JP3998074B2 - Method for demethylation of podophyllotoxin - Google Patents

Method for demethylation of podophyllotoxin Download PDF

Info

Publication number
JP3998074B2
JP3998074B2 JP21837397A JP21837397A JP3998074B2 JP 3998074 B2 JP3998074 B2 JP 3998074B2 JP 21837397 A JP21837397 A JP 21837397A JP 21837397 A JP21837397 A JP 21837397A JP 3998074 B2 JP3998074 B2 JP 3998074B2
Authority
JP
Japan
Prior art keywords
formula
solvent
carbon atoms
halogen
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21837397A
Other languages
Japanese (ja)
Other versions
JPH1149774A (en
Inventor
博 好川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP21837397A priority Critical patent/JP3998074B2/en
Publication of JPH1149774A publication Critical patent/JPH1149774A/en
Application granted granted Critical
Publication of JP3998074B2 publication Critical patent/JP3998074B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は抗腫瘍剤として広く使用されている4’ーデメチルー4ーエピポドフィロトキシンーβーD−エチリデングルコシド(一般名エトポシド)の主要原料である4’ーデメチルー4ーエピポドフィロトキシンの製造法に関するものである。
【0002】
【従来の技術】
後記式(1)で示されるポドフィロトキシンを臭化水素により4’位のメチル基を脱離し、次いで加水分解して後記式(3)で示される4’ーデメチルー4ーエピポドフィロトキシンを得る方法において、臭化水素による処理の際に用いる溶媒としてジクロロエタン等のハロゲン系溶媒が好適に使用されている。(特公昭43ー6469)
【0003】
【発明が解決しようとする課題】
近年、ハロゲン系溶媒の人に対する発癌性や環境への有害性から非ハロゲン系有機溶媒への変換が望まれている。しかしながら本反応の場合、臭化水素を高濃度に安定的に溶解し、反応をスムーズに進行させるためにはハロゲン系溶媒を使用する必要があると考えられていた。
【0004】
【課題を解決するための手段】
本発明者は該反応に使用される溶媒としてハロゲン系溶媒に替わる非ハロゲン系有機溶媒での反応を種々検討した結果、ケトン化合物等の非ハロゲン系脂肪族溶媒と非ハロゲン系芳香族溶媒との混合溶媒が特に優れており、非ハロゲン系有機溶媒中でも反応を行うことが可能であることを見い出し本発明の完成にいたった。
【0005】
即ち、本発明は次の(1)〜(9)に関する。
(1)式(1)
【0006】
【化4】

