JPS6023649B2 - Method for producing methyl bromide using hydrobromic acid - Google Patents

Method for producing methyl bromide using hydrobromic acid

Info

Publication number
JPS6023649B2
JPS6023649B2 JP51106720A JP10672076A JPS6023649B2 JP S6023649 B2 JPS6023649 B2 JP S6023649B2 JP 51106720 A JP51106720 A JP 51106720A JP 10672076 A JP10672076 A JP 10672076A JP S6023649 B2 JPS6023649 B2 JP S6023649B2
Authority
JP
Japan
Prior art keywords
methyl bromide
sulfuric acid
reaction
parts
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51106720A
Other languages
Japanese (ja)
Other versions
JPS5334703A (en
Inventor
勲 宮之原
享 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP51106720A priority Critical patent/JPS6023649B2/en
Publication of JPS5334703A publication Critical patent/JPS5334703A/en
Publication of JPS6023649B2 publication Critical patent/JPS6023649B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 本発明は臭化水素水溶液(以下これを臭化水素酸と称す
DETAILED DESCRIPTION OF THE INVENTION The present invention provides an aqueous solution of hydrogen bromide (hereinafter referred to as hydrobromic acid).

)をメタノールと反応せしめることにより、臭化メチル
を製造する方法に関するものであり、更に詳しくは、臭
化水素酸とメタノールを硫酸水溶液触媒の存在の下で反
応せしめ、高収率で臭化メチルを製造する工業的製法に
関するものである。本発明は回分法、連続法いづれの方
法によっても可能であるが、工業的には、連続法による
方が望ましい。一般に、臭化メチルの工業的製造にあっ
ては、他のハロゲン化アルキル、例えば、塩化メチルな
どの場合とは異なり、その原料となる臭素化合物の価格
が極めて高価な為、出来得る限りより安価な臭化物を臭
素源とすること、及び、原料臭化物の臭化メチルへの反
応転化率を出来得る限り高くすることが最も肝要なもの
とされる。
) with methanol, and more specifically, it relates to a method for producing methyl bromide in a high yield by reacting hydrobromic acid and methanol in the presence of an aqueous sulfuric acid catalyst. It relates to an industrial method for manufacturing. The present invention can be carried out by either a batch method or a continuous method, but from an industrial perspective, a continuous method is preferable. In general, in the industrial production of methyl bromide, unlike the case of other alkyl halides, such as methyl chloride, the price of the bromine compound that is the raw material is extremely expensive, so it is necessary to make it as cheap as possible. The most important things are to use a bromide as the bromine source and to increase the reaction conversion rate of the raw material bromide to methyl bromide as high as possible.

この点で、臭化水素酸による臭化メチルの製造にあって
は、臭化水素酸が最大限、臭化水素を約40重量%まで
しか含み得ず、これは、臭化水素1モルに対し、水を5
.07モルをも含むものに相当し、‘1}式に示す臭化
メチルの生成反応式から明らかなように、かかる組成物
から、十分に収率良HBr+CH30H→CH3Br+
日20 ・・・・・・‘1’〈、臭化メチル
を製造することは、従来、不可能と見なされていた。
In this regard, in the production of methyl bromide using hydrobromic acid, the maximum hydrobromic acid can contain is only about 40% by weight of hydrogen bromide, which is equivalent to 1 mole of hydrogen bromide. On the other hand, water is 5
.. As is clear from the reaction formula for producing methyl bromide shown in equation '1}, such a composition can produce HBr+CH30H→CH3Br+ in a sufficiently good yield.
Day 20...'1'〈It was previously considered impossible to produce methyl bromide.

この為m式で示されるような、臭化水素とメタノールに
よる臭化メチルの工業的製法としては、従来、純度の良
い臭化水素ガスをメタノールを含む液層に導入する方法
(特公昭29−4269)、臭化水素ガスをメタノール
と直接気相接触させる方法(特公昭46一5682)、
などの製法が考えられてはいたが、これらの方法は、安
価な塩化水素とメタノールによる塩化メチルの製造の場
合にあってはともかく、臭化メチルの工業的製法として
は、臭化水素ガスの価格が臭化水素酸の価格に比べ、は
るかに高価なものであり、しかも、これを大量に入手す
ることは不可能な現状である為、工業的には、妙味のな
い方法とされ、実施されるところとはなつていない。
For this reason, as an industrial method for producing methyl bromide using hydrogen bromide and methanol, as shown in equation m, conventionally the method was to introduce hydrogen bromide gas of good purity into a liquid layer containing methanol (Japanese Patent Publication No. 4269), a method of bringing hydrogen bromide gas into direct gas phase contact with methanol (Special Publication No. 46-5682),
However, although these methods are suitable for producing methyl chloride using inexpensive hydrogen chloride and methanol, as an industrial method for producing methyl bromide, they are not suitable for producing methyl bromide using hydrogen bromide gas. Since the price is much higher than that of hydrobromic acid and it is currently impossible to obtain it in large quantities, it is considered an unappealing method from an industrial perspective and is not implemented. It's not as familiar as it should be.

臭化メチルの他の製法として、臭化ナトリウム、臭化ア
ンモニウムなどの臭化アルカリを臭素源とし、これを硫
酸、燐酸などの混合物で分解する方法(C.A.(ケミ
カル・アブストラクト)504193夕(1956))
もあるが、かかる方法による場合、なるほど反応帯城に
於ける単位容積当りの臭化物の濃度を高くすることが可
能であり、有利な方法のように思えるが、それには、原
料の臭化アルカリを反応帯域に導入する際、これを固体
、もしくは、スラリー状態で行う必要があり、更に、こ
の臭化アルカリ自体、臭化水素、もしくは、臭化水素酸
から製造されるものであり、その原料としての価格は決
して安価なものとはなり得ず、工業的には必ずしも良い
方法とは言い難い。
Another method for producing methyl bromide is to use an alkali bromide such as sodium bromide or ammonium bromide as a bromine source and decompose it with a mixture of sulfuric acid, phosphoric acid, etc. (C.A. (Chemical Abstracts) 504193). (1956))
However, with this method, it is possible to increase the concentration of bromide per unit volume in the reaction zone, and it seems to be an advantageous method. When introduced into the reaction zone, it is necessary to conduct it in a solid or slurry state, and furthermore, this alkali bromide itself is produced from hydrogen bromide or hydrobromic acid, and as its raw material. The price of this method cannot be low, and it cannot necessarily be said that it is a good method from an industrial point of view.

