JPS60236483A - Laser heater - Google Patents

Laser heater

Info

Publication number
JPS60236483A
JPS60236483A JP59094857A JP9485784A JPS60236483A JP S60236483 A JPS60236483 A JP S60236483A JP 59094857 A JP59094857 A JP 59094857A JP 9485784 A JP9485784 A JP 9485784A JP S60236483 A JPS60236483 A JP S60236483A
Authority
JP
Japan
Prior art keywords
laser beam
laser
workpiece
polarizing means
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59094857A
Other languages
Japanese (ja)
Inventor
利藤 尚武
大田 正雄
川津 昭信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP59094857A priority Critical patent/JPS60236483A/en
Publication of JPS60236483A publication Critical patent/JPS60236483A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Resistance Heating (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、レーザビームを被加工物に照射して加工する
レーザ加熱装置に係り、特に熱処理加工を行うのに好適
な、均一なエネルギ密度分布のレーザビームを被加工物
に照射することのできるレーザ加熱装置に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a laser heating device that processes a workpiece by irradiating a laser beam to the workpiece, and particularly relates to a laser heating device that has a uniform energy density distribution suitable for heat treatment processing. The present invention relates to a laser heating device that can irradiate a workpiece with a laser beam.

〔従来技術〕[Prior art]

通常、レープ発振器から取出されたレーザビームのエネ
ルギ密度は発振器の特性に応じて、種々の分布を有する
。ガウス形のTgMooの場合を例にとると、第1図の
(1)に示すごとく、レーザビーム中心部に高いエネル
ギ密度を有し、中心から@i′Eるに従ってエネルギ密
□度は指数関数的に低下している。この様なレーザビー
ム(1)を被加工物に照射し、走査した場合、走査中心
軸の加熱温度が著しく高く、均一な温度に加熱すること
が困難であるこのような欠点を解消し、レーザビームの
エネルギ密度分布及びレーザビーム形状を変える方法と
して、例えば、特公昭58−3478号公報で開示され
るような方法が既に提案されている。これはレーザ発振
器から取出されたレーザビームを複数に分割し、被加工
物の照射面上に於いて、レーザビームのエネルギ密度分
布が少なくとも一方向でほぼ均一になるよ゛うに前記分
割された複数個のレーザビームのエネルギ密度の高い部
分と低い部分とを重ね合せ、合成させて被加工物に照射
するようにしたものである・この、よう4方法ではある
決った方向にレーザビームを走査した場合に於いては、
均一な温度に加熱することが出来る特徴を有するが、走
査方向が変わった場合、均一な温度に加熱することが出
来ない欠点を有する。
Usually, the energy density of a laser beam extracted from a Leb oscillator has various distributions depending on the characteristics of the oscillator. Taking the case of Gaussian TgMoo as an example, as shown in (1) in Figure 1, the laser beam has a high energy density at the center, and the energy density □ degree becomes an exponential function as you move from the center to @i'E. It is declining. When a workpiece is irradiated with such a laser beam (1) and scanned, the heating temperature of the scanning center axis is extremely high, and it is difficult to heat it to a uniform temperature. As a method of changing the energy density distribution of the beam and the shape of the laser beam, for example, a method as disclosed in Japanese Patent Publication No. 58-3478 has already been proposed. In this method, a laser beam taken out from a laser oscillator is divided into a plurality of parts, and the divided plurality of parts are divided so that the energy density distribution of the laser beam is almost uniform in at least one direction on the irradiation surface of the workpiece. The high energy density and low energy density parts of each laser beam are superimposed and combined to irradiate the workpiece.In these four methods, the laser beam is scanned in a certain direction. In the case,
Although it has the feature of being able to heat to a uniform temperature, it has the disadvantage that it cannot heat to a uniform temperature when the scanning direction changes.

〔発明の概要〕[Summary of the invention]

本発明は、前記従来の欠点を解消するべくなされたもの
で、レーザビームの被加工物への照射位置を元の照射位
置から所定の距離ずらす偏光手段9、を設けるとともに
、この偏光手段をそのレーザビーム入射軸を中′心とし
て回転させる構成とすることにより、レーザビームのエ
ネルギ密度分布を均一にすることができるレーザ加熱装
置を提供することを目的とするものである。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks, and includes a polarizing means 9 for shifting the irradiation position of the laser beam onto the workpiece by a predetermined distance from the original irradiation position, and also It is an object of the present invention to provide a laser heating device that can make the energy density distribution of the laser beam uniform by having a configuration in which the laser beam is rotated about the incident axis of the laser beam.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例におけるレーザ加熱装置を図
面について説明する。第2図はとのレーザ加熱装置の全
体を示す断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A laser heating device according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a sectional view showing the entire laser heating device.

