JPS60236011A - Device for deciding shape of material - Google Patents

Device for deciding shape of material

Info

Publication number
JPS60236011A
JPS60236011A JP9356184A JP9356184A JPS60236011A JP S60236011 A JPS60236011 A JP S60236011A JP 9356184 A JP9356184 A JP 9356184A JP 9356184 A JP9356184 A JP 9356184A JP S60236011 A JPS60236011 A JP S60236011A
Authority
JP
Japan
Prior art keywords
vector
motion
robot
sequence
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9356184A
Other languages
Japanese (ja)
Other versions
JPH0517483B2 (en
Inventor
Masaharu Suzuki
雅晴 鈴木
Hisashi Motojiyou
本条 寿史
Hironori Maeda
前田 洋規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK, Toyoda Automatic Loom Works Ltd filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP9356184A priority Critical patent/JPS60236011A/en
Publication of JPS60236011A publication Critical patent/JPS60236011A/en
Publication of JPH0517483B2 publication Critical patent/JPH0517483B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manipulator (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To elevate workability by deciding automatically the size and shape of various sorts of works fed to NC machine tools using a robot provided on NC machine tool and by feeding an accepted product only. CONSTITUTION:A work is held by a robot 2 which drives 4 each driving shaft of the robot 2 and a position is decided 14 by a position sensor 6 provided on the locus drawn by the center of a holding part. CPU10 has a unit vector row storing part 12 and size row inputting part 13 and outputs 13 the size row inputted from the outside part and the output of the storing part 12 and the combination is performed by a composing part 15 and the position is decided 14 with the input from the position sensor 6. A controlling signal generating part 16 outputs to the driving device 4 a controlling signal in order that the central part of the holding part of the robot is in a position corresponding to each motion factor vector only on the accepted product corresponding to these motion factor vectors. The size and shape of a work are thus automatically decided and by feeding an accepted product only, a working is rationalized.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、数値IIIJ till工作機械の加T台に
設置される加工物体の形状を認識し、設置前に該形状の
合否判定を行なう累月形状判定装置に関する。 (従来技術) 従来、数1−1制御:I竹機械(以下NCIC機作とい
う)に加]二物体を自動的に搬入するには、ロボットが
用いられていた。このN CIC機作に搬入される加工
物体は、おa5むね正規の刈払になっていることが望ま
しく、搬入前に寸法測定装置によりXJ法を測定した後
、合否を判定し、NO工作機械に搬入していた。 −2− 従って、搬入前に液加11物体の・1法を測定りるとい
う別−■稈が必要どイ「る。■、多品種の系材を連袂的
に加Iづる1、:め1.:LL、Y’め定められた合格
範囲にある11法の系材を品種fitに選別−ノること
が必要である。このJ、う<N選別を晶←11のlII
+!なる木祠加にイれぞれの別1稈(・f1イ1−)(
いI、:の(−は1〕i家能率が極め′C悲い。 (′f1.明の1−1的) イこ(・本発明は、従来のこの様<「欠+:、Iを改+
u Jるlこめに成されkbの(゛あり、N G−16
機械に設置Jられている11ボットを用い(N G I
 l’l I械に搬入される名神の加−1−物体の)1
法、形状を自動的に判定し、合格品を選別しく N O
l、 I’1機械に自動的に搬入づることを目的とりる
。 (発明の構成) ffi1図は、本発明の概念を表わし/、:’711ツ
クダイノlグラムCある。 本発明は、加l物14411’! I’11/、441
JI ts L! ’、) l l IBット2ど、該
[1ボット2の動負軌跡にJiい(、加−1物体が所定
の位置に到達し!こことを検出りる荀−3− 買しンリ6ど、前記[1ボツi・2の各駆動軸を駆動J
る駆動軸@4ど、前記IQ置pンリ6からのイ8弓を入
力し、前記駆動%A圓4へ各駆動軸の駆動量を制御Jる
(5月を出力する制御装置110とから成り、該制御I
別fi 10 i、L 、前記[−1ボッ1−2の動作
軌跡を構成りる動作要素ベクトル列に対応し、その各v
J重曹水ベクトルの申(Oベク]〜ルを動作順序に従−
)で記憶しIこ111 (17ベクトル列記憶部12と
、が1記11J伯13!索ベクI・ル列の人きさの列を
入力し、ル:憶ゴる動作1B!秦ベクトルの大きさ列人
