JPS60236043A - Device for inspecting eccentricity - Google Patents

Device for inspecting eccentricity

Info

Publication number
JPS60236043A
JPS60236043A JP9342984A JP9342984A JPS60236043A JP S60236043 A JPS60236043 A JP S60236043A JP 9342984 A JP9342984 A JP 9342984A JP 9342984 A JP9342984 A JP 9342984A JP S60236043 A JPS60236043 A JP S60236043A
Authority
JP
Japan
Prior art keywords
lens
eccentricity
rotation
test
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9342984A
Other languages
Japanese (ja)
Inventor
Yasuhiro Tanaka
康弘 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP9342984A priority Critical patent/JPS60236043A/en
Publication of JPS60236043A publication Critical patent/JPS60236043A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • G01M11/0221Testing optical properties by determining the optical axis or position of lenses

Abstract

PURPOSE:To measure automatically with good accuracy the eccentricity of a lens by moving a grid by the same quantity of the deflection of the outer peripheral part with rotation of a lens to be detected and by counting the number of spotted images passing through the transparent part of the grid with detection. CONSTITUTION:A lens 12 to be detected is set up on a rotating unit 11 and rotated. The spotted image by the lens 12 is rotated under the condition of adding the eccentricity due to rotation and the eccentricity of the lens itself. The deflection of the outer peripheral part of the lens 12 is measured by a noncontacting displacement gage 13 and a grid 14 is moved in accordance with the displacement of the outer peripheral part by an electro-distorting element 15. The rotation of the spotted image is thus caused only by the eccentric component of the lens 12 and the eccentricity can be measured by detecting the spotted images passing through the transparent part of the grid 14 with a photoelectric transducer 17 and by counting the number of the times with a counter 18.

Description

【発明の詳細な説明】 産業上の利用分野 本発明・1−iレンズの偏心を測定するための偏心検査
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an eccentricity testing device for measuring the eccentricity of a 1-i lens.

従来例の構成とその問題点 レンズ系の+1能が劣化するの1因の1つにレンズの偏
心があげらJする。偏心したレンズを鋳胴に組込むと、
レンズ而の傾きあるいVルンズの(’M −t’ :f
lなどが生じ、レンズ系の共軸ゼ1が先なわわる。1そ
の結果軸上においてもコマ収差が発生する3、!i5に
顕微儒対物レンズや最近のディジタルオーディオ用ピン
クアップレンズのような回折限界系を11指したレンズ
系では、偏心許容単も厳しいのが許通であり、精度の良
いレンズの偏心11111定法が’7J4ねている。
Conventional configuration and its problems One of the reasons for the deterioration of the +1 power of the lens system is the eccentricity of the lens. When an eccentric lens is assembled into a casting barrel,
The inclination of the lens or the V lens ('M - t': f
1, etc. occur, and the coaxial ze 1 of the lens system takes precedence. 1 As a result, coma aberration occurs even on the axis 3,! For lens systems with diffraction limited systems such as i5 microscope objective lenses and recent pink-up lenses for digital audio, it is accepted that the eccentricity tolerance is strict, and the eccentricity 11111 formula for a highly accurate lens is accepted. '7J4 sleeping.

以下図面を参照しながらレンズの偏心iI!ll ’r
j!、の原理について説明する。第1図はレンズの偏心
側5’Pの原理図である。1は被検レンズ、2はレンズ
の光軸で、3は被検レンズ1の外周部すなわちコバによ
って決まる円筒の中心軸であり以下レンズの中心軸と呼
ぶ。4は平行光束で6は被検レンズ1により作られるス
ポット像である。偏心のないレンズでは光軸2とレンズ
の中心軸3は一致する。
Referring to the drawing below, the eccentricity of the lens iI! ll'r
j! The principle of , will be explained. FIG. 1 is a principle diagram of the eccentric side 5'P of the lens. Reference numeral 1 indicates a lens to be tested, 2 indicates an optical axis of the lens, and 3 indicates a central axis of a cylinder determined by the outer circumference or edge of the lens to be tested 1, which is hereinafter referred to as the central axis of the lens. 4 is a parallel light beam, and 6 is a spot image created by the lens 1 to be examined. In a lens without eccentricity, the optical axis 2 and the central axis 3 of the lens coincide.

