収縮するよう形状記憶処理がl憾才もている。
FIG. 9 shows a second embodiment of the invention. In FIG. 9, coil 18 is made of a shape memory alloy. coil 1
The number 8 does not necessarily have to be two; the same effect can be obtained with just one. The tightness of the fluid seal improves as the number of coils 18 increases. The coil 18 is also equipped with a shape memory treatment so that it contracts under high temperature conditions.

コイル18の内側にはコイル18の条内溝を仔する金属
製の内環14がはめこまれでいる。内環14は3分割さ
れているが、この分割の数は任意であり、分割数が多い
ほど流体シールの密層性が良い。内環14同志の間には
すき間がもうけられているが、このすき+=Jはコイル
は8が高温状態になると、強い収縮力が発生ず/)ため
にせばめられる。内環14同志のすき間がせばめられる
と、その内側にあるゴム等の非金属弾性体でつくられて
いるカッ(−12がしめつけられる。このため、流体シ
ールは閉状態となる。第9図のコイル18に高温に加熱
するだめの手段としてはバイブ15盆通してコイル18
の内部に温水等の高温流体を導入する方法を用いる。コ
イル18の外側にはコイル18の案内溝を有する金属製
の外環13がもうけられている。外jJi13の役目は
流体シールの力/<−12の外径側の面が流体のチャフ
)(の孔の内面に密着して接するのを容易にすることで
ある。
An inner ring 14 made of metal is fitted inside the coil 18 and forms an inner groove of the coil 18. The inner ring 14 is divided into three parts, but the number of divisions is arbitrary, and the greater the number of divisions, the better the tightness of the fluid seal. A gap is provided between the inner rings 14, but this gap +=J is narrowed because the coil does not generate strong contractile force when the coil 8 becomes hot. When the gap between the inner rings 14 is narrowed, the cup (-12) made of a non-metallic elastic material such as rubber inside the ring is tightened. Therefore, the fluid seal is closed. As a means of heating the coil 18 to a high temperature, the coil 18 can be heated through the vibrator 15 tray.
A method is used in which high-temperature fluid such as hot water is introduced into the interior of the system. A metal outer ring 13 having a guide groove for the coil 18 is provided on the outside of the coil 18 . The role of the outer jJi 13 is to facilitate the close contact of the outer diameter side surface of the fluid seal with force/<-12 to the inner surface of the hole of the fluid chaff.

fzJ=−コイA/18は高温たとえば80Cで収縮し
密巻の状態になるよう形状記憶処理を行lう。
fzJ=-Carp A/18 is subjected to shape memory treatment so that it contracts at a high temperature, for example 80C, and becomes tightly wound.

流体シールの組み立ては下記のように行なう。Assemble the fluid seal as follows.

すなわち、形状記憶処理を受けたコイル18のコイルピ
ッチ全常温にて大きく引き伸ばしだ状態で内環14およ
びバイブ15を接続した外環13を所定の位置に配置す
る。最後にカバー12の内部に全体を収納する。
That is, the outer ring 13 to which the inner ring 14 and the vibrator 15 are connected is placed in a predetermined position with the coil pitch of the coil 18 subjected to shape memory treatment fully stretched at room temperature. Finally, the whole is stored inside the cover 12.

本実施例によれば第1の実施例の場合における場合より
も形状記憶合金袈の駆動体の使用量を多くできるため、
流体シールが同一寸法、流体シールの密着性および耐圧
性を史に大きくすることができる。
According to this embodiment, the amount of drive body for the shape memory alloy sheath can be increased compared to the case of the first embodiment.
Even if the fluid seal has the same dimensions, the tightness and pressure resistance of the fluid seal can be significantly increased.

〔発明の効果〕〔Effect of the invention〕

本発明によれば流体シールの流体の圧力が数気圧以上、
数十気圧に達する範囲でも気密性を保つことが可能でめ
る。
According to the present invention, when the pressure of the fluid in the fluid seal is several atmospheres or more,
It is possible to maintain airtightness even in a range of tens of atmospheres.