これらの方法に代って、現在では、硫黄を還元剤とし、
臭素とメタノールから臭化メチルを製造する方法(以下
これを硫黄法と称する。
Instead of these methods, sulfur is now used as a reducing agent,
A method for producing methyl bromide from bromine and methanol (hereinafter referred to as the sulfur method).

)が工業的に多く実施されている。しかるに、この硫黄
法に於いても、 【1} 臭素が極めて腐蝕性の高い物質である為、工業
的には、これを精度よく計量・輸送するのが不可能であ
る。
) are widely practiced industrially. However, even in this sulfur method, [1] Since bromine is an extremely corrosive substance, it is impossible to accurately measure and transport it industrially.

{2ー この為、反応帯域に於ける反応成分組成を任意
に精度よくコントロールすることができず、臭化メチル
を連続的に製造せんとした場合、反応廃液中に未反応硫
黄、もしくは、これが部分的に酸化されて生ずるチオ酸
のようなものを含むことより、環境の汚染を招くところ
となる。
{2- For this reason, the composition of the reaction components in the reaction zone cannot be arbitrarily and precisely controlled, and if methyl bromide is to be produced continuously, unreacted sulfur or this may be present in the reaction waste liquid. Since it contains substances such as thioic acid, which is produced by partial oxidation, it causes environmental pollution.

{3} 常圧下で、臭素の沸点が58つ○であり、反応
温度をこれ以上に高めることが出来ない。かかる低温城
の反応にあっては、硫黄法の反応は複雑なものとなり、
臭化メチルの生成速度を安定には保ち得ないo等の欠点
を有する。この硫黄法の難点のうち脚は、反応圧力を高
くすることにより回避できるものであるが、同法にあっ
ては、元来腐蝕性の強い臭素を原料とするため、製造装
置の材質はガラスラィニングとする必要があり、これと
更に耐圧性となし、生体に有害な臭化メチルを製造する
には、かなりの困難と危険を伴うものである。それ故に
本発明者等は、従来、工業的製法としては成立し難いと
考えられていた臭化水素酸を用いる臭化メチルの工業的
製造法につき鋭意、詳細なる研究を重ねた結果、これら
の臭化メチル製造の諸問題点を一挙に解決できる工業的
製法を完成するに至ったものである。一般に、臭化水素
酸とメタノールの反応による臭化メチルの反応にあって
は、当該反応終了液に含まれる未反応臭化水素濃度が、
原料として用いられる臭化水素酸中の臭化水素濃度に比
し、かなり低いものとなる為これを回収し、当該反応に
再び利用せんとしても、かかる濃度の臭化水素酸からは
、臭化メチルをもはや製造することが極めて困難となる
ものであり、この為当該反応を利用する臭化メチルの工
業的製法にあっては、他の諸原料に比し、極めて高価な
臭化水素酸を出来る限り、少くとも、97%〜98%、
望ましくはほぼ100%、臭化メチルに反応転化せしめ
ることが要求されるものである。
{3} Under normal pressure, the boiling point of bromine is 58 points, so the reaction temperature cannot be raised any higher. In such a low-temperature castle reaction, the reaction of the sulfur method becomes complicated,
It has drawbacks such as the inability to maintain a stable production rate of methyl bromide. The main drawback of this sulfur method can be avoided by increasing the reaction pressure, but since this method uses bromine, which is highly corrosive, as a raw material, the manufacturing equipment is made of glass. It is necessary to provide a lining, and in addition to this, it must be made pressure resistant, and producing methyl bromide, which is harmful to living organisms, involves considerable difficulty and danger. Therefore, the present inventors have conducted intensive and detailed research on the industrial production method of methyl bromide using hydrobromic acid, which was previously thought to be difficult to establish as an industrial production method. This led to the completion of an industrial production method that can solve all the problems in methyl bromide production at once. Generally, in the reaction of methyl bromide by the reaction of hydrobromic acid and methanol, the concentration of unreacted hydrogen bromide contained in the reaction completed liquid is
The hydrogen bromide concentration is considerably lower than that in the hydrobromic acid used as a raw material, so even if it is recovered and used again in the reaction, the hydrogen bromide concentration from such a concentration of hydrobromic acid is very low. It is now extremely difficult to produce methyl, and for this reason, the industrial production method of methyl bromide using this reaction requires hydrobromic acid, which is extremely expensive compared to other raw materials. As much as possible, at least 97% to 98%,
Desirably, nearly 100% reaction conversion to methyl bromide is required.

従来、当該反応を利用した製法にあっては、たとえ、触
媒に硫酸を使用したとしても、原料臭化水素酸をかかる
高反応転イD率たちしめることは不可能であった。
Conventionally, in production methods utilizing this reaction, it has been impossible to achieve such a high reaction conversion D rate of raw material hydrobromic acid, even if sulfuric acid is used as a catalyst.