被検レンズ1に平行光束4を入射させると、スポット像
6はレンズの光軸2上にできる。ここで被3 ぺ−7 検レンズ1をその中心軸3を中心に回転する。偏心のな
いレンズでは、光軸2とレンズの中心軸3が一致してい
るため、スポット像は回転しない。
When a parallel light beam 4 is made incident on the lens 1 to be tested, a spot image 6 is formed on the optical axis 2 of the lens. Here, the test lens 1 is rotated around its central axis 3. In a lens without eccentricity, the optical axis 2 and the central axis 3 of the lens coincide, so the spot image does not rotate.

しかし丸軸2と中心軸3に距離dのずれがあるとスポッ
ト像6が半径dの円を描いて回転する。し/こがってレ
ンズをその中心軸3を中心に回転した時の、スポット像
6の回転半径を測定すれば偏心量が測定できる。
However, if there is a deviation of a distance d between the round shaft 2 and the central axis 3, the spot image 6 rotates in a circle with a radius d. The amount of eccentricity can be measured by measuring the radius of rotation of the spot image 6 when the lens is rotated around its central axis 3.

以下図面を参照しながら従来の偏心検査装置について説
明する。第2図は従来の偏心検査装置の概念図であり、
6はコリメータ、7はレンズホルダー、8け被検レンズ
、9は被検レンズ8によるスポット像を観測する顕微鏡
である。
A conventional eccentricity testing device will be described below with reference to the drawings. Figure 2 is a conceptual diagram of a conventional eccentricity testing device.
Reference numeral 6 denotes a collimator, 7 a lens holder, 8 test lenses, and 9 a microscope for observing a spot image produced by the test lens 8.

以上のように構成された偏心検査装置についてその動作
を以下に説明する。コリメータ6から出た平行光は、被
検レンズ8に入射する。そして被検レンズ8により収束
したスポット像を顕微鏡で1flllt、ながら、レン
ズホルダー7の中で被検レンズ8を例えば指で同転する
と、レンズに偏心がある場合は、その偏心量dを半径と
してスポット像が同転する。し/(が−、てこの回転士
i′fをl/I′i1“ル1も:、 C+読取ることに
よりレンズの偏心4IIll ’+i: l、てい71
.1しかしながら、I−、ii己び)1ニワな+i’f
 ll’l:に1.・いて11、−?if被Mレンズ8
にレンズボルダ 7の中で回転する必要があるため、゛
L′1然被検レンズ8とレンズホルダー7の間にすへ間
がある。、L7’eが−)でレンズを片側に押しつけな
がら回転する′今のrkjNl l l・■・作が必要
であった3、′+た偏心公差の厳しいレン×゛では例え
ば6μm f11度のflid心1a全1aに設定する
ことがあり、従来のN11l ’+i−法で(、シ、楯
jOが[1−b々ろ・った。
The operation of the eccentricity testing device configured as described above will be described below. The parallel light emitted from the collimator 6 enters the lens 8 to be tested. Then, when the spot image converged by the test lens 8 is rotated with a finger, for example, in the lens holder 7 while viewing the spot image converged by the test lens 8 with a microscope, if the test lens 8 is eccentric, the eccentricity d is taken as the radius. The spot images rotate at the same time. /(Ga-, the lever rotator i'f is l/I'i1" Le1:, C+ is read, and the eccentricity of the lens 4IIll'+i: l, 71
.. 1 However, I-, ii myself) 1 Niwa na + i'f
ll'l: ni1.・It is 11, -? if M lens 8
Since it is necessary to rotate within the lens holder 7, there is naturally a gap between the lens 8 to be tested and the lens holder 7. It was necessary to rotate the lens while pressing it to one side with L7'e -).For a lens with strict eccentricity tolerance such as 3,'+, for example, a flid of 6 μm f11 degrees. There is a case where the center 1a is set to all 1a, and in the conventional N11l'+i- method (, shi, shield jO is set to [1-b).

発明の目的 本発明の目的eルンズの偏心i11を精度良くかつ自動
的に測定する偏心検査装置rtを冑供するこ−である。
OBJECTS OF THE INVENTION It is an object of the present invention to provide an eccentricity testing device rt that accurately and automatically measures the eccentricity i11 of e-luns.