力部13ど、 +VI &!人ささ刈入ツノ部13にシ)憶された動作
要素ベクトルの人きき列と、前記I11位ベク(・ル列
記憶部12に記憶されたfil荀ベク]ヘルどから動作
要素ベクトル列を合成づ−る合成部15と、該合成81
115によって合成された動作要素ベクトル列に従って
、前記各駆動軸を駆動づるための制ti11 (;+ 
l:Jをy!!1−づるi、11卸信月発11部16と
、前記(j/ fat lxンリ6からの人力信号の有
無を判定 “するilll品定/Iとから成ることを特
徴とする素材−4− 形状判定蝕諮である3゜ 本発明の索材形状テリ定興請は人さく分1〕で加−■物
体をNO]作Wa誠に搬入りるIζめの11ボット2ど
11ボット2の各駆動軸を駆動りる駆0ノ14詔4と、
[1ポツトの把持部の中心部が描く動作軌跡[に設置)
られ、加−1−物体の到達位置を検出1Jるイ17置し
ンリ6および[71ボッ1−の動作を制御1 ”!Iる
制御り買10どから成る。制御KPM(Nよ甲11′l
ベクトル列〜1憶部12と大きさ列人力A1113、及
び合成部1h、1.1111I i占シJ発住部1Oと
から成る。111位ベクトルタリ配憶部12はロボツ1
〜の動作軌跡を分解して<Elられる動作!ii索ベク
トル列に対応りる中位ベク!・ルを記憶づる。このI1
1位ベクI−ル列の順序(、艮動作順序に対応する。人
きさ刈入力部131よ、外部からデータとして中位ベク
I−ル列に対応して、di+記仙作g1索ベクトルタ1
jの人ささ9りを入力する部分(゛ある。合成部15 
LL Ill lflベタトル+II配憶部12と人き
さ刈入力部13とから動作要素ベクトル911を合成i
’am能を右Jる。制御イΔ号発牛部16は、これらの
動作**ベクトル列に対応しく、11ボツ]・−5− の把持部中心部が、各動作軸素ベクトルに対応しI、:
位置になる様各駆動軸を駆動づる制御信号を駆動K11
4に出力する。駆動装置4はロボット2の各駆動軸の回
転を行ないロボットを所定の量だtノ制御Jることかで
きる。 ここで1IIJ作軌跡とは、ロボツ]への把持部中心点
の動作軌跡ど定#1づる。第7図は、ロボットの動作軌
跡を制御づる丸めの動作要素ベクi−ルを与える方法を
示した説明図である。このうち、第7図(aN、L、動
作要素ベクトルを動作点(PO,Pl、P2等)間の変
位ベクトル(rO,rl、r2等)で与えたものである
。即らro−110DI、rl、−p1p2、r2= 
p2p3である。ここでpOlpl、02等の座標を(
×0、yO120)、(×1、yl、zl)、(x2、
y2、z2)とりる。従つ−
(Industrial Application Field) The present invention relates to a cumulative shape determining device that recognizes the shape of a workpiece to be installed on a machining table of a numerical III machine tool and determines whether the shape is acceptable or not before installation. (Prior Art) Conventionally, a robot has been used to automatically carry in two objects in addition to a number 1-1 control: I bamboo machine (hereinafter referred to as an NCIC machine). It is preferable that the workpiece carried into this N CIC machine be a regular A5 cutter.Before carrying it in, it should be measured by the XJ method using a dimension measuring device, and then judged to pass or fail. It was being transported to. -2- Therefore, it is necessary to measure the culm of the 11 objects to be added before delivery. 1.: It is necessary to sort the material of method 11 which is within the specified pass range for LL, Y' into the type fit.
+! There is one culm in each naruki (・f1・1−)(
I, :'s (- is 1) i's family efficiency is extremely sad. ('f1. revised+
u Jurul kb's (゛Yes, NG-16
Using 11 bots installed in the machine (NGI
l'l I The name of the name brought into the machine - 1 - of the object) 1
Automatically determine the shape and shape and select acceptable products.NO
The purpose is to automatically load it into the I'1 machine. (Structure of the Invention) The ffi1 diagram represents the concept of the present invention. The present invention is an additive 14411'! I'11/, 441
JI ts L! ',) l l IB bit 2, the moving trajectory of the [1 bot 2] (, addition - 1 object reaches a predetermined position! Detect this point.) 6. Drive each of the drive shafts of [1 and 2]
The drive shaft @4 is inputted with the I8 input from the IQ setting 6, and the drive amount of each drive shaft is controlled to the drive %A circle 4 (from the control device 110 that outputs the The control I
Separate fi 10 i,L corresponds to the motion element vector sequence constituting the motion locus of [-1 Bot 1-2, and each v
Follow the order of operation of the J sodium bicarbonate water vector.