その主たる原因は、前記の如く、当該反応に於ける臭素
源となる臭化水素酸が、最小限、約5箱重量%の水を含
むため、当該触媒の硫酸濃度が高くなし得ないこと、及
び、これを無理に高く、例えば、75重量%以上の硫酸
水溶液とした場合にあっては、原料臭化水素酸の一部臭
化水素が気化して、反応帯域から逃散し、更には、一部
は臭素に分解し、当該反応に関与せざるところとなるか
らである。しかるに、本発明の最も注目すべき点は、当
該反応にあっては、反応式‘1’から明らかな如く、臭
化水素とメタノールの等分子反応であるにもかかわらず
、反応帯城に硫酸水溶液が存在する場合は、当該反応は
、臭化水素によるよりはメタノ−ルにより、より大きく
促進されることを本発明者等が見出した点にある。
The main reason for this is that, as mentioned above, hydrobromic acid, which is the bromine source in the reaction, contains a minimum of about 5% by weight of water, so the sulfuric acid concentration of the catalyst cannot be high. If this is unreasonably high, for example, 75% by weight or more, the hydrogen bromide in the raw material hydrobromic acid will vaporize and escape from the reaction zone, and further, This is because some of it decomposes into bromine and does not take part in the reaction. However, the most noteworthy point of the present invention is that although the reaction is an equimolecular reaction of hydrogen bromide and methanol, as is clear from reaction formula '1', sulfuric acid is present in the reaction zone. The present inventors have discovered that when an aqueous solution is present, the reaction is accelerated to a greater extent by methanol than by hydrogen bromide.

かかる現象は、反応帯域に全く硫酸が存在しない場合、
即ち、ただ単に、47%臭化水素酸とメタノールを反応
させたる場合は見られない現象であり、かかる場合には
、逆に、当該反応は反応帯城に於けるメタノール濃度に
よるよりは臭化水素濃度により大きく促進される為、い
かようにしようとも原料臭化水素酸の臭化メチルへの反
応転化率は50%以上にすることが不可能である。
Such a phenomenon occurs when no sulfuric acid is present in the reaction zone.
That is, this phenomenon is not observed when 47% hydrobromic acid and methanol are simply reacted, and in such a case, the reaction is caused by bromide rather than by the methanol concentration in the reaction zone. Since the reaction is greatly accelerated by the hydrogen concentration, no matter what you do, it is impossible to increase the reaction conversion rate of raw material hydrobromic acid to methyl bromide to 50% or more.

即ち、本発明の方法にあっては、反応帯城に硫酸水溶液
を存在せしめ、これに、臭化水素酸と〆タノールをモル
比でCH30H/HBr>1.0、工業的に望ましくは
、1.05〜2.0の割合で供給反応せしめることによ
り、反応の十分進行した状況下にあって、反応帯城に於
けるメタノールの割合を臭化水素に比し、理論反応当量
以上、大過剰とならしめることにより当該反応をより促
進せんとするものであり、更に、反応帯域に於ける当該
触媒である硫酸水溶液の硫酸濃度を50〜75重量%、
工業的に望ましくは、斑〜65重量%に維持することに
より尚一層、当該反応を促進し、原料臭化水素酸の臭化
メチルへの反応転化率を十分高く、97%以上になし得
るものである。
That is, in the method of the present invention, a sulfuric acid aqueous solution is present in the reaction zone, and hydrobromic acid and sulfuric acid are added to this in a molar ratio of CH30H/HBr>1.0, industrially preferably 1. By feeding the reaction at a ratio of .05 to 2.0, under conditions where the reaction has sufficiently progressed, the ratio of methanol in the reaction zone to hydrogen bromide is greater than the theoretical reaction equivalent, and is in large excess. The purpose is to further accelerate the reaction by adjusting the sulfuric acid concentration of the sulfuric acid aqueous solution that is the catalyst in the reaction zone to 50 to 75% by weight.
Industrially desirable is one that can further accelerate the reaction by maintaining the concentration between 65% and 65% by weight, and can achieve a sufficiently high reaction conversion rate of raw material hydrobromic acid to methyl bromide of 97% or more. It is.

更に望ましくは、反応帯域へ供給する硫酸は、少くとも
、9の重量%以上の濃硫酸、もしくは、発煙硫酸、工業
的に望ましくは、9母重量%硫酸を用い、反応帯域に於
ける当該反応成分の単位容積当りの濃度を出釆る限り高
め、かつ、反応帯域に多量のメタノールが存在した場合
も、当該反応温度を容易に95qo以上に保つことによ
り、更に、当該反応を促進し、少くとも、原料臭化水素
酸の臭化メチルへの反応転化率を、98%以上、ほぼ1
00%にすることが可能となる。
More preferably, the sulfuric acid supplied to the reaction zone is at least 9% by weight concentrated sulfuric acid or fuming sulfuric acid, industrially preferably 9% by weight sulfuric acid, and the reaction in the reaction zone is By increasing the concentration of the components per unit volume as much as possible and easily maintaining the reaction temperature above 95 qo even when a large amount of methanol is present in the reaction zone, the reaction can be further promoted and reduced. In both cases, the reaction conversion rate of raw material hydrobromic acid to methyl bromide was 98% or more, approximately 1
00%.

本発明の方法が前述の如く、工業的に極めて有利な臭化
メチルの製法であることを、添付図面をもって、更に具
体的に説明すれば、臭化水素酸1とメタノール2の反応
器5への導入にあたり、そのモル比をCはOH/HBr
>1.い更に、望ましくは、1.05〜1.40で連続
的に供給反応せしめる。
As mentioned above, the method of the present invention is an industrially extremely advantageous method for producing methyl bromide, which will be explained in more detail with reference to the attached drawings. When introducing, the molar ratio of C is OH/HBr
>1. More preferably, the reaction is carried out by continuously feeding at a temperature of 1.05 to 1.40.