また流体シールの開閉動作を非常に単純な機構で行なう
ことができるので自動化に要するコストは従来のものよ
シ低減される。
Furthermore, since the opening and closing operations of the fluid seal can be performed by a very simple mechanism, the cost required for automation is reduced compared to conventional systems.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の流体シール機構を示す図、第2図は、
傘型流体シールの断面図、第3図(a)lq、本発明の
第1の実施例の流体シールの断面図、第3!!4j(b
)はA−A断面図、第4図は形状記憶合金製クランプの
外観図、第5図は、クランプの低温(イ)と高温(ロ)
における図、第6図は、スプリング盆適用したクランプ
の断面図、第7図は、クランプに抵抗線をはる状況を示
す外観図、第8図は、クランプに可逆的形状記憶処理を
施こす工程と処理後の高温と低温における断面図、第9
図(a)は本発明の第2の実hm例の流体シールの断面
図、第9図(b)はA−A断面図である。 11・・・クランプ、14・・・内環、12・・・カッ
(−113・・・外環、15・・・パイプ、16・・・
スグリ/グ、17・・・抵抗線、18・・・コイル。 代理人 弁理士 尚橋明う 亭1図 兎2図 1旧 (1 噌′1図 弔8M (b) (C) (d) 第q (σ) 図 (e)
Figure 1 is a diagram showing a conventional fluid seal mechanism, and Figure 2 is a diagram showing a conventional fluid seal mechanism.
Cross-sectional view of the umbrella-type fluid seal, FIG. 3(a)lq, cross-sectional view of the fluid seal of the first embodiment of the present invention, 3rd! ! 4j(b
) is an A-A sectional view, Figure 4 is an external view of the shape memory alloy clamp, and Figure 5 is the low temperature (a) and high temperature (b) of the clamp.
Figure 6 is a sectional view of the clamp to which a spring tray is applied, Figure 7 is an external view showing how a resistance wire is attached to the clamp, and Figure 8 is a clamp subjected to reversible shape memory treatment. Cross-sectional views at high and low temperatures after the process and treatment, No. 9
FIG. 9(a) is a sectional view of a fluid seal according to a second practical example of the present invention, and FIG. 9(b) is a sectional view taken along line A-A. 11... Clamp, 14... Inner ring, 12... Cup (-113... Outer ring, 15... Pipe, 16...
Gooseberry/G, 17...Resistance wire, 18...Coil. Agent Patent Attorney Naohashi Akitei 1 Figure 2 Figure 1 Old (1 噌'1 Figure 8M (b) (C) (d) No. q (σ) Figure (e)

Claims (1)

【特許請求の範囲】 ■、流体シールにおいて非金属弾性体の内部に形状記憶
合金によってつくられた駆動体をもうけ、この駆動体の
動作によって流体を密閉することを特徴とする流体シー
ル。 2、特許請求の範囲第1項において、形状記憶合金製の
駆動体の熱源として抵抗発熱体もしくは高温流体を用い
ること全特徴とする流体シール。 3、特許請求の範囲第1項において、形状記憶合金製駆
動体を動かす補助手段として金属弾性体を用いることヲ
特徴とする流体シール。 4、特許請求の範囲第1項において、形状記憶合金製駆
動体の動作r容易にする手段としてあらかじめ形状記憶
合金に”J通約形状記憶処理を付与す〜ること全特徴と
する流体シール。
[Claims] (1) A fluid seal characterized in that a driving body made of a shape memory alloy is provided inside a non-metallic elastic body, and the movement of this driving body seals the fluid. 2. A fluid seal according to claim 1, characterized in that a resistance heating element or a high-temperature fluid is used as a heat source for the drive body made of a shape memory alloy. 3. A fluid seal according to claim 1, characterized in that an elastic metal body is used as an auxiliary means for moving the shape memory alloy drive body. 4. A fluid seal according to claim 1, characterized in that the shape memory alloy is previously subjected to a "J-common shape memory treatment" as a means for facilitating the operation of the drive body made of the shape memory alloy.
JP12792383A 1983-07-15 1983-07-15 Fluid seal Granted JPS6023672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12792383A JPS6023672A (en) 1983-07-15 1983-07-15 Fluid seal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12792383A JPS6023672A (en) 1983-07-15 1983-07-15 Fluid seal

Publications (2)

Publication Number Publication Date
JPS6023672A true JPS6023672A (en) 1985-02-06
JPH0532633B2 JPH0532633B2 (en) 1993-05-17

Family

ID=14971971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12792383A Granted JPS6023672A (en) 1983-07-15 1983-07-15 Fluid seal

Country Status (1)

Country Link
JP (1) JPS6023672A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161585U (en) * 1980-05-06 1981-12-01
JPS5773289A (en) * 1980-10-20 1982-05-07 Nippon Steel Corp Pipe joining method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161585U (en) * 1980-05-06 1981-12-01
JPS5773289A (en) * 1980-10-20 1982-05-07 Nippon Steel Corp Pipe joining method

Also Published As

Publication number Publication date
JPH0532633B2 (en) 1993-05-17

Similar Documents

Publication Publication Date Title
US2844363A (en) Anticorrosive sealed magnetized stirring bar
DE3486345T2 (en) Thermostatic control devices.
US4412872A (en) Process for manufacturing a component from a titanium alloy, as well as a component and the use thereof
JPS62188881A (en) Thermoelectric valve for passing cooling gas through each tube of cooling device
JPS6023672A (en) Fluid seal
ES484376A1 (en) Thermostatically controlled valve, method of making same and apparatus for performing the method.
US2887294A (en) Gas leak
JPH04307188A (en) Valve
US3169008A (en) Heat motor operated valve
JPS59103084A (en) Valve
JPH02211324A (en) Thermostat
US3845931A (en) Valve
JPS6474708A (en) Low temperature vessel for superconducting magnet
JPS6288890A (en) Opening-closing valve
US2874418A (en) Method of fabrication of condenser strip hydrophones
SU1673344A2 (en) Device for equalizing pressure at electrodes of multiple-spot projection resistance welding machine
JPS5725573A (en) Expansion valve with shape memory alloy
US2981478A (en) Thermostat valve
JP4742464B2 (en) Compressor
JPS59110978A (en) Control valve
JPS62278373A (en) Manufacture for seal bellows
SU396390A1 (en) METHOD OF THERMAL TREATMENT OF DETAILS
JPH09109320A (en) Shape recovery device
JPS588254A (en) Choke device in carburettor
US662791A (en) Method of uniting metal surfaces by means of fluid-pressure.