) and store it in Iko111 (17 vector string storage unit 12 and 11J Haku13! search vector I. input the humanity column of the le column, le: memorize motion 1B! Hata vector The strength column of the motion element vector stored in the size column human force section 13, +VI &! The size column of the motion element vector stored in the human reaping horn section 13, and the file column stored in the I11 vector (・le column storage section 12) a synthesizing section 15 that synthesizes motion element vector sequences from vector] help, and a synthesizing section 81
Control ti11 (;+
l: J to y! ! 1-Zuru i, 11 Wholesale Shingetsu 11 Part 16, and the illll quality/I that determines the presence or absence of a human signal from the above-mentioned (j/fat lxnri 6)-4- 3゜The rope material shape determination request of the present invention, which is a shape determination corrosion consultation, is added to the human scale 1] and the 11th bot 2 and 11 bot 2 of Iζ brought into the work. Kaku 0 no 14 edict 4 that drives the drive shaft,
[Installed at the motion trajectory drawn by the center of the grip of one pot]
control KPM (N to A11), which detects the arrival position of the object. 'l
It consists of a vector sequence ~1 memory part 12, a magnitude sequence human force A1113, a synthesis part 1h, and a 1.1111I i divination part 10. 111th place Vector Tari Storage Department 12 is Robots 1
The motion trajectory of ~ can be broken down and the motion that can be <El! The intermediate vector corresponding to the ii index vector sequence!・Memorize the words. This I1
The order of the first-place vector I-file sequence (corresponds to the order of operation). 1
The part for inputting the human size of j (there is. Synthesizer 15
LL Ill lfl Betator+II Synthesizes the motion element vector 911 from the storage section 12 and the human cutting input section 13
'am Noh right J. The control A Δ output unit 16 corresponds to these motion ** vector sequences, and the center of the grip of 11 points]・-5- corresponds to each motion axis element vector I,:
Drive the control signal K11 to drive each drive shaft to the position
Output to 4. The drive device 4 rotates each drive shaft of the robot 2 and can control the robot by a predetermined amount. Here, the 1IIJ operation trajectory is defined as the operation trajectory of the center point of the gripping part for the robot. FIG. 7 is an explanatory diagram showing a method of providing a rounding motion element vector i-- for controlling the motion trajectory of the robot. Of these, Fig. 7 (aN, L, motion element vectors are given as displacement vectors (rO, rl, r2, etc.) between operating points (PO, Pl, P2, etc.). That is, ro-110DI, rl, -p1p2, r2=