これと併行して、濃硫酸もしくは、発煙硫酸、工業的に
望ましくは、9母重量%硫酸3を反応器に導入するにあ
たり、その導入量は、上記の諸原料が反応器に持ち込む
水と、これらの原料が完全に反対するものと仮定した場
合の生成水を併せて、反応器内に存在する硫酸水客液の
硫酸濃度が50〜75重量%となるようにする。更に、
当該反応温度は95℃以上好ましくは105〜130℃
に維持する。生成臭化メチルは反応器からガス状で発生
するが、このとき、メタノール臭化水素酸を同伴してい
るので、反応器上部に取付けた冷却器6により、その大
部分を反応器に戻し、更に、臭化メチル中に含まれる臭
化水素酸は吸収塔7により、アルカリ水客液又は水4に
吸収させることにより除去する。但し、本発明の適当な
る条件を選んだ場合は、この吸収塔7は必ずしも必要不
可欠なものではない。次いで、臭化メチル中に含まれる
当該反応の唯一の副生物であるジメチルェーテル及び、
水、メタノール等を、精製塔8に於いて、濃硫酸3に吸
収せしめることにより、当該精製臭化メチルは、その純
度が低くとも99.弦容積%以上となる。この、当該反
応によるジメチルェーテルの副生量は、本発明の方法に
あっては、反応帯城に臭化水素が存在する限り、モル比
で、臭化メチルのほぼ、1/100前後であり、この割
合は変らない。
At the same time, concentrated sulfuric acid or fuming sulfuric acid, industrially preferably 9% by weight sulfuric acid 3, is introduced into the reactor in an amount equal to the amount of water brought into the reactor by the above raw materials. Assuming that these raw materials are completely opposite, the sulfuric acid concentration of the sulfuric acid solution present in the reactor is made to be 50 to 75% by weight, including the produced water. Furthermore,
The reaction temperature is 95°C or higher, preferably 105-130°C
to be maintained. The produced methyl bromide is generated in gaseous form from the reactor, but at this time, it is accompanied by methanol hydrobromic acid, so most of it is returned to the reactor using a cooler 6 installed at the top of the reactor. Furthermore, hydrobromic acid contained in methyl bromide is removed by absorption into an alkaline solution or water 4 in an absorption tower 7. However, if appropriate conditions of the present invention are selected, this absorption tower 7 is not necessarily essential. Then, dimethyl ether, the only by-product of the reaction contained in methyl bromide, and
By absorbing water, methanol, etc. into concentrated sulfuric acid 3 in the purification tower 8, the purified methyl bromide is produced with a purity of at least 99. % or more of the string volume. In the method of the present invention, the amount of dimethyl ether by-produced by this reaction is approximately 1/100 of methyl bromide in terms of molar ratio as long as hydrogen bromide is present in the reaction zone. This proportion remains unchanged.

本発明の方法を実施した場合の、当該反応に及ぼす効果
の外に、工業的に有利な点は、上記の精製塔8でジメチ
ルェーテルを吸収した濃硫酸は、そのまま、当該反応の
触媒として利用しても、何ら、ジメチルェーテルの蓄積
を招くことはないことにもある。何とならば、反応式【
21に示すように、このジメチルェーテルはメタノール
同様に、臭化水素酸とすみやかに反応して、臭化メチル
を生成するものであるからである。
In addition to the effect on the reaction when carrying out the method of the present invention, the industrial advantage is that the concentrated sulfuric acid that has absorbed dimethyl ether in the purification column 8 can be used as it is as a catalyst for the reaction. However, it does not lead to any accumulation of dimethyl ether. If anything, the reaction formula [
This is because, like methanol, this dimethyl ether quickly reacts with hydrobromic acid to produce methyl bromide, as shown in 21.

C比OCH3十2HBr→本日3Br+日20
・・・・・・‘2)一方、反応器5から抜き出される当
該反応終了液は、臭化水素をほとんど含まない、ほぼメ
タノールと硫酸水溶液からなるものであり、これは、吸
収塔7からの水溶液を合流させた後、蒸溜塔1川こ導き
、当該混合液中に存在する未反応メタノール、溶存臭化
メチル及びジメチルェーテル等を回収し、これら回収物
を反応器5に循環せしめる。
C ratio OCH 312 HBr → Today 3Br + Day 20
......'2) On the other hand, the reaction-completed liquid extracted from the reactor 5 contains almost no hydrogen bromide and consists mostly of methanol and an aqueous sulfuric acid solution. After combining the aqueous solutions, the mixture is passed through a distillation column to recover unreacted methanol, dissolved methyl bromide, dimethyl ether, etc. present in the mixture, and these recovered substances are circulated to the reactor 5.

従って、蒸溜塔10の底部からは単なる硫酸水溶液のみ
が排出され、しかも、当該排出液は、その化学的酸素要
求量が約1功血であり、これを他の硫酸使用用途に再利
用することも可能であるが、ただ単にアルカリ中和した
る後、廃棄したとしても、何ら環境汚染を招く恐れはな
い。かくの如く、本発明の方法は、触媒に用いた濃硫酸
もしくは発煙硫酸を、ただ単に稀釈された硫酸水溶液と
することにより、原料に用いたる臭化水素酸をほぼ完全
に臭化メチルとなし、更に、もつ一つの原料であるメタ
ノールをも完全に臭化メチルに反応転化せしめ縛る連続
製法であり、更に、硫黄法とは異なり、プロセスが簡便
であり、その正常な運転操作が容易になし得るものであ
る。
Therefore, only a simple aqueous sulfuric acid solution is discharged from the bottom of the distillation column 10, and the chemical oxygen demand of the discharged liquid is approximately 1 kg, so that it can be reused for other uses of sulfuric acid. However, even if the material is simply neutralized with alkali and then disposed of, there is no risk of causing any environmental pollution. As described above, the method of the present invention converts the hydrobromic acid used as a raw material almost completely into methyl bromide by simply converting concentrated sulfuric acid or fuming sulfuric acid used as a catalyst into a diluted sulfuric acid aqueous solution. Furthermore, it is a continuous production method that completely converts methanol, one of the raw materials, into methyl bromide.Furthermore, unlike the sulfur method, the process is simple and its normal operation is easy. It's something you get.