Figure 0003998074
【0007】
で示されるポドフィロトキシンを非ハロゲン系有機溶媒中、臭化水素により脱メチル化して式(2)
【0008】
【化5】
Figure 0003998074
【0009】
で示される反応中間体を得、これを加水分解することを特徴とする式(3)
【0010】
【化6】
Figure 0003998074
【0011】
で示される4’ーデメチルー4ーエピポドフィロトキシンの製造法。
【0012】
(2)非ハロゲン系有機溶媒が非ハロゲン系脂肪族溶媒と非ハロゲン系芳香族溶媒との混合溶媒である(1)記載の製造法。
【0013】
(3)非ハロゲン系脂肪族溶媒がケトン化合物である(2)記載の製造法。
【0014】
(4)ケトン化合物がカルボニル基の両側に炭素数1ないし5のアルキル基を有するケトン化合物である(3)記載の製造法。
【0015】
(5)非ハロゲン系芳香族溶媒が、置換基として炭素数1ないし4のアルキル基及び/又はニトロ基を1ないし3個有していてもよいベンゼンである(2)、(3)又は(4)記載の製造法。
【0016】
(6)非ハロゲン系脂肪族溶媒と非ハロゲン系芳香族溶媒との混合比(容量比)が0.5:9.5から8:2の範囲内である(2)、(3)、(4)又は(5)記載の製造法。
【0017】
(7)非ハロゲン系脂肪族溶媒と非ハロゲン系芳香族溶媒との混合溶媒の使用量が式(1)で示される化合物1重量部に対して1ないし9容量部の範囲内である(2)、(3)、(4)、(5)又は(6)記載の製造法。
【0018】
(8)臭化水素の使用量が溶媒1容量部に対して0.1〜1.0重量部の範囲内である(1)、(2)、(3)、(4)、(5)、(6)又は(7)記載の製造法。
【0019】
(9)式(2)で示される反応中間体をアルカリ金属またはアルカリ土類金属の炭酸水素塩または炭酸塩の水溶液により加水分解する(1)記載の製造法。
【0020】
(10)式(1)の化合物を非ハロゲン系有機溶媒中、臭化水素により脱メチル化して式(2)で示される反応中間体を得る行程を含むことを特徴とする式(3)で示される4’ーデメチルー4ーエピポドフィロトキシンの製造法。
【0021】
【発明の実施の形態】
本発明の反応は系内の水分により大きく阻害される。式(1)で示される化合物は通常数パーセントの水分を含有しているので予め十分脱水して使用するのが好ましい。例えば100℃ないし105℃で十分脱水した該化合物を用いるとよい。非ハロゲン系有機溶媒としては、臭化水素の溶解性に優れているものであれば特に制限されないが、非ハロゲン系脂肪族溶媒と非ハロゲン系芳香族溶媒との混合溶媒が好ましい。
【0022】
非ハロゲン系脂肪族溶媒としてはケトン化合物が好ましく、特にカルボニル基の両側の脂肪族炭化水素残基が炭素数1ないし5のアルキル基であるものが好ましく、例えばアセトン、メチルエチルケトン、メチルプロピルケトン(2ーペンタノン)、メチルイソプロピルケトン、3ーペンタノン、メチルイソブチルケトン、メチルブチルケトン(2ーヘキサノン)または3ーヘキサノン等が挙げられる。また非ハロゲン系芳香族溶媒としては非置換ベンゼンまたは置換基として炭素数1ないし4のアルキル基及び/又はニトロ基を1〜3個有するベンゼンが挙げられ、例えばベンゼン、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、ブチルベンゼン類、トリメチルベンゼン類、ニトロベンゼン、およびニトロトルエン類が挙げられる。上記の反応溶媒中、特に好ましくは非ハロゲン系脂肪族溶媒はメチルエチルケトン、2ーペンタノン、メチルイソプロピルケトン、3ーペンタノン、メチルイソブチルケトン、2ーヘキサノンおよび3ーヘキサノンからなる群から選ばれる溶媒であり、非ハロゲン系芳香族溶媒はトルエン、キシレン、エチルベンゼンおよびニトロベンゼンからなる群から選ばれる溶媒である。
【0023】
ここでケトン化合物は臭化水素を極めて大量に溶解する溶媒である。ケトン化合物のカルボニル基と臭化水素は付加体を形成しこのものが臭化水素に対する良好な溶媒となっていると考えられる。しかし、ケトン化合物を大量に使用するとこの付加体形成により臭化水素が大量に費やされるために反応をスムーズに進行させるためには極めて大量の臭化水素が必要となる。従って、ケトン化合物はできるだけ少なく使用することが望ましい。一方、反応溶媒は反応操作を円滑に進めるためには一定の容量および反応物に対する溶解性が必要である。臭化水素のケトン化合物に対する溶解性を活用しこれらの条件を満足する希釈溶媒として非ハロゲン系芳香族化合物が優れている。
【0024】
非ハロゲン系脂肪族溶媒と非ハロゲン系芳香族溶媒との混合比(容量比)は反応性および反応物の溶解性から0.5:9.5から8:2の範囲内が好ましく、特に好ましくは、1:9から6:4である。溶媒の使用量は、臭化水素の濃度が高いほど反応速度が速くなるので、少ないほど臭化水素の使用量が相対的に少なくなり好ましいが、操作性を考慮して式(1)で示される化合物1重量部に対して1ないし9容量部が好ましく、特に1.5ないし7容量部が好ましい。ケトン化合物等の非ハロゲン系脂肪族溶媒と非ハロゲン系芳香族溶媒との混合溶媒に式(1)の化合物を懸濁させる。そこに臭化水素ガスを導入すると内容物は溶解し反応が進行する。反応の進行につれて式(2)の化合物が結晶として析出するため副反応が防止できる。
【0025】
臭化水素の使用量は溶媒の種類、使用量、混合比(容量比)および反応温度によって異なるが、溶媒1容量部に対して通常0.1ないし1.0重量部が好ましく、特に0.2ないし0.6重量部が好ましい。反応温度は通常ー15℃ないし40℃、好ましくはー10℃ないし30℃、より好ましくはー5℃ないし20℃である。式(1)で示される化合物を脱メチル化して得られた式(2)で示される反応中間体を加水分解することにより式(3)で示される目的物を得る。加水分解は通常の方法によりおこなわれる。例えば式(1)で示される化合物を脱メチル化して得られた反応液にアセトン等の水溶性の溶媒を添加し、炭酸ナトリウム、炭酸カルシウム、炭酸バリウム等の炭酸塩あるいは炭酸水素カリウム、炭酸水素ナトリウム等の炭酸水素塩の水溶液を加え、加熱することにより容易に加水分解される。
【0026】
【実施例】
次に本発明を実施例により更に具体的に説明する。
実施例1
ポドフィロトキシン〔式(1)の化合物〕1.00gをトルエン5mlおよびメチルエチルケトン1mlの混合溶媒に懸濁し、反応器を氷浴中に浸した。反応器にガス導入管を通して臭化水素2.12gを導入した。吹き込み終了後氷浴中8時間反応した。反応液を高速液体クロマトグラフィーにより分析した結果、式(2)の脱メチル体が60.4%の収率(液クロ面比純度)で生成していた。尚、これを用い実施例4と同様に行うことにより、4’ーデメチルー4ーエピポドフィロトキシン〔式(3)の化合物〕の目的物を得ることができる。
【0027】
実施例2
ポドフィロトキシン〔式(1)の化合物〕1.00gをトルエン3.0mlおよびメチルイソブチルケトン2.0mlの混合溶媒に懸濁し、反応器を氷浴中に浸した。反応器にガス導入管を通して臭化水素2.21gを導入した。吹き込み終了後氷浴中9時間反応した。反応液を高速液体クロマトグラフィーにより分析した結果、式(2)の脱メチル体が73.0%の収率(液クロ面比純度)で生成していた。尚、これを用い実施例4と同様に行うことにより、4’ーデメチルー4ーエピポドフィロトキシン〔式(3)の化合物〕の目的物を得ることができる。
【0028】
実施例3
ポドフィロトキシン〔式(1)の化合物〕2.00gをトルエン4.2mlおよびメチルイソブチルケトン1.8mlの混合溶媒に懸濁し、反応器を15℃とした。反応器にガス導入管を通して臭化水素1.69gを導入した。吹き込み終了後反応液を15℃に保ち、8時間反応した。反応液を高速液体クロマトグラフィーにより分析した結果、式(2)の脱メチル体が65.3%の収率(液クロ面比純度)で生成していた。尚、これを用い実施例4と同様に行うことにより、4’ーデメチルー4ーエピポドフィロトキシン〔式(3)の化合物〕の目的物を得ることができる。
【0029】
実施例4
ポドフィロトキシン〔式(1)の化合物〕2.00gをトルエン4.2mlおよびメチルイソブチルケトン1.8mlの混合溶媒に懸濁し、反応器を氷浴中に浸した。反応器にガス導入管を通して臭化水素2.70gを導入した。吹き込み終了後8時間反応した。反応液を高速液体クロマトグラフィーにより分析した結果、式(2)の脱メチル体が70.8%の収率で生成していた。反応器を冷蔵庫に入れ、翌日、反応液を高速液体クロマトグラフィーにより分析した結果、式(2)の脱メチル体が76.8%の収率(液クロ面比純度)で生成していた。反応液にアセトン5ml添加し、10%炭酸ソーダ水溶液を20ml滴下し、40℃、3時間加水分解し、反応物を濾過することにより、4’ーデメチルー4ーエピポドフィロトキシン〔式(3)の化合物〕の粗結晶1.02gが得られた。純度88.5%、目的物の含量0.83g(収率44.5%)であった。
【0030】
【発明の効果】