It is p2p3. Here, the coordinates of pOlpl, 02, etc. are (
×0, yO120), (×1, yl, zl), (x2,
y2, z2). follow-

【変(aベタ1−ルを座標
で表わせば、rO−(Xl−XOlyl−yo、Zl−
XO)rl= (x2− xl、V2−Vl、z2−z
l)イー(x3− x2、V3− V2、z3−z2)
となる。従来の制部方法て・は、変位ベクトルの座標成
分が与えられ、それに基づき、ロボツl〜の駆動軸の駆
動量−6− が演呻され、それにJ、って[Iボットが制御され(い
lこ。 本発明では、次の中位ベクトル列’bIrλる9゜■−
π/ l il −< llX0 、uyo 、 11
10 )u2−r2/ l r21= <1lX2 、
 uy2 、1+/2 )父、ぞの中位ヘタ1ヘルに灼
応しiJ人ささ少11をIノえる。 IP+1! ’l’ Nベクトルタリは、動伯順序及(
t、疫荀の人ささ1から成る暴木動れ軌跡を!Jλる。 、従−)(、このψ位ベクトルIJIIをIIt木初本
初lLジ?−ル別に記憶しく1月)ば、人ささ列1芸1
.1茸1.171智をLノえることにJ、す、皐木動伯
軌跡ど 定の関係にある動作を行なわ口ることが(゛さ
る5、 定の関係どは、lことλ、ば、第7図(It 
l +、−11,11様イ1関係をいう。181ら、V
木動伯軌跡i)0にλ・1しく、定の同じ蛤の人きさ夕
11を!ノλ1.:場合に1よ、11ボッ1−の機械I
Iλ点1)0を中心どしで、相似(N動n軌跡51がI
!4られる。文、(r息の人ささ列4!I)λれぼ、対
応づる区間においC積木1Ill′i軌跡どでれぞ11
.411− 7 − 似な広義の相似軌跡52が(qられる。 この様にしく 、−1it本動作軌跡に対応した1%イ
itベク1〜ル列をモジコール化して配憶しておけば、
侵は人きさ列を与えるだ1)で、基本動作軌跡と定の相
関ある動作軌跡が容躬に得られる。従って指小I゛−夕
が少なくて−リみ、制御ゾ[1グラムが簡略化できるど
J(に記憶44Mの効果的な使用ができる。 1記動f11曲木へ91〜ルとしては、第7図(C)に
示1J様に、座標原点0を樋準どづる位置ペクトこの場
合にb(れらの111 <Clベクl−ル列によって定
義される1、4本初作軌跡(ioに対し、一定の関係を
イlりる動伯軌跡を人きさ列をうえることによっ(11
1ることが(゛きる。 さらに、動作iI!素ベクトルには、[1ポツトの駆動
軸の駆動崩を0接指示ηるときは、各駆動軸の動作−を
各成分とづるべ9トルぐうえで6良い。 たどλぽ、r軸、θ軸、!軸の円筒座標系a軸間tal
+の場合に(ま、イれぞれの軸の駆11+ FAを成分
とづ−〇 − 63次元へりし・ル(−rJλられる1、この場合km
b、前述の様に申イ1“lペクト・ル列を円1バ1パ^
標系IJ 、I; 1する111位iQ置ベク1−ル列
×は疫イ☆ベクトルタ11どしく定M(゛きる。 本1]ボツ1〜II、II Ill菰ll!#tよこの
様な構成り目ら成り、11位ベクトル列&!憶部12ど
人きさ仙人ノI /II 1 :)とを別禍成とし、人
きさ列人力部13に初v1順序に従って、人きさのデー
タだ1ノを人ノlりること1.′。 よ−)て所定のllI伯軌跡に沿−)l、:初11を1
1<fわl! <。 ことができる。 〔実施例〕 以ト、本発明を具体的<;′J、″施例にl、t−5い
(さらに詳述づる。 第2図は本発明の具体的<(’1施例に係る*4,4形
状判定装置の機綱部分を小[)た構成図(゛ある1、1
1ボツト2はボディ21どボッ゛(21に対しC回転り
る二1シム22をイ1し、1フム22に1L〕1−ム点
ト1台23が配設さ41Cいる。ノ′−ム克ド1fン2
:目こは−でれに対しく伸縮自白に1習勤+lるノ′−
ム2/Iが設置ノられ、)アーム24は把ト’I /l
ll 2 り壱固桶しくい−9− る。この11ボッl−2は−1う1822をh Kl角
Diノ向に回転さ口ることができる。又、−1うlい2
2に対しC,))−ム克持台23は1−上動て・き/軸
り向に移動りることができる。×、アーム2 =1 i
J R軸り向に伸縮りる3、さらに把持部25は、アー
ム24に対して回動りる。 加−1物体J(0の〃J作軌跡十には位mレンリ6が設
(jられている。位IItI?ンリ6は、長さ判定&4
0と固定(1112に取(−JLIられに判定仮押えバ
ネ41と、発光j1M’51及び受光素子52どから成
る。 長さ判定数/I01よ連通/1.40 aを有し、該連
通孔/1071が所定の位置にj9シたときに、発光素
子51から発光しlこ光は連通孔40aを透過し、受光
系子;)21JJ一つ(受光される。 同様に、I)iu /’I h向の動伯軌跡lに番41
、イIlンリ6が設iノられCいる。この位dL?ンリ
6は同様1、二、固定扱45)1こ取イ・口1られlこ
判定扱押えバネ/I/Iと(Y判定機/13と、発光素
f53及び受光素rり 4 h目)成る。(¥判定4k
 43には連通孔43aがiu tJられ(おり前;ホ
と同様に発光素153で発−10− 光しIこ光(よ所定位置に達した11.?連通孔/13
aを通して受光素子54に受光される。 次に、この日ボットの作用について説明1Jる。 先ず、加J゛物体30を把持し、加1−物体30を寸法
測定原点に移動さぜる。この時の31法測定II;(点
を(R2O,7、α)=(0,0,0,0)どする。寸
法測定原点から7軸方向に所定間(1だ1)動作さUる
。このとき加−1物体30の一1部端1ffi 3Qa
は、良さ判定板40に当接し、それを押し1げ、連通孔
40aが所定(i’/ F/に3! J J+ +、r
、発光*子51によって発光された光は連通孔/IOa
を通過して、受光素子52に受光される。従って、受光
素子52にJ、って検出された悟りを制御I装四に入力
して、判定りれば加工物体:30をX1γ)、測定11
11点からZ軸方向にdだ(1移動さI!Iことさ、そ
の輸血30aが正規の位置に達したことを判別Jること
ができる。 即ち、所定ldだIJすjかした後、四元水子!j2か
ら光が検出されれば、加l°物143(11,1所定の
良さであると判定Jることかできる。5(、所定[fi
 +1− 11 − だ番)動かしてしい検出信号が得られない場合には、加