以下、具体例をもって本発明を具体的に例示する。これ
ら具体例中、すべての部、及び、パーセントは重量によ
る。実施例 1 内容積、約1その四つロフラスコに濃度60%の硫酸水
溶液97の部を入れ、電磁的によく濃梓し、フラスコ内
温を9000、とした。
The present invention will be specifically illustrated below using specific examples. In these specific examples, all parts and percentages are by weight. Example 1 97 parts of an aqueous sulfuric acid solution with a concentration of 60% was placed in a four-bottle flask with an internal volume of approximately 1, and the mixture was electromagnetically concentrated to bring the internal temperature of the flask to 9,000.

上記硫酸水溶液に、47%臭化水素酸173部、99.
5%メタノール65.礎都を60分かけ定量的に導入し
、反応器から発生する臭化メチルは、反応上上器にとり
つけた2重蛇管式冷却器に4〜5℃の冷却水を流し、内
、外部から冷却し、しかる後、一70qoに冷却した液
に浸潰した、エタノール所定量を入れた硝子製トラップ
(以下エタノールトラツプという)に吸収せしめた。
Add 173 parts of 47% hydrobromic acid to the above sulfuric acid aqueous solution, and add 99 parts of 47% hydrobromic acid.
5% methanol65. The methyl bromide generated from the reactor was quantitatively introduced over a period of 60 minutes, and the methyl bromide generated from the reactor was cooled at 4 to 5°C by flowing cooling water into a double condenser tube type cooler attached to the upper reactor. The mixture was cooled and then absorbed into a glass trap (hereinafter referred to as ethanol trap) containing a predetermined amount of ethanol immersed in a liquid cooled to 170 qo.

エタノールトラップの重量増加分を秤量により求め、そ
の一部は、ガスクロマトグラフにかけ、臭化メチル、ジ
メチルェーテル、メタノール等有機物を分析した。
The weight increase of the ethanol trap was determined by weighing, and a portion of it was subjected to gas chromatography to analyze organic substances such as methyl bromide, dimethyl ether, and methanol.

また一部は、大量の水で稀釈した後、室温となし、カセ
ィソーダ水溶液でアルカリ性とし、サンドバス上で低沸
点分を追い出し、しかる後、ホルハルト法により臭化物
の分析を行つた。更に反応終了液についても、エタノー
ルトラツプと同様の分析を行った。
A portion of the solution was diluted with a large amount of water, brought to room temperature, made alkaline with an aqueous solution of caustic soda, and removed low-boiling components on a sand bath. After that, bromides were analyzed by Holhardt's method. Furthermore, the reaction completed liquid was also analyzed in the same manner as the ethanol trap.

その結果、臭化水素酸、メタノール導入終了時点より、
30分、6ひげ、120分後に於けるヱタ/ールトラツ
プに補集された臭化メチル、ジメチルェーテルは、各々
、臭化メチル=84.7部、ジメチルェーテル=0.4
1部:臭化メチル=91.3部、ジメチルェーテル=0
.51部:臭化メチル=93.9部、ジメチルェーテル
=0.52部、であり、臭化水素は全く認められず、メ
タノールもまた0.01部以下であった。一方、猿料供
給終了時点より、120分後に於いて、ただちに、反応
器内温を室温以下約1000として、反応器内の液重量
を測定し、その一部をガスクロマトグラフィにかけて分
析したところ、液重量=1雌1部、であり、これには臭
化メチル、ジメチルェーテルが各々0.15%、0.0
7%含まれていた。実施例 2反応温度を180qoに
した以外はその他の条件は実施例1と全く同一の実験を
行った。
As a result, from the end of the introduction of hydrobromic acid and methanol,
Methyl bromide and dimethyl ether collected in the eta/l trap after 30 minutes, 6 whiskers, and 120 minutes were methyl bromide = 84.7 parts and dimethyl ether = 0.4 parts, respectively.
1 part: methyl bromide = 91.3 parts, dimethyl ether = 0
.. 51 parts: methyl bromide = 93.9 parts, dimethyl ether = 0.52 parts, no hydrogen bromide was observed, and methanol was also 0.01 part or less. On the other hand, 120 minutes after the end of the monkey feed supply, the internal temperature of the reactor was immediately set to about 1000 below room temperature, the weight of the liquid in the reactor was measured, and a part of it was analyzed by gas chromatography. Weight = 1 female, 1 part, which contains 0.15% and 0.0% of methyl bromide and dimethyl ether, respectively.
It contained 7%. Example 2 An experiment was carried out under the same conditions as in Example 1 except that the reaction temperature was 180 qo.

原料供給終了時点より、各3び分、6の分、90片後に
於ける臭化メチル、ジメチルヱーテルの生成量は、各々
、臭化メチル=91.1部、ジメチルェー7ル=0.4
4部;臭化メチル=94.2部、ジメチルェーテル=0
.46部;臭化メチル=94.$部、ジメチルヱーテル
=0.46部、であり、一方、反応終了液は108碇部
であり、これには臭化メチル、ジメチルェーテルが各々
、0.0総%、0.04%含まれていた。
The amounts of methyl bromide and dimethyl ether produced after 3 minutes, 6 minutes, and 90 pieces after the end of raw material supply were methyl bromide = 91.1 parts, and dimethyl ether = 0.4 parts, respectively.
4 parts; methyl bromide = 94.2 parts, dimethyl ether = 0
.. 46 parts; methyl bromide = 94. $ part, dimethyl ether = 0.46 part, and on the other hand, the reaction completed liquid was 108 parts, which contained methyl bromide and dimethyl ether at 0.0 total% and 0.04%, respectively. .

実施例 3実施例1と同様にして、63%硫酸水溶液4
50部を反応器に入れ、反応器内温を120℃とし、こ
れに47%臭化水素酸17森部、99.5%メタノール
41.5部を1時間で導入し、これらの原料の導入開始
により、30分遅れて更に、90%硫酸水溶液20$部
を30分かけて反応器に導入した。
Example 3 In the same manner as in Example 1, 63% sulfuric acid aqueous solution 4
50 parts were placed in a reactor, the internal temperature of the reactor was set to 120°C, and 17 parts of 47% hydrobromic acid and 41.5 parts of 99.5% methanol were introduced in 1 hour. After a 30 minute delay from the start, 20 parts of a 90% sulfuric acid aqueous solution was further introduced into the reactor over a period of 30 minutes.