図において、(2)はレーザ発振器(図示せず)から発
射されビー°ム断面がガウス形のエネルギ密度分QtM
f7sv−ザビ、−ム(1)を集光するレンーズ、(3
)はレーザビーム(1)をはぼ900偏光する平板状の
回転ミラーで、レーザビーム入射軸(1a)と同軸上に
配設された回転筒(4)に固定されている。そして、回
転筒(4)はベアリング(5) 、 (6)を介してブ
ラケット(7)で支持されるとともに、上部に形成され
た歯車(8)が電動機(9)により駆動される歯車αQ
とか今合いレーザビーム入射軸(1m)を回転棚として
回転可能に構成されている。(II)はホルダーに)を
介してブラケット(7)に支持さ、れ内面に笠状の反射
面を有するリングミラーで、回転ミラー(3)から入射
したレーザ、ビームを反射せしめ被加工物(2)の所定
位置に照射する。そして、回転ミラー(3)とリングミ
ジー(ロ)とにより偏光手段α◆を構成し、この偏光手
段α→により、被加工物(至)上のレーザピー・ムの照
射範囲の中心位置は元の点(4)から偏光後の点(B)
にずれ、かつ回転ミラー(3)を矢印(ト)のように回
転させることにより、照射範囲は点(4)を中心に点囚
と点(B)との距離形を半径とする円周上を移動するこ
とになる。
In the figure, (2) is the energy density QtM that is emitted from a laser oscillator (not shown) and has a Gaussian beam cross section.
f7sv-zabi, -lens that focuses light on the beam (1), (3
) is a flat rotating mirror that polarizes the laser beam (1) approximately 900 degrees, and is fixed to a rotating cylinder (4) coaxially arranged with the laser beam incident axis (1a). The rotating cylinder (4) is supported by a bracket (7) via bearings (5) and (6), and a gear (8) formed at the top is a gear αQ driven by an electric motor (9).
It is configured to be rotatable around the laser beam incident axis (1 m) as a rotating shelf. (II) is a ring mirror that is supported by a bracket (7) via a holder (on a holder) and has a shade-shaped reflective surface on its inner surface, and reflects the laser beam incident from the rotating mirror (3) to the workpiece ( 2) Irradiate the specified position. The rotating mirror (3) and the ring midge (b) constitute a polarizing means α◆, and this polarizing means α→ allows the center position of the irradiation range of the laser beam on the workpiece (to) to return to the original point. Point (B) after polarization from (4)
By rotating the rotating mirror (3) in the direction of the arrow (g), the irradiation range is spread over a circle whose radius is the distance between the point prisoner and point (B), with the point (4) as the center. will be moved.

即ち、このレーザビームの回転の様子を説明する第3図
に示すように、ガウス形分布のレーザビーム(1)がZ
a軸を中心に回転したものになり、回転速度を適当に設
定することに本り、見掛は上、第4図に示すようなTE
MOIのドーナツ形レーザビームα・に近いエネルギ密
度分布が得られる。第4図に示すエネルギ密度分布は中
央部で低くなっているが、被加工*(至)へのレーザビ
ームの照射時間の累積量は中央部はど高いので、被加工
物(2)が吸収するエネルギ密度分布はほぼ均一となり
いずれの方向へも均一な温度分布が得られる。
That is, as shown in FIG. 3, which explains the rotation of this laser beam, the laser beam (1) with Gaussian distribution is
It is rotated around the a-axis, and it is important to set the rotation speed appropriately, and the appearance is as shown in Figure 4 above.
An energy density distribution close to the donut-shaped laser beam α· of MOI is obtained. The energy density distribution shown in Figure 4 is low in the center, but the cumulative amount of laser beam irradiation time on the workpiece* (to) is high in the center, so the workpiece (2) absorbs the energy. The energy density distribution is almost uniform, and a uniform temperature distribution can be obtained in any direction.

偏光手段q4によりレーザビームをずらす距離(至)は
レーザビームのエネルギ密度分布の形態や被加工物榊の
諸元等を考慮して、レーザビームの被加工物0への照射
面の直径(由以下の範囲で適当な値を選定する。
The distance (up to) by which the laser beam is shifted by the polarizing means q4 is determined based on the diameter of the irradiation surface of the laser beam on the workpiece 0, taking into consideration the form of the energy density distribution of the laser beam and the specifications of the workpiece Sakaki. Select an appropriate value within the following range.