工物体30の良さは、所定の寸法よりも短いか、又は長
いかである。 又、加工物体30の直径を測定づるには、寸法測定原点
からθ方向に]ラム22を回転させ、加]物体30をβ
だIJ移動さμる。所定mβだり回転さuIこHに、加
工物体30の側面30bが径判定板43に当接して、ぞ
の連通孔43aが所定位置に移動し、受光素子54から
発光素子53からの光を受光した信号が検出されると咳
加工物体30(、L、所定の径であると判定することが
できる。 第3図は、本実施例の素材形状判定装置をDNCシステ
ムに応用した場合の全車の構成を示したブ1−1ツクダ
、イI7グラムである。 1〕N Oシステムにおいて、ホスト]ンビコータ60
は、N C,=+ラント1−ラ62に必要に応じてNO
データを送信ηる。N(,1ン1〜ローラ62はNG’
T1’1機械64の駆動軸を制御llすると」ξに、制
御装置t’l 10 (rlボッ]〜=】ントローラと
もいう)へ、加1物体30をNO工作機械64の加二I
台へ搬入−12− づるためのi、II御データを出力づ−る。fljl 
all 装置10は、所定のブ[1グラム及びデータに
基づき、「1ボツト2を駆動して、加−I−物体30の
形状を判定し、その判定結果に基づいて、不良加]−物
体の除去を行なう。 次に水素月形状判定SAIの作用をホスi・=1ンビュ
ータの作用と共に説明づる。 第4図は、ホストで1ンビコータの処理を示しノこノロ
ーヂャー1〜であり、第1う図番よ、ルリIl+装置(
11ボツトコント[1−ラ)の処理を示()たフ[1−
ブ11−1−である。ステップ100でA hn 1−
物体用のNGプログラムをホスト=1ンピコータ60か
らN C二1ン1ヘローラ62に送出Jる。NGプログ
ラムには△加二F物体を加1Jるために必要イ【イの外
形寸法が記載されている。たとえば、円柱状物体であれ
ば、軸方向の長さ及び直(¥が記載されている。 次にステップ102においてA 71111物体用のN
010グラムの実行の指令をIJえると、N O]ント
ローラ62は、制御装置d10を制御n =lる。制御
装置1110はIl1位ベクトル列記憶部12に所定の
甲−13− 位ベク1ヘルを記憶している。 第8図は、動作曹索へり]〜ルを示したしのである。1
11位へりトル列は、次の如く定義されている。 ロボッ1−の機械原点を01司法測定原点をQ、加]−
物把持イ1/首を[)1、加]]物体が長さ判定板40
に当接して、受光素子52で検出される位置をP2、同
じく受光素子54によって検出される位置をP3、NC
IC機作の加工台へ加工物体を設定Jる(1/置を[)
4、不良加T物体を配設(る位WをP5どJる。 Gtqp3 、u6Ltp3q 、 u7i、LQD4
 、ua+、tp4o 、ff+、iqp−ベク1〜ル
である。又、それらの動作要素ベクトルの大きさをぞれ
ぞれA1.A2、・・・A10とする。 これらの単位ベタ1−ルに列u1〜u10は、その単位
ベタ1〜ルの動作を行わせるに必要なnボッ]〜の各動
作軸の駆動思を座標成分とづるベクトル山どしで記憶さ
れている。本動作経路では、加工物体の種類にかかわら
ず、上記ベクトルの大きさA1、− 14 − A2、A7、A8、A9、A10は固定と()、人きさ
A3、A4、Δt3、A6のみを加「物体の秤類に応じ
て可変とした。 しかし、動作経路の取り次第で番よ、ベクトルの大きざ
をづべて可変どηることがく゛きる。 従って、本実施例で−は、加二I物体の長さ及びIYを
測定づるための)1?ム測定IIλ点0からの移動量の
みが疫数どして!フλられる。 ステップ200て・、加工物体のく1法がN (E−l
ント[1−ラから入力され、イのく1法に応じて1^電
;A3、A4、A5、A6が決定される。1本実施例で
は、第2図に承り様に113、(14は、/軸方向のi
11位ベクトルであり、(1;1、ll G IJ i
l1位1]位角だl−J回転しkどきの円弧ベクトルと
しIこ。位)(、A3、A4は、/方面移動量+l ’
Cあり、△t)、A6は、θIノ向移動州βC゛ある。 これら、入力されたデータに基づいて決定されたA3、
A4、八5)、八6及びrめ定めらねでいるA1、A2
、A7、A8、A9、A10から成る大きさ列ど、II
I If/ベク1〜ル列111・〜uH)(!合成し−
15− C1動作曹累ベクトル列が合成される。これらの動作曹
素ベクトル列は、ロボッ]・の各駆動軸の駆動量に変換
される。ステップ202では、[]ボットの把持部をA
1・ulだ番ノ動作さt!PI点まで移vjシ、加−「
物1ホ30を把持Jる。次ステツプ204で、「1ボツ
1〜の把持部をA2・マだ(J動作さU(〜11法測定
原0へ移動さびる。次にステップ206て゛把持部をA
3・(13だ(ノ動作さ14’、F)2点へ移動さUる
。次にスラッ7208で、受光素子52から位l信号が
検出されtこO# i、i、加工物体の良さは所定長で
あると判断され、ステップ210ではζ1法測定原点Q
へ復帰づる。次にステップ212′c゛、方位角θ方向
に所定間△5・u5だiJ動作さUて1)3点へ移動づ
る。このどきステップ214で受光素f 54から位W
信ニー」が検出された時は、加’I]物体30の径1よ
所定径であると判断され、ステップ216で、把持部を
△6旨了だIJ動作さし入1法測定原点へ復帰する。次
にステップ218で把1\11部をA7・07たり駆動
しN CI作機械の加工台1の点P4へ移動さ1!、加
工物体をN CI作機−16− 械に廿ツ1〜づる。次にステップ220で、1)4点か
ら機械原点0へ把持部を(り帰さl、スラーツノ′22
2で小スト」ンピコータヘ正常終了の情報を出力し、一
つの刈払測定のルーチンが完r!Jる。 ステップ208 ’r 11/Iff 1.i iiが
if/ ’うれイにい場合には、加工物体が所定の勺γ
)、て”hいの−ぐ、1ノー処即どして、把持部をA7
1・(14、A9・u’J連続しC駆動し、点1−)5
へ移動(きμ、不合路側−1物体を配設づる。次に機械
原点0へ復帰りる3、ステップ214で位置佑I:!が
[7られない場合1)加1物体J′IOの径が所定の範
囲にCrイ1していイ(いの(゛、j−、i++と同様
な]=ラー処理がfj<zわれる。イして、スラップ2
34で、ボストコンビコータへ異常柊了の情報が送信さ