これら臭化水素酸、メタノール、硫酸水溶液の導入終了
時点及び、同上時点より、30分後に於けるエタノール
トラツプがとらえた臭化メチル、ジメチルェーテルは、
各々、臭化メチル=88.芥都、ジメチルェーテル=0
.19部;臭化メチル=94.6部、ジメチルェーテル
:0.25部であった。
The methyl bromide and dimethyl ether captured by the ethanol trap at the end of the introduction of hydrobromic acid, methanol, and sulfuric acid aqueous solution and 30 minutes after the above point were as follows:
Methyl bromide = 88. Akuto, dimethyl ether = 0
.. 19 parts; methyl bromide = 94.6 parts, dimethyl ether: 0.25 parts.

更に、当該反応終了液には臭化メチル、ジメチルェーブ
ルが各々0.07%、0.01%含まれていた。参考例
1実施例1と同様にして、49%硫酸水溶液970部
を反応器に入れ、反応温度を95qC一定した。
Furthermore, the reaction-completed solution contained 0.07% and 0.01% of methyl bromide and dimethyltable, respectively. Reference Example 1 In the same manner as in Example 1, 970 parts of a 49% sulfuric acid aqueous solution was placed in a reactor, and the reaction temperature was kept constant at 95 qC.

これに47%臭化水素酸173部と99.5%メタノー
ル31.5部を60分かけて導入し、これら原料の導入
終了時点より、60分、12皮分、240分後に於ける
発生臭化メチル、ジメチルェーテルの生成量を求めたと
ころ、各々、臭化メチル=26.7部、ジメチルヱーフ
ル=0.06部;臭化メチル=44.$部、ジメチルェ
−テル=0.12部:臭化メチル=56.2部、ジメチ
ルェーテル=0.14部であった。一方、当該反応終了
液に溶存していた臭化メチル、ジメチルェーテルは各々
0.07%、0.006%であった。参考例 2 実施例1と同様にして、60%硫酸水溶液970部を前
もって反応器に入れておき、反応温度を95℃一定とし
、これに47%臭化水素酸173部、99.5%メタノ
ール32.5部を1時間かけて導入した。
To this, 173 parts of 47% hydrobromic acid and 31.5 parts of 99.5% methanol were introduced over 60 minutes, and the odor generated 60 minutes, 12 minutes, and 240 minutes after the end of introduction of these raw materials. When the amounts of methyl chloride and dimethyl ether produced were determined, methyl bromide = 26.7 parts, dimethyl ether = 0.06 parts, and methyl bromide = 44. $ part, dimethyl ether = 0.12 part: methyl bromide = 56.2 part, dimethyl ether = 0.14 part. On the other hand, the amounts of methyl bromide and dimethyl ether dissolved in the reaction-completed solution were 0.07% and 0.006%, respectively. Reference Example 2 In the same manner as in Example 1, 970 parts of a 60% sulfuric acid aqueous solution was placed in a reactor in advance, the reaction temperature was kept constant at 95°C, and 173 parts of 47% hydrobromic acid and 99.5% methanol were added. 32.5 parts were introduced over 1 hour.

これら原料導入終了時より、6世分、12び分、240
分時点までに発生した臭化メチル、ジメチルェーテルは
各々、臭化メチル=50.5部、ジメチルェーテル=0
.04部:臭化メチル=64.8部、ジメチルェーテル
=0.057部;臭化メチル=72.碇都、ジメチルェ
ーテル=0.061部であった。一方、反応終了液中の
臭化メチル、ジメチルェーテルの含有率は約0.06%
、0.005%であった。
From the end of the introduction of these raw materials, 6 generations, 12 generations, 240
Methyl bromide and dimethyl ether generated up to the minute point were 50.5 parts of methyl bromide and 0 parts of dimethyl ether, respectively.
.. 04 parts: methyl bromide = 64.8 parts, dimethyl ether = 0.057 parts; methyl bromide = 72. Ikarito, dimethyl ether = 0.061 part. On the other hand, the content of methyl bromide and dimethyl ether in the reaction completed liquid is approximately 0.06%.
, 0.005%.

参考例1及び2の結果から明らかなようにC馬OH/H
Br<1なる場合には臭化メチルの生成速度がおそい。
As is clear from the results of Reference Examples 1 and 2, C horse OH/H
When Br<1, the production rate of methyl bromide is slow.

実施例 4 実効容積約1その枝付き4つ口フラスコを反応器とし、
これに約63%の硫酸水溶液を流し、これをオイルバス
に浸して、外部から加熱し、反応器内は電磁式燈梓器を
用いよく縄拝することにより、反応器内温を120℃一
定とした。
Example 4 A four-necked flask with arms having an effective volume of about 1 was used as a reactor,
Approximately 63% sulfuric acid aqueous solution is poured into this, immersed in an oil bath, heated from the outside, and the inside of the reactor is kept at a constant temperature of 120°C by using an electromagnetic lamp and stirring the inside of the reactor. And so.

これに、47%臭化水素酸、99.5%メタノール、遊
離無水硫酸分30%を含む発煙硫酸、を一時間当り、各
々16碇部、30部、146部を連続的に導入した。
To this, 47% hydrobromic acid, 99.5% methanol, and fuming sulfuric acid containing 30% free sulfuric anhydride were continuously introduced in amounts of 16 parts, 30 parts, and 146 parts per hour, respectively.