なお、上記一実施例に於いては、レーザビーム(1)を
集光させて、被加工物(至)を加熱する場合について述
べたが、レーザビーム(1)を集光させる必要がない場
合、レンズ(2)を取除いても、同様の効果が得られる
。また、上記一実施例ではレーザビーム(1)を集光す
る手段として、レンズ(2)を使用したが、凹面鏡を使
用して集光しても良く、またレンズ(2)を使用せず、
回転ミラー(3)あるいはリングミラーQ1を凹面鏡に
して集光しても、同様の効果が得られる。
In the above embodiment, a case has been described in which the laser beam (1) is focused to heat the workpiece (to), but there is a case where the laser beam (1) does not need to be focused. , the same effect can be obtained even if the lens (2) is removed. Further, in the above embodiment, the lens (2) is used as a means for condensing the laser beam (1), but a concave mirror may be used to condense the laser beam (1), or the lens (2) may not be used.
A similar effect can be obtained by using the rotating mirror (3) or the ring mirror Q1 as a concave mirror to focus the light.

更に、上記一実施例においては、偏光手段へ4を回転ミ
ラー(3)とリングミラーαηとで構成したが、第5図
に示すように中心軸がレーザビーム入射軸(1a)と所
定の角度ずらして配設されレーザビーム入射軸(1a)
を中心に回転f=工能なレンズαので構成してもよい。
Furthermore, in the above embodiment, the polarizing means 4 is composed of a rotating mirror (3) and a ring mirror αη, but as shown in FIG. The laser beam incident axis (1a) is arranged in a staggered manner.
The lens may be rotated around f = mechanical lens α.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明したように、レーザビームの被加工物
への照射位置を元の照射位置から所定の距離ずらす偏光
手段を設けるとともに、この偏光手段をそのレーザビー
ム入射軸を中心として回転させる構成としたので、被加
工物の吸収するエネルギ密度分布が均一になり温度分布
が均一化する効果がある。
As explained above, the present invention has a configuration in which polarization means is provided to shift the irradiation position of the laser beam onto the workpiece by a predetermined distance from the original irradiation position, and the polarization means is rotated about the laser beam incident axis. Therefore, there is an effect that the energy density distribution absorbed by the workpiece becomes uniform and the temperature distribution becomes uniform.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガウス形のエネルギ密度分布を有するレーザビ
ームのエネルギ密度分布を示す斜視図、第2図はこの発
明の一実施例におけるレーザ加熱装置の全体を示す断面
図、第3図は第2図の装置によるレーザビームの回転の
様子を示す説明図、第4図は第2図の装置によって得ら
れるレーザビームのエネルギ密度分布を示す斜視図、第
5図はこの発明の他の実施例におけるV−ザ加熱装置の
要部を示す構成図である。 図において、(1) 、 (1・はレーザビーム、(1
&)はレーザビーム入射軸、□□□は被加工物、q→、
 a71は偏光手段である。 なお、図中同一符号は同−又は相当部分を示す。 代理人 大岩増雄
FIG. 1 is a perspective view showing the energy density distribution of a laser beam having a Gaussian energy density distribution, FIG. 2 is a sectional view showing the entire laser heating device according to an embodiment of the present invention, and FIG. FIG. 4 is a perspective view showing the energy density distribution of the laser beam obtained by the device shown in FIG. 2. FIG. It is a block diagram which shows the principal part of a V-za heating apparatus. In the figure, (1) and (1. are laser beams, (1
&) is the laser beam incident axis, □□□ is the workpiece, q→,
a71 is a polarizing means. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Masuo Oiwa

Claims (4)