発明の構成 本発明の偏心検査装置it、被検レンズに、1:リスポ
ット像を作るだめの光源と、前記被検レンズ6その略光
軸を中心に回転する回転装置と、1)11記’f’12
検レンズの回転にともなう夕1周部のふJlを1lII
I5:[J゛66ペー ノ゛めの変位計と、前記被検レンズの像面にあり透明部
と不透明部からなる格子と、前記変位計の出力に応じて
前記被検レンズの回転に伴うふれを打消すように前記格
子を移動するだめの移動手段と、前記被検レンズの回転
に伴いそのスポy)像が通過する前記格子の本数をカウ
ントするカウント手段を備えるように構成したものであ
ゆ、これによりレンズの偏心量を測定するものである。
Composition of the Invention The eccentricity testing device IT of the present invention provides a test lens with: 1: a light source for creating a respot image; a rotation device that rotates the test lens 6 approximately around its optical axis; 1) Item 11. 'f'12
1l II of the first lap of the evening due to the rotation of the detection lens.
I5: [J゛66 page] A displacement meter, a grating located on the image plane of the test lens and consisting of a transparent part and an opaque part, and a vibration caused by the rotation of the test lens according to the output of the displacement meter. and a counting means for counting the number of gratings through which the smeared image passes as the subject lens rotates. , thereby measuring the amount of eccentricity of the lens.

実施例の説明 以下本発明の一実施例について、図面を参照しながら説
明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

第3図は本発明の一実施例における偏心検査装置の概略
図である。第3図において1o光源、11は被検レンズ
12を回転するだめの回転装置、13は被検レンズ12
を回転した時の外周部のふれを測定するための非接触変
位計、14は被検レンズ12により収束したスポット上
にある透明部と不透明部からなる格子で、ガラス板上に
クロームを蒸着したものを用いる。16は格子14を回
転装置11の1四転軸に垂直な方向へ移動するための電
歪素子であり、161:l増幅器、1711(名r16
を透過した光を横用1−る毘電変声素rであり、18は
光電変換素子17に入射17た光のパルス数4・カウン
トするカウンターである。被検レンズ12を回転装置1
1の上に設置し回転する。被検レンズ12の中心軸とH
転装間11の回転軸V1、被検レンズ12を単に1【]
1転装置11に設置しただけで11一般に一致しない−
にに、回転装置11にベアリングを用いるとそれ自体に
も数ミクロン以にの回転による偏心を持っており、した
がって被検レンズ12によるスポット像し土、前記の偏
心の要因と、被検レンズ12自体の偏心が加算さJまた
状態で回転する。このスポット像の回転から被検レンズ
12のみの偏心成分をとり出すために捷ず被検レンズ1
2の外周部のふれを非接触の変位泪13により測定する
。変位計13の出力を増幅器16で増幅し、電歪素子1
6を駆動し、格子14を移動させる。増幅器16の増幅
率を適切に選ぶことによ−。
FIG. 3 is a schematic diagram of an eccentricity testing device according to an embodiment of the present invention. In FIG. 3, 1o is a light source, 11 is a rotating device for rotating the test lens 12, and 13 is a test lens 12.
A non-contact displacement meter 14 is a grid consisting of a transparent part and an opaque part located on a spot converged by the test lens 12, and chromium is vapor-deposited on a glass plate. use something 16 is an electrostrictive element for moving the grating 14 in a direction perpendicular to the 1st rotation axis of the rotating device 11;
18 is a counter that counts the number of pulses of light incident on the photoelectric conversion element 17 (17). Rotating device 1 rotates test lens 12
Place it on top of 1 and rotate it. The center axis of the test lens 12 and H
The rotation axis V1 of the transfer gap 11 and the test lens 12 are simply 1 []
It does not match 11 in general even if it is installed in 1-transfer device 11-
In addition, if a bearing is used in the rotating device 11, the rotation device 11 will have an eccentricity due to rotation of several microns or more. Its own eccentricity is added to J and it rotates in the state. In order to extract the eccentric component of only the test lens 12 from the rotation of this spot image, the test lens 1
The deflection of the outer periphery of 2 is measured using a non-contact displacement sensor 13. The output of the displacement meter 13 is amplified by the amplifier 16, and the electrostrictive element 1
6 to move the grating 14. By appropriately selecting the amplification factor of the amplifier 16.

て、被検レンズ12の外周部の変位と格子14の移動の
量を一致することができる。すなわちこの7 ペー。
Therefore, the amount of displacement of the outer peripheral portion of the lens 12 to be tested and the amount of movement of the grating 14 can be matched. In other words, these 7 pages.