連続して反応器から発生する生成ガスは実施例と同様に
して、冷却器を通した後、エタノール・トラツプに吸収
せしめ、該エタノールトラツプは30分毎に交換し、そ
の各々につき重量を測定し、分析を行った。又、反応器
から溢流する反応終了液は硝子受器に受け取り、この受
器も3雌ふ毎に交換し、その重量測定と、ガスクロマト
グラフによる分析を行った。反応開始後、約15〜2餌
時間に、エタノールトラップに吸収された臭化メチル、
及びジメチルェーテル、は各々、43.9±0.2部/
3び分、0.225±0.023部/30分であり、メ
タノール、臭素イオンは0.001部以下ほとんど含ま
れていなかった。
The product gas continuously generated from the reactor was passed through a condenser and absorbed into ethanol traps in the same manner as in the example, and the ethanol traps were replaced every 30 minutes and the weight of each trap was measured. and conducted an analysis. In addition, the reaction finished liquid overflowing from the reactor was received in a glass receiver, which was also replaced every third batch, and its weight was measured and analyzed by gas chromatography. About 15 to 2 feeding hours after the start of the reaction, methyl bromide absorbed into the ethanol trap,
and dimethyl ether, each 43.9±0.2 parts/
3 minutes, 0.225±0.023 parts/30 minutes, and methanol and bromine ions were hardly contained at 0.001 parts or less.

一方溢流液は128±0.3部/3び分であり、これに
は、臭化メチル、ジメチルェーテルが各々約0.13%
、0.0007%含まれていた。参考例 3 実施例4と同様にして、実効容積約1その枝付きフラス
コに、約77%の硫酸水客液を満し、その内温を120
00一定とし、これに47%臭化水素酸、99.5%メ
タノール、90%硫酸水溶液を各々一時間当たり、10
0部、187部、376部の供給速度で導入したところ
、臭化水素の供v給開始と同時に反応器内液は赤褐色に
着色され、エタノール・トラツプ吸収液、反応器からの
溢流液もまた同じように赤褐色になった。
On the other hand, the overflow liquid was 128±0.3 parts/3 parts, which contained approximately 0.13% each of methyl bromide and dimethyl ether.
, 0.0007%. Reference Example 3 In the same manner as in Example 4, a side flask with an effective volume of approximately 1 was filled with approximately 77% sulfuric acid solution, and the internal temperature was set to 120%.
00 constant, and 47% hydrobromic acid, 99.5% methanol, and 90% sulfuric acid aqueous solution were each added at 10% per hour.
When hydrogen bromide was introduced at feed rates of 0 parts, 187 parts, and 376 parts, the liquid inside the reactor was colored reddish brown at the same time as the supply of hydrogen bromide started, and the ethanol trap absorption liquid and overflow liquid from the reactor were also colored. It also turned reddish brown.

反応開始より15〜2加持間に於いて、ェタノ−ル・ト
ラップ内液を分析したところ、臭化メチルが23.0土
0.3部/30分、ジメチルェーテルは、0.115±
0.02部/3び分であり、その外に、臭化水素に換算
して34土0.3部/30分の臭素イオンがあつた。
Analysis of the liquid in the ethanol trap between 15 and 2 hours after the start of the reaction revealed that methyl bromide was 23.0 parts/30 minutes, and dimethyl ether was 0.115 parts/30 minutes.
The amount was 0.02 parts/3 minutes, and in addition, bromine ions were present in the amount of 0.3 parts/30 minutes in terms of hydrogen bromide.

更に、反応器からの溢流液は220±0.5部/30分
であり、これには臭化メチル、ジメチルヱーテルが各々
0.03%、0.007%、含まれていた。
Furthermore, the overflow from the reactor was 220±0.5 parts/30 minutes, which contained 0.03% and 0.007% of methyl bromide and dimethyl ether, respectively.

以上の結果から明らかなように、硫酸水溶液濃度が75
重量%を超えると、臭化水素の逃散及び臭化水素の臭素
への分解が起る。
As is clear from the above results, the concentration of sulfuric acid aqueous solution is 75
Above % by weight, hydrogen bromide escape and decomposition of hydrogen bromide to bromine occur.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面(第1図)は、本発明の1例を実施するための
フローシートである。 図中1は臭化水素酸の供給を示すものであり、2はメタ
ノール、3は触媒用濃硫酸の、4は生成臭化メチルの発
生に伴う臭化水素成分の吸収のための稀薄苛性ソーダ水
容液の供給を示すものである。 5は縄梓羽根を備えた反応器を示し、該反応器はジャケ
ットとなっており、スチーム等により、加温するもので
ある。 6は生成臭化メチルに伴う未反応成分を反応器に戻すた
めの冷却器である。 7は生成臭化メチルに伴う、徴量臭化水素成分を吸収す
るための吸収塔を示し、8は副生するジメチルェーテル
を臭化メチルから除去せしめるための吸収塔である。 8でジメチルェーテルを吸収した濃硫酸はそのまま、反
応器5に供V給されるものである。 9は、不純分を除去した精製臭化メチルを示すものであ
る。 10は反応終了液中の禾反応メタノール等を回収すると
ともに、この反応終了液を無害化するための蒸溜塔を示
す。 11は10で回収された未反応メタノール、溶存臭化メ
チル、ジメチルェーテル等の純度を何上せしめて、反応
器に戻すための冷却器を示す。 12は、蒸溜塔10で低沸点の有機物を除かれ、徴量の
臭イ的物を含んだ硫酸水溶液を示す。 第1図
The accompanying drawing (FIG. 1) is a flow sheet for implementing one example of the present invention. In the figure, 1 indicates the supply of hydrobromic acid, 2 indicates methanol, 3 indicates concentrated sulfuric acid for catalyst, and 4 indicates diluted caustic soda water for absorbing the hydrogen bromide component accompanying the generation of methyl bromide. This shows the supply of liquid. Reference numeral 5 indicates a reactor equipped with rope blades, the reactor is a jacket, and is heated by steam or the like. 6 is a cooler for returning unreacted components accompanying the produced methyl bromide to the reactor. Reference numeral 7 indicates an absorption tower for absorbing the collected hydrogen bromide component accompanying the produced methyl bromide, and 8 is an absorption tower for removing by-produced dimethyl ether from the methyl bromide. The concentrated sulfuric acid that has absorbed dimethyl ether in step 8 is supplied to reactor 5 as it is. 9 shows purified methyl bromide from which impurities have been removed. Reference numeral 10 denotes a distillation column for recovering reaction methanol and the like in the reaction-finished liquid and rendering the reaction-finished liquid harmless. Reference numeral 11 indicates a cooler for increasing the purity of the unreacted methanol, dissolved methyl bromide, dimethyl ether, etc. recovered in step 10 and returning them to the reactor. Reference numeral 12 indicates an aqueous sulfuric acid solution from which low-boiling point organic substances have been removed in the distillation column 10 and which contains a certain amount of odorous substances. Figure 1

