JPS60236510A - Voltage limiter circuit - Google Patents

Voltage limiter circuit

Info

Publication number
JPS60236510A
JPS60236510A JP59093753A JP9375384A JPS60236510A JP S60236510 A JPS60236510 A JP S60236510A JP 59093753 A JP59093753 A JP 59093753A JP 9375384 A JP9375384 A JP 9375384A JP S60236510 A JPS60236510 A JP S60236510A
Authority
JP
Japan
Prior art keywords
voltage
circuit
field effect
insulated gate
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59093753A
Other languages
Japanese (ja)
Other versions
JPH0516210B2 (en
Inventor
Kenichi Kobayashi
健一 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP59093753A priority Critical patent/JPS60236510A/en
Publication of JPS60236510A publication Critical patent/JPS60236510A/en
Publication of JPH0516210B2 publication Critical patent/JPH0516210B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Abstract

PURPOSE:To obtain a voltage limiter circuit which can be set on an integrated circuit together with the controllable limit voltage, the reduced variance of production and the excellent temperature characteristics, by connecting at least a constant voltage diode, an insulated gate type field effect transistor and a constant current circuit successively between an output terminal and an earth terminal. CONSTITUTION:The limit voltage is decided by a circuit where a constant voltage diode 3 and limit voltage controlling insulated gate field effect transistors IGFETs 4 and 5 are connected in series. The diode 3 uses the breakdown voltage adverse to a P-N-junction diode. It is possible to reduce the variance of the breakdown voltage down to several percents or less by putting the N and P type impurity diffusion areas close to each other on a mask centering on a line. While the limit voltage is controlled by the number of IGFETs 4 and 5 which are connected in series.

Description

【発明の詳細な説明】 本発明はある一定電圧以上の入力があった場合に、それ
以上の電圧を制限して出力する電圧リミッタ回路に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a voltage limiter circuit that limits and outputs a voltage higher than a certain voltage when an input voltage is higher than that.

第1図から第3図に従来の電圧リミッタ回路を示す。第
1図は、定電圧ダイオード3を利用した回路であシ、抵
抗2の一端は入力端子1K、他端は出力端子9に接続さ
れる。第2図に、ダイオード10の順方向電圧ド四ツブ
を利用した回路であり、第3図はオペアンプ16の負帰
還回路に定電圧ダイオード3を並列に接続して、この定
電圧プリミツトされるようにした回路である。なお、抵
抗117−jオペアンプ16の一端子に、抵抗12はオ
ペアンプ16に並列に接続される。いずれもダイオード
の逆方向ブレークダウン電圧、ま九は順方向電圧の定電
圧性を利用し次ものである。これを集積回路に搭載する
場合、リミット電圧を所望の電圧に調整するのKFi困
峻があった。すなわち。
1 to 3 show conventional voltage limiter circuits. 1 shows a circuit using a constant voltage diode 3, one end of the resistor 2 is connected to the input terminal 1K, and the other end is connected to the output terminal 9. Figure 2 shows a circuit that utilizes the forward voltage circuit of the diode 10, and Figure 3 shows a circuit that connects a constant voltage diode 3 in parallel to the negative feedback circuit of the operational amplifier 16 so that this constant voltage is limited. This is the circuit. Note that the resistor 12 is connected to one terminal of the operational amplifier 16 in parallel with the resistor 117-j. Both utilize the reverse breakdown voltage of the diode, and the latter utilizes the constant voltage property of the forward voltage. When mounting this on an integrated circuit, it is difficult to adjust the limit voltage to a desired voltage. Namely.