れる。 −に記の如<l法測定処理がなされ/、:Ik’+、小
ストコンピュータでは、ステップ10 /I (゛、加
]物の合否判定がなされる。不合格の場合にはス)ツー
1114で不合格品のIこめの処理が行1)れ、合格(
・ある場合には、次の13加1−物体に゛)いての処理
が行なわれる。ステップ106からのスIツブ′11−
17 −一 0(,1,13加丁物体についての刈払測定のルーチン
である。+371111物体の場合、△加工物体ど異な
る0月、L、A3、A4、A5、A6の値だ(Jである
。 この様に刈払が異なっても、動作順序及びb向を改めて
プログラムづるまでbなく、△加工物体のときど同一経
路の処理が行なわれる。 以下、同様に加Tする順序に従って、イの加工物体の凡
1法測定処理が(1なゎれる。 この様<い1法測定において加工物体の品種にかかわら
り”、1−1ポツトの動作順序及び動作り向は共通で相
等しい。異なるのは動作移動量が異なるだIJ T”あ
る。従って、本シII III M ml 10は動作
順序と動作り向の情報を記憶した11位ベクトル列記憶
部12をイ」L−rおり、この単イoベクトル列に【)
憶部12のデータは各種の加ゴー物品に刻して」ξ油化
されている。 第6図は他の加1物体の木材形状の例を示したものであ
る。第6図(a)に示すように円手1状のものの相合U
、偏心したしのであっても、その外径、直(¥及び軸方
向の長さをそれぞれ測定づるこ− 18 − どができるa×、第0図〈1))に小づJ、)に中11
.\に円(1状の中心孔をイ+ J 6bの(・あ)(
(jこの様な\1法測定猛dにJ、t)ぞの形状を’I
’ll定りり2、二とがて゛さる。 (発明の91宋) 以1 、 A11IIfJJ、it、 1.に’ lI
+Il all ’A v:11.、 *jl l’l
 (1)人ハサタリのデータを人ノJしさえりれば、f
1′シに1謹づい(11ボツト・の!J+ 4’+軌跡
(! 1:+ ’A′する勤1’+ 2k It、ベク
トルを合成りることが(゛さ、f Iシ1.二)、【・
Sい(Itボ・ントの各駆11+軸を駆IJ+りるl、
−めの駆動fi’ilをffe’l(Iイ)ことが(゛
さる。、×、木・1法測定)it lf’l lま酋1
111 ’l−物体の晶(Φfuに、fの加1物の合格
11法(、一対応しlこIIボッj・の#1IPlの移
動量のJ゛−タの力を人力IJ’jc+ (−、’。 、!、: lj J、す19i定u> y=めン大、1
、) /−IFJl 1’l 4s1+ボッI−LL 
11イfうことが(゛さdン、、 (、Y )(、It
ボ・ソトIt、II怜11賃11’liハ配憶゛合…を
望1←+U <利用りく)ことが(゛さく)。 4、図面の1llIIllイC訳明 第1図1説明本発明の概念を小IJ7+17クタ(t’
グシム(゛ある3、第2図it 4\光明の具体的イ1
 実t#1四に係る本+A 115状刊定菰面の機構部
5)不小り(14成図−1り (゛ある。、ff13図は同実施例装置を使用したMl
’lの全体の接続関係を小リブロックダイjノグラ11
である3、り14図は同実施例r使用された小ストフン
ピ2−タの勅nを示リフ11−ブド−1〜であり、第5
図1.L Qlll all菰−1の仙伯を説明りる〕
n −7I・−t−である。第〔5図は他の加■物体の
形状を小しlこ斜視図、第7図は、勤伯曹素ベク]・ル
をりAる方法を小しIご説明図ぐある。第8図は、本実
施例装置を伯仙さ11る/、、: N)の動作費*ベク
]〜ルをi(z シだ説明図ζ゛ある。 20・・・11ボツh 21・・・ボーfイ22・・・
1″/l、23・・・アーム克持台24・・・)′−ム
 25)・・・把持部!i ’1 、4)、i・・・発
光水r1〕2、;)4・・・受光索子 40・・・1〈さ711定板 43・・・(¥判定1に 30・・加1物体 −20− 第1図 □ レー−−、、−、J 第2図 第3図 培 ■ 31冑
[Change(a) If we express the beta 1-le in coordinates, rO-(Xl-XOlyl-yo, Zl-
XO) rl= (x2-xl, V2-Vl, z2-z
l) E (x3- x2, V3- V2, z3-z2)
becomes. In the conventional control method, the coordinate component of the displacement vector is given, and based on it, the drive amount -6- of the drive shaft of the robot I~ is expressed, and then the J and I robots are controlled ( In this invention, the following intermediate vector sequence 'bIrλ 9゜■−
π/il −< llX0, uyo, 11
10) u2-r2/l r21=<1lX2,
uy2, 1+/2) My father, in response to Zon's middle-ranked heta 1 hell, gave IJ people a small 11. IP+1! 'l' N-vector Tari is in mobile-branch order and (
T, the locus of violent movement made up of 1 plague human being! Jλru. , subordinate) (, remember this ψ-position vector IJII IIt tree first book first lLji?-le separately)
.. 1 Mushroom 1.171 In order to learn L, it is possible to perform actions that are in a certain relationship, such as J, S, Satsuki Dohaku locus, etc. , FIG. 7 (It
l +, -11, 11-like I1 relationship. 181 et al., V.