【特許請求の範囲】[Claims] (1) レーザ発振器から発射するレーザビームを被加
工物に照射して加熱するものにおいて、上記レーザ発振
器と上記被〃ロエ物との間の上記レーザビームの軸上に
配設され上記レーザビームの上記被加工物への照射位置
を元の照射位置から所定の距離ずらす偏光手段を設ける
とともに、この偏光手段をそのレーザビーム入射軸を中
心として回転せしめることを特徴とするレーザ加熱装置
(1) In a device that heats a workpiece by irradiating a laser beam emitted from a laser oscillator to the workpiece, the laser beam is disposed on the axis of the laser beam between the laser oscillator and the workpiece. A laser heating device characterized in that a polarizing means is provided for shifting the irradiation position on the workpiece by a predetermined distance from the original irradiation position, and the polarizing means is rotated about the laser beam incident axis.
(2)偏光手段によりレーザビームの照射位置をずらす
所定の距離は上記レーザビームの被加工物への照射面の
直径以下に設定されたことを特徴とする特許請求の範囲
第1項記載のレーザ加熱装置。
(2) The laser according to claim 1, wherein the predetermined distance by which the irradiation position of the laser beam is shifted by the polarizing means is set to be less than or equal to the diameter of the irradiation surface of the workpiece with the laser beam. heating device.
(3)偏光手段はレーザ発振器からのレーザビームを反
射せしめてほぼ90°偏光しレーザビーム入射軸を中心
に回転可能に構成された回転ミラーと、この回転ミラー
で反射したレーザビームを内面に設けた笠状の反射面で
反射せしめて被加工物の所定の位置に照射するリングミ
ラーとからなることを特徴とする特許請求の範囲第1項
又は第2項記載のレーザ加熱装置。
(3) The polarizing means includes a rotating mirror that reflects the laser beam from the laser oscillator, polarizes it by approximately 90 degrees, and is configured to be rotatable around the laser beam incident axis, and the laser beam reflected by this rotating mirror is provided on the inner surface. 3. The laser heating device according to claim 1, further comprising a ring mirror that reflects the light from a cap-shaped reflecting surface and irradiates the workpiece at a predetermined position.
(4) 偏光手段は中心軸がレーザビーム入射軸と所定
の角度ずらして配設され上記レーザビーム入射軸を中心
に回転可能に構成されたレンズであることを特徴とする
特許請求の範囲第1項又は第、2項記載のレーザ加熱装
置。
(4) Claim 1, characterized in that the polarizing means is a lens arranged such that its central axis is shifted by a predetermined angle from the laser beam incidence axis and configured to be rotatable about the laser beam incidence axis. The laser heating device according to item 1 or item 2.
JP59094857A 1984-05-09 1984-05-09 Laser heater Pending JPS60236483A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59094857A JPS60236483A (en) 1984-05-09 1984-05-09 Laser heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59094857A JPS60236483A (en) 1984-05-09 1984-05-09 Laser heater

Publications (1)

Publication Number Publication Date
JPS60236483A true JPS60236483A (en) 1985-11-25

Family

ID=14121698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59094857A Pending JPS60236483A (en) 1984-05-09 1984-05-09 Laser heater

Country Status (1)

Country Link
JP (1) JPS60236483A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109924A (en) * 1985-11-08 1987-05-21 Komatsu Ltd Laser hardening method
JPS62203116A (en) * 1986-03-01 1987-09-07 Hitachi Seiki Co Ltd Laser light irradiating device
JPH0463223A (en) * 1990-06-30 1992-02-28 Okuma Mach Works Ltd Scanning method of laser beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62109924A (en) * 1985-11-08 1987-05-21 Komatsu Ltd Laser hardening method
JPS62203116A (en) * 1986-03-01 1987-09-07 Hitachi Seiki Co Ltd Laser light irradiating device
JPH0463223A (en) * 1990-06-30 1992-02-28 Okuma Mach Works Ltd Scanning method of laser beam

Similar Documents

Publication Publication Date Title
US4475027A (en) Optical beam homogenizer
JPS583478B2 (en) Laser heating method and device
US4692583A (en) Surface heat treating apparatus
US4662708A (en) Optical scanning system for laser treatment of electrical steel and the like
JPS6045247B2 (en) Heat treatment method for steel product surfaces using high energy beams
JPS60236483A (en) Laser heater
JPS6317035B2 (en)
JPS60236482A (en) Laser heater
JP2002086288A (en) Laser beam irradiation device
WO1997006462A1 (en) Rotating optical system for laser machining apparatus
JP2002030343A (en) Method and device for heat treatment of gear by laser
JPS6368288A (en) Linear beam taking off device
JP2581574B2 (en) Laser processing method and apparatus
JPS63249413A (en) End treatment apparatus for insulated wire
JPH0639575A (en) Laser beam machine
JP3826310B2 (en) Laser hardening method
JPH0619111B2 (en) Laser scanning device
JPS6338516A (en) Laser hardening method
JPH07252521A (en) Quenching method by laser beam
JPS604245B2 (en) Surface hardening equipment
JP2003231914A (en) Laser hardening method
JPH0140892B2 (en)
JPS63105918A (en) Oscillating method by laser beam
JPH0116892B2 (en)
JPH04178285A (en) Laser beam machining method