ダイオードの逆方向ブレークダウン電圧を利用する場合
、ブレークダウン電圧そのものを変化させるためKIf
i、PM接合のP型不純物かまたはN型不純物のどちら
か又は両方の濃度を変える必要がある九め、通常のプロ
セス以外にこのためのプロセス工程やマスクを必要とじ
九。マ九ダイオードを直列接続して調整する方法ではお
おまかにしかリミット電圧を調整できなかつ九。さらに
ダイオードの順方向電圧を使う場合には、この電圧自体
がα7〜α8vと低いため、リミット電圧を高く設定し
九い場合は、直列接続するダイオードの数が多くなって
しまうこと、順方向特性でシャープな定電圧性を得る几
めには、ある程度大きな電流を流さなければならないこ
と、温度特性が大きいこと等の欠点があつ几。
When using the diode's reverse breakdown voltage, KIf is used to change the breakdown voltage itself.
(i) It is necessary to change the concentration of either the P-type impurity or the N-type impurity (or both) in the PM junction; (9) it requires process steps and masks in addition to the normal process; The method of adjusting the limit voltage by connecting diodes in series can only roughly adjust the limit voltage. Furthermore, when using the forward voltage of a diode, this voltage itself is as low as α7 to α8v, so if the limit voltage is set high, the number of diodes connected in series will increase, and the forward characteristics The method of obtaining sharp constant voltage characteristics has drawbacks such as the need to flow a certain amount of current and large temperature characteristics.

本発明は以上の欠点を除去する几めのものであル1本発
明によれば通常のプロセスで、何ら特別なプロセス工程
やマスクを符加すること無く、集積回路に搭載可能で、
リミット電圧は調整可能であシ、かつ製造のバラツキ、
温度特性等も優れたリミッタを実現することが出来る。
The present invention is designed to eliminate the above-mentioned drawbacks.1 According to the present invention, it can be mounted on an integrated circuit by a normal process without adding any special process steps or masks.
The limit voltage is adjustable and due to manufacturing variations,
A limiter with excellent temperature characteristics etc. can be realized.

以下に図によって本発明の詳細な説明する。The present invention will be explained in detail below with reference to the figures.

第4図は本発明の原理を示し几ものである。FIG. 4 clearly shows the principle of the invention.