Mokodo Hakukiki i) 0 to λ・1, the same clam person Kisa Yu 11!ノλ1. :In case 1, 11 Bot 1- Machine I
Iλ point 1) Centered on 0, similar (N motion n locus 51 is I
! 4. Sentence, (r-breathing person string 4! I) λ Lebo, in the corresponding section C building block 1Ill'i where is the trajectory 11
.. 411-7- A similar locus 52 in a broad sense is (q). In this way, if the 1% I it vector 1 ~ le sequence corresponding to the -1 it motion locus is converted into a modicoll and stored,
By giving the character sequence 1), we can easily obtain a motion trajectory that has a certain correlation with the basic motion trajectory. Therefore, the number of fingers is small, and the control grid can be simplified and the memory 44M can be used effectively. As shown in FIG. 7(C), the position pect that points the coordinate origin 0 to the gutter is in this case b (111 of these < Cl vector l - 1, 4 initial trajectory ( For io, by ascending the character sequence of the locus of movement that shows a certain relationship (11
In addition, the motion iI! prime vector contains [When the drive breakdown of one drive shaft is expressed as a 0 contact command η, the motion of each drive shaft can be summed up with each component, which is 9 torque. 6 is good. Cylindrical coordinate system a-axis tal between λpo, r-axis, θ-axis, and !-axis
In the case of + (well, each axis's drive 11 + FA is the component -〇 - 63-dimensional helishi Le (-rJλ is 1, in this case km
b. As mentioned above, the sequence is 1 yen 1 ba 1 pa^
Standard system IJ, I; 1 to 111th position iQ position vector 1-Key column × is an epidemic I☆ vector It consists of the 11th place vector sequence &!Memory part 12 Dojin Kisa Sennin no I/II 1 :) and is a separate disaster, and the human character sequence human power part 13 according to the first v1 order, 1. To read the data 1. '. yo-) and along the predetermined llI locus-)l,: first 11 to 1
1<fl! <. be able to. [Examples] Hereinafter, the present invention will be described in detail in specific examples. *4, 4 A small configuration diagram of the machine line part of the shape determination device (1, 1
1 bot 2 has a body 21 and a shim 22 that rotates C relative to 21, and 1 rim 22 has a 1L] 1 point 23 is disposed 41C.No. Mukdo 1fn2
:Mekoha-1 lesson + luruno'- for the elastic confession against Dere
arm 24 is installed and arm 24 is gripped.
ll 2 1 solid bucket -9-. This 11-bolt-2 can rotate the -1-1822 in the direction of the h Kl angle Di. Also, -1 thin 2
2C,))-The holding table 23 can move in the 1-upward/axial direction. ×, arm 2 = 1 i
The grip part 25, which extends and contracts in the direction of the JR axis, also rotates with respect to the arm 24. Add-1 object J (0) Place m Renri 6 is set (j.
0 and fixed (taken at 1112) (-JLI) consists of a judgment temporary holding spring 41, a light emitting j1M'51, a light receiving element 52, etc. Length judgment number / I01 communication / 1.40 a, and the communication When the hole /1071 is in the predetermined position, the light emitted from the light emitting element 51 passes through the communication hole 40a and is received by the light receiving system element.Similarly, I)iu /'I number 41 in the moving locus l in the direction of h
, IlInri 6 is set up. This much dL? Similarly, 6 is treated as 1, 2, and fixed 45) 1 cut A, 1 mouth, 1 cut, 1 judgment, presser spring/I/I, (Y judgment device/13, light emitting element f53, and light receiving element 4 h) )Become. (¥ Judgment 4k
A communicating hole 43a is provided in 43 (in front; similarly to E, the light emitting element 153 emits light).
The light is received by the light receiving element 54 through a. Next, I will explain how the bot works on this day. First, the workpiece 30 is grasped and the workpiece 30 is moved to the dimension measurement origin. At this time, 31 method measurement II; .At this time, one end of the first object 30 1ffi 3Qa
comes into contact with the quality judgment plate 40, pushes it 1, and the communication hole 40a is set to the specified value (i'/F/3! J J+ +, r
, the light emitted by the light emitting element 51 is transmitted through the communication hole /IOa
The light passes through and is received by the light receiving element 52. Therefore, the light detected by the light receiving element 52 is inputted to the control device 4, and it is determined that the processing object: 30 is X1γ), and the measurement 11
d in the Z-axis direction from point 11 (one movement I!I), it is possible to determine that the blood transfusion 30a has reached the correct position. That is, after moving a predetermined distance IJ, If light is detected from the quaternary Mizuko!j2, it can be determined that the additive 143(11,1 has a predetermined quality.
+1-11-) If no detection signal indicating movement is obtained, the quality of the workpiece 30 is whether it is shorter or longer than a predetermined dimension. To measure the diameter of the workpiece 30, the ram 22 is rotated in the θ direction from the dimension measurement origin, and the object 30 is rotated in the θ direction.