本発明によって、有害なハロゲン系溶媒を使用せずエトポシドの原料である4’ーデメチルー4ーエピポドフィロトキシンを公知の方法に比べて副反応生成物含量が少ない高純度でかつ高収率で得ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to 4′-demethyl-4-epipodophyllotoxin, which is a main raw material of 4′-demethyl-4-epipodophyllotoxin-β-D-ethylideneglucoside (generic name etoposide), which is widely used as an antitumor agent. It relates to the manufacturing method.
[0002]
[Prior art]
4'-methyl-4-epipodophyllotoxin represented by the following formula (3) is hydrolyzed by removing the 4'-position methyl group of the podophyllotoxin represented by the following formula (1) with hydrogen bromide. In the method for obtaining the above, a halogen-based solvent such as dichloroethane is preferably used as a solvent used in the treatment with hydrogen bromide. (Japanese Patent Publication No. 43-6469)
[0003]
[Problems to be solved by the invention]
In recent years, conversion from halogen-based solvents to non-halogen-based organic solvents has been desired due to carcinogenicity to humans and environmental hazards. However, in this reaction, it was considered necessary to use a halogen-based solvent in order to stably dissolve hydrogen bromide at a high concentration and allow the reaction to proceed smoothly.
[0004]
[Means for Solving the Problems]
As a result of various investigations of reactions with non-halogen organic solvents instead of halogen-based solvents as solvents used in the reaction, the present inventors have found that non-halogen-based aliphatic solvents such as ketone compounds and non-halogen-based aromatic solvents The present inventors have found that a mixed solvent is particularly excellent and that the reaction can be carried out even in a non-halogen organic solvent, thereby completing the present invention.
[0005]
That is, the present invention relates to the following (1) to (9).
(1) Formula (1)
[0006]
[Formula 4]
Figure 0003998074
[0007]
The podophyllotoxin represented by formula (2) is demethylated with hydrogen bromide in a non-halogen organic solvent.
[0008]
[Chemical formula 5]
Figure 0003998074
[0009]
A reaction intermediate represented by formula (3), which is hydrolyzed
[0010]
[Chemical 6]
Figure 0003998074
[0011]
A process for producing 4′-demethyl-4-epipodophyllotoxin represented by the formula:
[0012]
(2) The production method according to (1), wherein the non-halogen organic solvent is a mixed solvent of a non-halogen aliphatic solvent and a non-halogen aromatic solvent.
[0013]
(3) The production method according to (2), wherein the non-halogen aliphatic solvent is a ketone compound.
[0014]
(4) The process according to (3), wherein the ketone compound is a ketone compound having an alkyl group having 1 to 5 carbon atoms on both sides of the carbonyl group.
[0015]
(5) The non-halogen type aromatic solvent is benzene which may have 1 to 3 alkyl groups and / or nitro groups having 1 to 4 carbon atoms as a substituent (2), (3) or ( 4) The manufacturing method as described.
[0016]
(6) The mixing ratio (volume ratio) of the non-halogen aliphatic solvent and the non-halogen aromatic solvent is in the range of 0.5: 9.5 to 8: 2, (2), (3), ( 4) or the production method according to (5).
[0017]
(7) The amount of the mixed solvent of the non-halogen aliphatic solvent and the non-halogen aromatic solvent is in the range of 1 to 9 parts by volume with respect to 1 part by weight of the compound represented by the formula (1) (2 ), (3), (4), (5) or (6).
[0018]
(8) The amount of hydrogen bromide used is in the range of 0.1 to 1.0 part by weight with respect to 1 part by volume of the solvent (1), (2), (3), (4), (5) (6) or the manufacturing method of (7) description.
[0019]
(9) The process according to (1), wherein the reaction intermediate represented by the formula (2) is hydrolyzed with an alkali metal or alkaline earth metal hydrogencarbonate or an aqueous solution of carbonate.
[0020]