リミット電圧を決定するのは、定電圧ダイオード3とリ
ミット電圧調整用絶縁ゲート電界効果トランジスタ(以
下IGF’KTと称する)4およびIGPIIIT5の
直列接線右れた回路である、この定電圧ダイオード3は
、PN接合ダイオードの逆方向ブレークダウン電圧を利
用するもので、マスク上でN型不純物拡散領域とP型不
純物領域をオンラインで近接して設ける等によって、ブ
レークダウン電圧のバラツキを数パーセント以下におさ
えることが可能である。ま九工GF’1CT4および工
GIPICT5rlt、後に述べるように電圧の調整用
であり、その直列接続される個数によってリミット電圧
を調整する。ここでは簡単の丸め2つのIGPIIIT
を接続して説明する。ま几、導電形はnチャンネル、p
tキャンルのどちらでもいいことは言うまでもないが、
こ仁ではnチャンネルとして説明する。第4図の回路で
、定電圧ダイオード5のカソードとノード6の間の電圧
をVl)T 、定電流値を工、ダイオードのブレークダ
ウン電圧をVZ、XCh’FmT4と5のしきい値i 
VTI 、 K値をに1とすると、 VDT = VZ +2VT1 + 2 V’l/Kl
 −=(11また工GFKT8(7)しきい値をvT!
、K値をに2、ゲート電圧をvG、リミッタ回路の入力
電圧をVan、出力電圧をVout、抵抗2の値をR1
とすれば、” Vout=Vin RiKl(VGVTI)==’ V
 ln −Rt @= (VG −v’rl )r P
 −t@ Un↓VT1’P=Vnn+ 4’4x ム
Vo u t = Vi n−征社(V Ou t −
VDT v’rz )したがってgmR1/2))1な
らば Taut” VDT+VT! ・” −(4)(1)式
と(2)式からリミット電圧は、工GFffiT5およ
び4のしきい値Vτ1と定電流値によって決定され、工
GIPITの段数と電流値によってリミット電圧が調整
可能である。IGFET8のに値が十分大きければ、定
電流回路の電流値には左右されず、単に工GFffi 
Tの段数によってリミット電圧が調整される。先に述べ
次ように、逆方向ブレークダウン電圧のバラツキは非常
に低いため、この回路では、リミット電圧のバラツキ低
くおさえることができる。
What determines the limit voltage is a series tangential circuit consisting of a constant voltage diode 3, an insulated gate field effect transistor for limit voltage adjustment (hereinafter referred to as IGF'KT) 4, and an IGPIIIT5. It utilizes the reverse breakdown voltage of a PN junction diode, and by placing an N-type impurity diffusion region and a P-type impurity region close to each other online on a mask, it is possible to suppress variations in breakdown voltage to a few percent or less. is possible. As will be described later, the MAKUKOG GF'1CT4 and GIPICT5rlt are for voltage adjustment, and the limit voltage is adjusted by the number of them connected in series. Here are two simple rounding IGPIIIT
Connect and explain. The conductivity type is n channel, p
It goes without saying that either option is fine, but
In Konin, this will be explained as n-channel. In the circuit of Fig. 4, the voltage between the cathode of the constant voltage diode 5 and the node 6 is Vl)T, the constant current value is VZ, the breakdown voltage of the diode is VZ, and the threshold value i of XCh'FmT4 and 5 is
When VTI and K value are set to 1, VDT = VZ +2VT1 + 2 V'l/Kl
−=(11 also GFKT8(7) threshold value vT!
, K value is 2, gate voltage is vG, input voltage of limiter circuit is Van, output voltage is Vout, value of resistor 2 is R1
Then, "Vout=Vin RiKl(VGVTI)=='V
ln -Rt @= (VG -v'rl)r P
-t@Un↓VT1'P=Vnn+4'4x MuVout=Vin-Seisha(VOut-
VDT v'rz ) Therefore, gmR1/2)) If 1, then Taut" VDT+VT! ・" - (4) From equations (1) and (2), the limit voltage is determined by the threshold value Vτ1 of GFffiT5 and 4 and the constant current. The limit voltage is determined by the value, and the limit voltage can be adjusted by the number of GIPIT stages and the current value. If the value of IGFET8 is large enough, it will not be affected by the current value of the constant current circuit and will simply be
The limit voltage is adjusted depending on the number of T stages. As mentioned above, the variation in the reverse breakdown voltage is very low, so this circuit can suppress the variation in the limit voltage.

この回路のリミット電圧の温度特性は、(1) 、 (
2)式より Nout &vTl !1(II ニー”) −・−(
3)at =’W” (I厨−に、’a’I’ただし、
aVz/θ’r=o θVT、/θT;θV T、2 
/a T従って、定電流の温特を変えればリミット電圧
の温特θVout/aTも最適化がはかれる。第5図は
第4図の定電流回路を飽和領域で動作するIGfPg7
15とテフレツション型工GFKT 14.エンハンス
メント型工()FBT15で構成される定゛亀圧回路で
実現し九回路である。この定電圧、定電流回路は、デプ
レッション型工GFKT14(7)K値とエンハンスメ
ントqIGFET 15のに値すなわちチャネル幅Wと
チャネル長りを変えることによル、またさらにIGF田
’IM3のしきい11ぎを変えることによって定′1流
の温度冷性を調節することができるため、(3)式によ
ってリミット電圧の温度特性の最適化が可能である。
The temperature characteristics of the limit voltage of this circuit are (1), (
2) From the formula, Nout &vTl! 1 (II Knee”) −・−(
3) at = 'W' (in 'I', 'a'I',
aVz/θ'r=o θVT, /θT; θV T, 2
/aT Therefore, by changing the temperature characteristic of the constant current, the temperature characteristic θVout/aT of the limit voltage can also be optimized. Figure 5 shows IGfPg7 operating the constant current circuit in Figure 4 in the saturation region.
15 and Teflation mold GFKT 14. It is realized by a constant pressure circuit consisting of enhancement mold (FBT15) and has nine circuits. This constant voltage, constant current circuit can be constructed by changing the K value of the depression type GFKT14(7) and the values of the enhancement QIGFET 15, that is, the channel width W and the channel length, and also by changing the threshold value of the IGFET'IM3. Since the temperature cooling property of the constant current can be adjusted by changing the value, the temperature characteristics of the limit voltage can be optimized using equation (3).