時の破検l/ンズ12と格子14の位置関係は、従来の
偏心検査装置における、レンズホルダー7の片側に押し
7付けながら同転した被検レンズ8と顕微嵯9の位置関
係に等しい。したがって格子14にから観」(1したス
ポット像の回転は被検レンズ12の偏心成分のみによる
。格子14が変位計13の測定方向すなわち格子14の
移動方向に対して垂直な方向に並んだ1μmに1組の透
明部と不透明部からなるとする。被検レンズ12の偏心
が5μmであわば、スポット像は半径6μmの円を描き
ながら格子14上を回転する。ゆえに被検レンズ12が
1回転すると格子14上の透明部を2o回通過すること
になる。光電変換素子17はスポット像が透明部を通る
たびにスポット像を検出するのでその回数をカウンター
18によりカウントする。格子間隔が前記の条件であれ
ば、被検レンズ12を1回転した時のカウント数が20
であれば、逆に偏心用が5μmであることが測定できる
。なお上いてもさしつかえない。斗た格f141F扱検
1/ンズの偏心甲に応じた面積が兵曹であり、バ、電屯
゛!幼素子17け、スボ、1・像の全ての影シ、シに1
:乙動へよゆも大きな受光面積が必リンで、←、ろ1゜
発明の効W 以−にの説明から明らかな、l:うに、]、発明(1、
腔検レンズを回転してぞのスポット像4・四側する偏心
測定において、被検レンズを回転1. ft7 n、5
の夕1周部のふれを変位言1に、1り測定しながらそJ
)と同じ量だけ格子を動かすことによ−、てスポ、1・
像の動きの中から被検レンズの偏心1Jk分の7)介−
取り出12、光電変換素子により格rの透明部4−浦j
lF、! L /ζ−スポット像を検出しその数をカウ
ントするよう構成1゜ているので、レンズの偏心16を
ri’i IQ’ f↓くかつ自動的に測定できるとい
う効9Lが(i) r、r hる、。
The positional relationship between the failure inspection lens 12 and the grating 14 at this time is the same as the positional relationship between the test lens 8 and the microscope 9, which are pressed against one side of the lens holder 7 and rotated at the same time, in a conventional eccentricity inspection device. Therefore, the rotation of the spot image when viewed from the grating 14 (1) is due only to the decentering component of the test lens 12. It is assumed that the test lens 12 has a set of transparent and opaque parts.If the eccentricity of the test lens 12 is 5 μm, the spot image rotates on the grating 14 while drawing a circle with a radius of 6 μm.Therefore, the test lens 12 rotates once. This means that the spot image passes through the transparent portion on the grating 14 20 times.The photoelectric conversion element 17 detects the spot image each time it passes through the transparent portion, and the number of times is counted by the counter 18. If the condition is met, the number of counts when the test lens 12 rotates once is 20.
If so, it can be determined that the eccentricity is 5 μm. There is no harm in going up. The area corresponding to the eccentric shell of the f141F handling test 1/ns is a private sergeant, and it's a power train! Young Motoko 17, subo, 1, all shadows of the image, 1 for shi
A large light-receiving area is also required for ←, ro 1゜Efficacy of the invention W It is clear from the explanation below that l: uni, ], the invention (1,
When measuring eccentricity by rotating the cavity inspection lens to obtain a spot image on each side, the lens to be inspected is rotated 1. ft7 n, 5
On the evening of the same day, while measuring the deflection of the first rotation part,
) by moving the grid by the same amount as -, Tespo, 1.
From the movement of the image, the eccentricity of the lens under test is calculated by 1 Jk.
Take-out 12, transparent part 4-uraj of lattice r by photoelectric conversion element
lF,! Since the configuration 1° is configured to detect L/ζ-spot images and count the number thereof, the effect 9L that the eccentricity 16 of the lens can be easily and automatically measured is (i) r, r hru,.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレンズの偏心測定の11;す甲?rで小才図、
第2図は従来の偏心検査装置の概念を小す図、第3図は
本発明の一実施例におけるflit心検査装置の概略図
である。 9ぺ一/ 1o・・・・光源、11 ・・・回転装置、12・・・
・・被検レンズ、13・・・・非接触変位側、14・・
・格子、16・・・・・電歪素子、16・・・・増幅器
、17・ ・・光電変換素子、18 カウンター。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 4゜ 1 11 5′1) / \ /N\ /11\ 第2図 第 3 図
Figure 1 shows lens eccentricity measurement 11; Kosaizu with r,
FIG. 2 is a schematic view of the concept of a conventional eccentricity testing device, and FIG. 3 is a schematic diagram of a flit cardiac testing device in an embodiment of the present invention. 9pe1/1o...Light source, 11...Rotating device, 12...
...Test lens, 13...Non-contact displacement side, 14...
- Lattice, 16... Electrostrictive element, 16... Amplifier, 17... Photoelectric conversion element, 18 Counter. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 4゜1 11 5'1) / \ /N\ /11\ Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 被検レンズによりスポット像を作るための光源と、前記
被検レンズをその路光軸を中心に回転する回転装置と、
前記被検レンズの回転にともなう外周部のふれを測定す
るだめの変位計と、前記被検レンズの像面にあり透明部
と不透明部からなる格子と、前記変位計の出力に応じて
前記被検レンズの回転に伴うふれを打消すように前記格
子を移動するための移動手段と、前記被検レンズの回転
に伴いそのスポット像が通過する前記格子の本数をカウ
ントするカウント手段を備えてなることを特徴とする偏
心検査装置。
a light source for creating a spot image with the lens to be tested; a rotation device for rotating the lens to be tested about its optical path axis;
a displacement meter for measuring the deflection of the outer circumferential portion of the lens to be tested as it rotates; a grating that is located on the image plane of the lens to be tested and is made up of a transparent part and an opaque part; A moving means for moving the grating so as to cancel the wobbling caused by the rotation of the test lens, and a counting means for counting the number of the gratings through which the spot image passes as the test lens rotates. An eccentricity testing device characterized by:
JP9342984A 1984-05-10 1984-05-10 Device for inspecting eccentricity Pending JPS60236043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9342984A JPS60236043A (en) 1984-05-10 1984-05-10 Device for inspecting eccentricity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9342984A JPS60236043A (en) 1984-05-10 1984-05-10 Device for inspecting eccentricity