(10) In the formula (3), comprising the step of demethylating the compound of the formula (1) with hydrogen bromide in a non-halogen organic solvent to obtain a reaction intermediate represented by the formula (2) Process for the production of 4′-demethyl-4-epipodophyllotoxin shown.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The reaction of the present invention is greatly inhibited by moisture in the system. Since the compound represented by the formula (1) usually contains several percent of water, it is preferably used after sufficiently dehydrating. For example, the compound which has been sufficiently dehydrated at 100 ° C. to 105 ° C. may be used. The non-halogen organic solvent is not particularly limited as long as it has excellent hydrogen bromide solubility, but a mixed solvent of a non-halogen aliphatic solvent and a non-halogen aromatic solvent is preferable.
[0022]
As the non-halogen aliphatic solvent, a ketone compound is preferable, and in particular, an aliphatic hydrocarbon residue on both sides of the carbonyl group is preferably an alkyl group having 1 to 5 carbon atoms. For example, acetone, methyl ethyl ketone, methyl propyl ketone (2 -Pentanone), methyl isopropyl ketone, 3-pentanone, methyl isobutyl ketone, methyl butyl ketone (2-hexanone) or 3-hexanone. Examples of the non-halogen aromatic solvent include unsubstituted benzene or benzene having 1 to 4 alkyl groups and / or nitro groups as a substituent, such as benzene, toluene, xylene, ethylbenzene, propyl. Examples include benzene, butylbenzenes, trimethylbenzenes, nitrobenzene, and nitrotoluenes. Among the above reaction solvents, the non-halogen aliphatic solvent is particularly preferably a solvent selected from the group consisting of methyl ethyl ketone, 2-pentanone, methyl isopropyl ketone, 3-pentanone, methyl isobutyl ketone, 2-hexanone and 3-hexanone. The aromatic solvent is a solvent selected from the group consisting of toluene, xylene, ethylbenzene and nitrobenzene.
[0023]
Here, the ketone compound is a solvent that dissolves hydrogen bromide in a very large amount. The carbonyl group and hydrogen bromide of the ketone compound form an adduct, which is considered to be a good solvent for hydrogen bromide. However, when a large amount of a ketone compound is used, a large amount of hydrogen bromide is required for the reaction to proceed smoothly because a large amount of hydrogen bromide is consumed due to this adduct formation. Therefore, it is desirable to use as little ketone compound as possible. On the other hand, the reaction solvent needs to have a certain volume and solubility in the reactants in order to facilitate the reaction operation. Non-halogen aromatic compounds are excellent as a diluting solvent that utilizes the solubility of hydrogen bromide in ketone compounds and satisfies these conditions.
[0024]
The mixing ratio (volume ratio) of the non-halogen aliphatic solvent and the non-halogen aromatic solvent is preferably in the range of 0.5: 9.5 to 8: 2, particularly preferably from the viewpoint of reactivity and solubility of the reactants. Is from 1: 9 to 6: 4. As the amount of the solvent used, the higher the concentration of hydrogen bromide, the faster the reaction rate. Therefore, the smaller the amount, the smaller the amount of hydrogen bromide used, which is preferable. 1 to 9 parts by volume is preferable with respect to 1 part by weight of the compound to be prepared, and 1.5 to 7 parts by volume is particularly preferable. The compound of formula (1) is suspended in a mixed solvent of a non-halogen aliphatic solvent such as a ketone compound and a non-halogen aromatic solvent. When hydrogen bromide gas is introduced there, the contents dissolve and the reaction proceeds. As the reaction proceeds, the compound of formula (2) precipitates as crystals, so that side reactions can be prevented.
[0025]
The amount of hydrogen bromide used varies depending on the type of solvent, the amount used, the mixing ratio (volume ratio), and the reaction temperature, but it is usually preferably 0.1 to 1.0 parts by weight, especially 0. 2 to 0.6 parts by weight are preferred. The reaction temperature is usually -15 ° C to 40 ° C, preferably -10 ° C to 30 ° C, more preferably -5 ° C to 20 ° C. The target product represented by the formula (3) is obtained by hydrolyzing the reaction intermediate represented by the formula (2) obtained by demethylating the compound represented by the formula (1). Hydrolysis is performed by conventional methods. For example, a water-soluble solvent such as acetone is added to the reaction solution obtained by demethylating the compound represented by the formula (1), and carbonates such as sodium carbonate, calcium carbonate, barium carbonate, potassium hydrogen carbonate, hydrogen carbonate It is easily hydrolyzed by adding an aqueous solution of bicarbonate such as sodium and heating.