以上のように、本発明によれば比較的簡単な回路構成で
、通常のプロセスのまま特別のプロセス工程、マスク等
を必要とせず、バフツキ、m度特性共に優れ比電圧リミ
ッタ回路を集積回路中にオンチップで実現することがで
きる。
As described above, according to the present invention, the specific voltage limiter circuit can be integrated into a circuit with a relatively simple circuit configuration, without the need for special process steps, masks, etc. using normal processes, and with excellent buffiness and m-degree characteristics. can be realized on-chip.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第5図はそれぞれ従来の電圧リミッタ
回路図、第4図は本発明の詳細な説明するための回路図
、・音5図は本発明を集積回路に搭載するための具体的
回路図の一例である。 1・・・・・・入力端子 2・・・・・・抵抗3・・・
・・・定電圧ダイオード 4.5,8.L5,14.15・・・・・・工GFIC
T6・・・・・・回路のノード 7・・・・・・定電流
源9・・・・・・出力端子 10・・・・・・ダイオー
ド11.12・・・抵抗 16・・・・・・オペアンプ
以 上 出願人 セイコー電子工業株式会社 代理人 弁理士 最 上 符 節1図 第2図 第:3図 第4図 第5図
Figures 1, 2, and 5 are conventional voltage limiter circuit diagrams, Figure 4 is a circuit diagram for explaining the present invention in detail, and Figure 5 is a diagram for mounting the present invention on an integrated circuit. This is an example of a specific circuit diagram. 1... Input terminal 2... Resistor 3...
... Constant voltage diode 4.5, 8. L5, 14.15... Engineering GFIC
T6... Circuit node 7... Constant current source 9... Output terminal 10... Diode 11.12... Resistor 16...・Operational amplifier and above Applicant Seiko Electronic Industries Co., Ltd. Agent Patent attorney Top Sections Figure 1 Figure 2: Figure 3 Figure 4 Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1) 少くとも1つの定電圧ダイオードと少くとも1
つの絶縁ゲート型電界効果トランジスタと定電流回路と
を出力及び接地端子間に順次接続すると共に、他の絶縁
ゲート型電界効果トランジスタのソース及びドレインを
前記出力及び接地端子間に接続し、またゲートを前記定
電流回路の高電位側の端子に接続したことを特徴とする
電圧リミッタ回路。
(1) At least one voltage regulator diode and at least one
One insulated gate field effect transistor and a constant current circuit are sequentially connected between an output and a ground terminal, and the source and drain of another insulated gate field effect transistor are connected between the output and the ground terminal, and the gate is connected between the output and the ground terminal. A voltage limiter circuit, characterized in that it is connected to a high potential side terminal of the constant current circuit.
(2) 前記定電流回路はゲート端子が定電圧でバイア
スされた絶縁ゲート型電界効果トランジスタであること
を特徴とする特許請求の範囲第1項記載の電圧リミッタ
回路。
(2) The voltage limiter circuit according to claim 1, wherein the constant current circuit is an insulated gate field effect transistor whose gate terminal is biased with a constant voltage.
(3) 前記定電流回路の定電圧バイアス回路が、デプ
レッション型の絶縁ゲート電界効果ト2ンジJJ−エソ
ハソ2シソ賢刑脇錫A’に臂児鵬本し→ンジスタにより
構成されておシ、前記デプレッション型絶縁ゲート電界
効果トランジスタのドレインは電源端子に、ゲートとソ
ースは前記エンノーンスメント型絶縁ゲート電界効果ト
ランジスタのゲートとドレインに接続されると共に、前
記エンハンスメント型絶縁ゲート電界効果トランジスタ
のソースは接地端子に接続されていることを特徴とする
特許請求の範囲第1項記載の電圧リミッタ回路。
(3) The constant voltage bias circuit of the constant current circuit is constituted by a depression type insulated gate field effect transistor. The drain of the depletion type insulated gate field effect transistor is connected to a power supply terminal, the gate and source are connected to the gate and drain of the enhancement type insulated gate field effect transistor, and the source of the enhancement type insulated gate field effect transistor is connected to a power supply terminal. 2. The voltage limiter circuit according to claim 1, wherein the voltage limiter circuit is connected to a ground terminal.
JP59093753A 1984-05-10 1984-05-10 Voltage limiter circuit Granted JPS60236510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59093753A JPS60236510A (en) 1984-05-10 1984-05-10 Voltage limiter circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59093753A JPS60236510A (en) 1984-05-10 1984-05-10 Voltage limiter circuit