Publications (1)

Publication Number Publication Date
JPS60236043A true JPS60236043A (en) 1985-11-22

Family

ID=14082060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9342984A Pending JPS60236043A (en) 1984-05-10 1984-05-10 Device for inspecting eccentricity

Country Status (1)

Country Link
JP (1) JPS60236043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285440A (en) * 1987-05-18 1988-11-22 Olympus Optical Co Ltd Lens eccentricity measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285440A (en) * 1987-05-18 1988-11-22 Olympus Optical Co Ltd Lens eccentricity measuring apparatus

Similar Documents

Publication Publication Date Title
US5710631A (en) Apparatus and method for storing interferometric images of scanned defects and for subsequent static analysis of such defects
JP5902448B2 (en) Measurement of the center of curvature of the optical surface of a multi-lens optical system
US3851169A (en) Apparatus for measuring aerosol particles
CN101609250B (en) Swing mirror angle scanning characteristic test device for camera
JP2012118071A (en) Method and apparatus for measuring distances between optical surfaces of optical system
GB2166548A (en) Laser measurement system
JPS63195513A (en) Optical noncontact position measuring instrument
JP2010223915A (en) Method and device for measuring positional variation of center line of rotation
US3637312A (en) Roll alignment detector
US20040136008A1 (en) Optical characteristic measurement device and optical type displacement meter
JPS60236043A (en) Device for inspecting eccentricity
JPH053889B2 (en)
JP2865337B2 (en) Optical measuring device
US3375754A (en) Lens testing autocollimator
JP4188173B2 (en) Rotation accuracy measurement device for rotating shaft
JPS60171405A (en) Automatic eccentricity inspecting device
CN100480624C (en) Optical scanning outside diameter measuring system without scanning objective lens and measuring method thereof
JP4488710B2 (en) Lens characteristic inspection method and apparatus
US1642219A (en) Apparatus for testing toothed wheels
JP2953742B2 (en) Surface roughness evaluation method
JP2001027580A (en) Method and apparatus for measurement of transmission decentration of lens
JP3920566B2 (en) Optical detection device for bearing raceway curvature
JP3365881B2 (en) Lens refractive index inspection device
JPS61235707A (en) Light converging device and film thickness measuring instrument
JP2675051B2 (en) Optical non-contact position measuring device