[0026]
【Example】
Next, the present invention will be described more specifically with reference to examples.
Example 1
1.00 g of podophyllotoxin [compound of formula (1)] was suspended in a mixed solvent of 5 ml of toluene and 1 ml of methyl ethyl ketone, and the reactor was immersed in an ice bath. 2.12 g of hydrogen bromide was introduced into the reactor through a gas introduction tube. After completion of blowing, the reaction was carried out in an ice bath for 8 hours. As a result of analyzing the reaction solution by high performance liquid chromatography, a demethylated product of formula (2) was produced in a yield of 60.4% (liquid surface area specific purity). By using this in the same manner as in Example 4, the target product of 4′-demethyl-4-epipodophyllotoxin [compound of formula (3)] can be obtained.
[0027]
Example 2
1.00 g of podophyllotoxin [compound of formula (1)] was suspended in a mixed solvent of 3.0 ml of toluene and 2.0 ml of methyl isobutyl ketone, and the reactor was immersed in an ice bath. 2.21 g of hydrogen bromide was introduced into the reactor through a gas introduction tube. After completion of the blowing, the reaction was performed for 9 hours in an ice bath. As a result of analyzing the reaction solution by high performance liquid chromatography, a demethylated product of the formula (2) was produced in a yield of 73.0% (liquid surface area specific purity). By using this in the same manner as in Example 4, the target product of 4′-demethyl-4-epipodophyllotoxin [compound of formula (3)] can be obtained.
[0028]
Example 3
2.00 g of podophyllotoxin [compound of formula (1)] was suspended in a mixed solvent of 4.2 ml of toluene and 1.8 ml of methyl isobutyl ketone, and the reactor was kept at 15 ° C. 1.69 g of hydrogen bromide was introduced into the reactor through a gas introduction tube. After completion of the blowing, the reaction solution was kept at 15 ° C. and reacted for 8 hours. As a result of analyzing the reaction solution by high performance liquid chromatography, a demethylated product of the formula (2) was produced with a yield of 65.3% (liquid surface area specific purity). By using this in the same manner as in Example 4, the target product of 4′-demethyl-4-epipodophyllotoxin [compound of formula (3)] can be obtained.
[0029]
Example 4
2.00 g of podophyllotoxin [compound of formula (1)] was suspended in a mixed solvent of 4.2 ml of toluene and 1.8 ml of methyl isobutyl ketone, and the reactor was immersed in an ice bath. 2.70 g of hydrogen bromide was introduced into the reactor through a gas introduction tube. Reaction was performed for 8 hours after the completion of the blowing. As a result of analyzing the reaction solution by high performance liquid chromatography, a demethylated product of formula (2) was produced in a yield of 70.8%. The reactor was put into a refrigerator, and the reaction solution was analyzed by high performance liquid chromatography the next day. As a result, the demethylated product of formula (2) was produced in a yield of 76.8% (liquid chromatography surface specific purity). 5 ml of acetone was added to the reaction solution, 20 ml of 10% sodium carbonate aqueous solution was added dropwise, hydrolyzed at 40 ° C. for 3 hours, and the reaction product was filtered to give 4′-demethyl-4-epipodophyllotoxin [formula (3) Of the compound] was obtained. The purity was 88.5% and the content of the target product was 0.83 g (yield 44.5%).
[0030]
【The invention's effect】
According to the present invention, 4'-demethyl-4-epipodophyllotoxin, which is a raw material of etoposide without using a harmful halogen-based solvent, is obtained in high purity and high yield with less side reaction product content than known methods. Obtainable.