Publications (2)

Publication Number Publication Date
JPS60236510A true JPS60236510A (en) 1985-11-25
JPH0516210B2 JPH0516210B2 (en) 1993-03-03

Family

ID=14091186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59093753A Granted JPS60236510A (en) 1984-05-10 1984-05-10 Voltage limiter circuit

Country Status (1)

Country Link
JP (1) JPS60236510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100379111C (en) * 2003-02-04 2008-04-02 罗姆股份有限公司 Limiting circuit and motor driver using the same limiting circuit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138276U (en) * 1974-09-13 1976-03-22

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5138276U (en) * 1974-09-13 1976-03-22

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100379111C (en) * 2003-02-04 2008-04-02 罗姆股份有限公司 Limiting circuit and motor driver using the same limiting circuit

Also Published As

Publication number Publication date
JPH0516210B2 (en) 1993-03-03

Similar Documents

Publication Publication Date Title
US4583037A (en) High swing CMOS cascode current mirror
US5631607A (en) Compact GM-control for CMOS rail-to-rail input stages by regulating the sum of the gate-source voltages constant
US5087891A (en) Current mirror circuit
US5917378A (en) Rail-to-rail type of operational amplifier with a low offset voltage achieved by mixed compensation
JPH04304708A (en) Ring oscillator, correcting circuit for ring oscillator and correcting method for ring oscillator
US4484148A (en) Current source frequency compensation for a CMOS amplifier
CN108363447B (en) Low-temperature coefficient full MOS type current source circuit with process compensation
EP0472202B1 (en) Current mirror type constant current source circuit having less dependence upon supplied voltage
JPH0666607B2 (en) MOS current amplifier
CN110377089B (en) Simplified multi-stage differential operational amplifier output common-mode voltage stabilizing circuit
CN110399003B (en) Relative negative power supply rail and relative positive power supply rail generating circuit
US7248099B2 (en) Circuit for generating reference current
US20020109492A1 (en) High impedance mirror scheme with enhanced compliance voltage
JPS60236510A (en) Voltage limiter circuit
JPH06318828A (en) Common-mode voltage regulator of balanced amplifier
CN105743448A (en) Adjustable high linearity operational transconductance amplifier structure for Gm-C filter
JP2007226710A (en) Constant current circuit and constant voltage circuit
US6566959B2 (en) Amplifier circuit having a particular biasing arrangement
JPH1065459A (en) Current-voltage conversion circuit
JP2830578B2 (en) Constant current generation circuit
US5751183A (en) Bipolar transistor circuit having a free collector
TWI667563B (en) Voltage regulating circuit
JP2000330657A (en) Semiconductor device
CN112835404B (en) Band gap reference circuit and electronic equipment
JPS5760711A (en) Differential amplifier

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term