Claims (1)

【特許請求の範囲】 1 臭化水素酸とメタノールより臭化メチルを製造する
にあたり、触媒として硫酸水溶液を用いて、臭化水素酸
とメタノールをモル比で、CH_3OH/HBr>1.
0となるように反応帯域に導入反応せしめることを特徴
とする臭化メチルの製造方法。 2 反応帯域における触媒硫酸水溶液の硫酸濃度が原料
臭化水素酸とメタノールの反応により生成したる水と、
これらの原料が反応帯域に持ち込みたる水をも含めて、
50〜75重量%である特許請求の範囲第1項記載の方
法。 3 触媒硫酸水溶液の硫酸源として濃度90重量%以上
の硫酸を反応帯域に導入する特許請求の範囲第1項又は
第2項記載の方法。 4 濃度90重量%以上の硫酸として濃硫酸、若しくは
、発煙硫酸を用いる特許請求の範囲第3項記載の方法。
[Claims] 1. In producing methyl bromide from hydrobromic acid and methanol, using an aqueous sulfuric acid solution as a catalyst, the molar ratio of hydrobromic acid and methanol is CH_3OH/HBr>1.
A method for producing methyl bromide, which comprises introducing methyl bromide into a reaction zone and allowing the reaction to occur so that the amount of methyl bromide becomes 0. 2. The sulfuric acid concentration of the catalytic sulfuric acid aqueous solution in the reaction zone is equal to the water produced by the reaction of the raw material hydrobromic acid and methanol,
Including the water that these raw materials bring into the reaction zone,
A method according to claim 1, wherein the amount is 50 to 75% by weight. 3. The method according to claim 1 or 2, wherein sulfuric acid with a concentration of 90% by weight or more is introduced into the reaction zone as a sulfuric acid source for the catalytic sulfuric acid aqueous solution. 4. The method according to claim 3, in which concentrated sulfuric acid or fuming sulfuric acid is used as the sulfuric acid with a concentration of 90% by weight or more.
JP51106720A 1976-09-08 1976-09-08 Method for producing methyl bromide using hydrobromic acid Expired JPS6023649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51106720A JPS6023649B2 (en) 1976-09-08 1976-09-08 Method for producing methyl bromide using hydrobromic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51106720A JPS6023649B2 (en) 1976-09-08 1976-09-08 Method for producing methyl bromide using hydrobromic acid

Publications (2)

Publication Number Publication Date
JPS5334703A JPS5334703A (en) 1978-03-31
JPS6023649B2 true JPS6023649B2 (en) 1985-06-08

Family

ID=14440779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51106720A Expired JPS6023649B2 (en) 1976-09-08 1976-09-08 Method for producing methyl bromide using hydrobromic acid

Country Status (1)

Country Link
JP (1) JPS6023649B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02145003A (en) * 1988-11-28 1990-06-04 Toshiba Corp Detection circuit
CN103864569A (en) * 2014-03-27 2014-06-18 张家港威胜生物医药有限公司 Simple preparation method for 1,4-dibromopentane
CN112047806A (en) * 2020-08-24 2020-12-08 临海市建新化工有限公司 Process for removing impurities from methyl bromide by using strong alkali

Also Published As

Publication number Publication date
JPS5334703A (en) 1978-03-31

Similar Documents

Publication Publication Date Title
EP1465835B1 (en) Preparation of non-hazardous brominating reagents
AU2002228289A1 (en) Preparation of non-hazardous brominating reagents
US6740253B2 (en) Preparation of non-hazardous brominating reagents
JPS6023649B2 (en) Method for producing methyl bromide using hydrobromic acid
JPS63101339A (en) Manufacture of trifluoromethyliodide
JPS6137202B2 (en)
CN112830892A (en) Synthesis method of pyridine-3-sulfonyl chloride
US2759978A (en) Production of chloral
JPH0610158B2 (en) Method for producing 3-fluorobenzoic acids
JPH05186216A (en) Production of potassium sulfate and hydrochloric acid
CN113717026B (en) Method for rapidly synthesizing n-bromobutane
Fuller et al. Selectivity in the halogenation of hexane by tertiary aminium radicals from the photodecomposition of N-halogenoammonium perchlorates
US2036137A (en) Process of preparation of dichloracetic acid
JP3214065B2 (en) Method for producing difluorobromoacetyl fluoride
JPS5929655A (en) Preparation of beta-mercaptopropionic acid
JPH0597757A (en) Production of trifluoroacetaldehyde
JP5811671B2 (en) Method for producing fluoroalkanesulfonic acid
JP3998076B2 (en) Demethylation of podophyllotoxin
SU1014829A1 (en) Process for preparing thioglycolic acid
CN117700355A (en) Synthesis method of pyridine-3-sulfonyl chloride
CN116082134A (en) Preparation method of compound 3, 5-dichloro-2-pentanone
JP3998074B2 (en) Method for demethylation of podophyllotoxin
Haas et al. Dilanthanum dioxymonosulfate as a recycle reagent and recycle substrate for the sulfur dioxide-iodine thermochemical hydrogen cycle
SU1625866A1 (en) Method of producing 5-chloropentanoic acid
CN111548258A (en) Use of sulfonyl type compounds as chlorination reagents