Claims (5)

式(1)
Figure 0003998074
で示されるポドフィロトキシンをカルボニル基の両側に炭素数1ないし5のアルキル基を有するケトン化合物と置換基として炭素数1ないし4のアルキル基及び/又はニトロ基を1ないし3個有していてもよいベンゼンとの混合溶媒中、臭化水素により脱メチル化して式(2)
Figure 0003998074
で示される反応中間体を得、これを加水分解することを特徴とする式(3)
Figure 0003998074
で示される4’−デメチル−4−エピポドフィロトキシンの製造法。
Formula (1)
Figure 0003998074
The podophyllotoxin represented by the formula has a ketone compound having an alkyl group having 1 to 5 carbon atoms on both sides of the carbonyl group and 1 to 3 alkyl groups and / or nitro groups having 1 to 4 carbon atoms as substituents. In a mixed solvent with benzene, which may be demethylated with hydrogen bromide, the formula (2)
Figure 0003998074
A reaction intermediate represented by formula (3), which is hydrolyzed
Figure 0003998074
A process for producing 4′-demethyl-4-epipodophyllotoxin represented by the formula:
カルボニル基の両側に炭素数1ないし5のアルキル基を有するケトン化合物と置換基として炭素数1ないし4のアルキル基及び/又はニトロ基を1ないし3個有していてもよいベンゼンとの混合比(容量比)が0.5:9.5から8:2の範囲内である請求項記載の製造法。Mixing ratio of a ketone compound having an alkyl group having 1 to 5 carbon atoms on both sides of the carbonyl group and benzene which may have 1 to 3 alkyl groups and / or nitro groups having 1 to 4 carbon atoms as a substituent (volume ratio) of 0.5: 9.5 to 8: the process of claim 1 is in the 2 range. カルボニル基の両側に炭素数1ないし5のアルキル基を有するケトン化合物と置換基として炭素数1ないし4のアルキル基及び/又はニトロ基を1ないし3個有していてもよいベンゼンとの混合溶媒の使用量が式(1)で示される化合物1重量部に対して1ないし9容量部の範囲内である請求項1又は2記載の製造法。 Mixed solvent of ketone compound having alkyl group having 1 to 5 carbon atoms on both sides of carbonyl group and benzene optionally having 1 to 3 carbon atoms and / or nitro group having 1 to 4 carbon atoms as a substituent The production method according to claim 1 or 2 , wherein the amount of is in the range of 1 to 9 parts by volume with respect to 1 part by weight of the compound represented by formula (1). 臭化水素の使用量が溶媒1容量部に対して0.1〜1.0重量部の範囲内である請求項1ないしは3のいずれか一項に記載の製造法。The production method according to any one of claims 1 to 3, wherein the amount of hydrogen bromide used is in the range of 0.1 to 1.0 parts by weight with respect to 1 part by volume of the solvent. 式(2)で示される反応中間体をアルカリ金属またはアルカリ土類金属の炭酸水素塩または炭酸塩の水溶液により加水分解する請求項1ないしは4のいずれか一項に記載の製造法。The process according to any one of claims 1 to 4, wherein the reaction intermediate represented by the formula (2) is hydrolyzed with an alkali metal or alkaline earth metal hydrogen carbonate or an aqueous solution of carbonate.
JP21837397A 1997-07-30 1997-07-30 Method for demethylation of podophyllotoxin Expired - Lifetime JP3998074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21837397A JP3998074B2 (en) 1997-07-30 1997-07-30 Method for demethylation of podophyllotoxin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21837397A JP3998074B2 (en) 1997-07-30 1997-07-30 Method for demethylation of podophyllotoxin

Publications (2)

Publication Number Publication Date
JPH1149774A JPH1149774A (en) 1999-02-23
JP3998074B2 true JP3998074B2 (en) 2007-10-24

Family

ID=16718887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21837397A Expired - Lifetime JP3998074B2 (en) 1997-07-30 1997-07-30 Method for demethylation of podophyllotoxin

Country Status (1)

Country Link
JP (1) JP3998074B2 (en)

Also Published As

Publication number Publication date
JPH1149774A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
EP0126569B1 (en) Bromination process for preparing decabromodiphenyl ether from diphenyl ether
KR20070037335A (en) Process for preparing 5-methyl-2-furfural
CN112194661A (en) Preparation method of 4-amino-7-iodopyrrolo [2, l-f ] [ l,2,4] triazine
JP3998074B2 (en) Method for demethylation of podophyllotoxin
EP0456799B1 (en) Improved method of preparing an intermediate for the manufacture of bambuterol
JP3998076B2 (en) Demethylation of podophyllotoxin
CA1331198C (en) Process for the preparation of 4,4'-dinitrostilbene-2, 2'-disulfonic acid
JP2021161106A (en) Method for Producing 5-Bromo-4-alkoxy-2-alkylbenzoic Acid
US20070027211A1 (en) Process for production of bicalutamide
JP3998075B2 (en) Demethylation of podophyllotoxin
EP1468983B1 (en) Process for producing 2,5-bis(trifluoromethyl)nitrobenzene
CA2278713A1 (en) Process for producing butyric ester derivatives
JPS6033425B2 (en) Method for producing 5-acetyl-2-alkylbenzenesulfonamide
JPH0621086B2 (en) Process for producing 3,3 ', 5,5'-tetramethyl-4,4'-dihydroxydiphenyl
US4876387A (en) Process for preparing 2,4,5-trifluorobenzoic acid
JP4022929B2 (en) Method for producing 3,5-bis (trifluoromethyl) nitrobenzene
KR950006799B1 (en) Preparation of phenylhydroquinone
JPS62132849A (en) Production of d-or l-n-t-butoxycarbonyl-o-benzylserine
JPH04234358A (en) Process for producing 2,6-t-butyl-4-mercapto- phenol
JPS6159615B2 (en)
EP0170506B1 (en) Method for inversion of optically active 4-hydroxy-2-cyclopentenones
EP0040830B1 (en) Method for the preparation of (e)-4-bromo-2-methylbut-2-en-1-al
JP2001058968A (en) Production of 1,3-di(2-parahydroxyphenyl-2-propyl)benzene
JPS602302B2 (en) Cis-β-(trimethylammonium)-acrylonitrile tosylate and its production method
KR20010021949A (en) Method for Producing 3-Hydroxy-2-Methylbenzoic Acid

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070801

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130817

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160817

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term