It's time to move. When rotated by a predetermined mβ, the side surface 30b of the workpiece 30 comes into contact with the diameter determination plate 43, the communication hole 43a moves to a predetermined position, and the light receiving element 54 receives light from the light emitting element 53. When this signal is detected, it can be determined that the cough-processed object 30 (, L) has a predetermined diameter. The configuration is shown in Figure 1-1 and Figure I7. 1) In the NO system, host]
is N C,=+runt 1-ra 62 as necessary.
Send data. N(,1n1~Roller 62 is NG'
When the drive shaft of the machine 64 is controlled, the workpiece 30 is transferred to the control device t'l 10 (also referred to as controller) and the workpiece 30 of the machine tool 64 is
Transfer to the stand -12- Output the i and II control data for printing. fljl
The all device 10 drives a predetermined button 2 based on the gram and data, determines the shape of the object 30, and determines whether the object is defective based on the determination result. Next, the operation of the hydrogen moon shape determination SAI will be explained together with the operation of the phos i/=1 nbulator. Figure number, Luli Il+ device (
11 bot control [1-ra) processing ()
11-1-. At step 100 A hn 1-
The NG program for the object is sent from the host=1 pump coater 60 to the NC roller 62. The NG program describes the external dimensions of A that are necessary to add 1J to the △+2F object. For example, if it is a cylindrical object, the length in the axial direction and the straightness (\) are written.Next, in step 102,
Upon receiving the instruction to execute the 010 gram, the N O] controller 62 controls the control device d10. The control device 1110 stores a predetermined A-13- vector vector string storage unit 12 in the Il1 vector sequence storage unit 12. FIG. 8 shows the operation lines. 1
The 11th place herittle sequence is defined as follows. Robot 1-'s mechanical origin is 01 judicial measurement origin is Q, add]-
Grip an object A1/neck [)1, add]] The object is a length judgment plate 40
The position detected by the light-receiving element 52 is P2, and the position detected by the light-receiving element 54 is P3, NC.
Set the workpiece on the processing table of the IC machine (1/set [)]
4. Arrange defective T objects (place W in P5. Gtqp3, u6Ltp3q, u7i, LQD4
, ua+, tp4o, ff+, iqp-vector 1~. Furthermore, the magnitudes of these motion element vectors are respectively A1. A2, . . . A10. The columns u1 to u10 for these unit patterns are stored as vector peaks in which the driving thoughts of each movement axis of n boxes necessary to perform the movement of the unit patterns 1 to 1 are expressed as coordinate components. has been done. In this motion path, regardless of the type of workpiece, the vector magnitudes A1, -14-A2, A7, A8, A9, and A10 are fixed (), and only the humanities A3, A4, Δt3, and A6 are fixed. In addition, it is made variable depending on the scale of the object.However, depending on the motion path taken, it is possible to vary the magnitude of the vector.Therefore, in this embodiment, In order to measure the length and IY of the object, only the amount of movement from point 0 is calculated by the frequency.Step 200: N (E-l
A3, A4, A5, and A6 are determined according to the 1 method. 1 In this embodiment, as shown in FIG.
It is an 11th-order vector, (1; 1, ll G IJ i
l1 place 1] The position angle is l-J rotated and the arc vector at k is taken as I. position) (, A3, A4 are /direction movement amount + l'
C exists, Δt), A6 moves in the direction of θI, and βC′ exists. A3 determined based on these input data,
A4, 85), 86, and A1, A2 that are specified.
, A7, A8, A9, A10, etc., II
I If/Vector 1~L sequence 111・~uH) (!Synthesize-
15- The C1 action vector sequence is synthesized. These motion vector sequences are converted into the drive amount of each drive shaft of the robot. In step 202, [ ] the gripping part of the bot is
1.It's the number one action! Move to the PI point, add
Grip an object 30. In the next step 204, move the gripping part of 1 pot 1 to A2 (J operation U (~11 method) to measurement source 0.Next, in step 206, move the gripping part to A2.
3. (It is 13 (operation 14', F)) It moves to two points.Next, at the slurry 7208, a signal is detected from the light receiving element 52. is determined to be a predetermined length, and in step 210 the ζ1 method measurement origin Q
Return to. Next, in step 212'c', the robot moves in the direction of the azimuth angle θ for a predetermined distance Δ5·u5 and moves to 1) three points. Now, in step 214, the light receiving element f is set from 54 to W.
When the ``initial knee'' is detected, it is determined that the diameter 1 of the object 30 is a predetermined diameter, and in step 216, the gripping portion is moved to the △6 IJ operation 1 method measurement origin. Return. Next, in step 218, grip 1\11 is driven by A7.07 and moved to point P4 on processing table 1 of the NCI machine tool 1! , transfer the workpiece to the NCI machine. Next, in step 220, 1) return the gripping part from the 4 points to the machine origin 0;
In step 2, the normal completion information is output to the small stroke coater, and one brush cutting measurement routine is completed! Jru. Step 208 'r 11/Iff 1. If i ii is if/', the workpiece has a predetermined value γ
), hold the grip part A7 immediately.
1・(14, A9・u'J continuous C drive, point 1-)5
Move to (μ, unmatched road side - 1 object is placed. Next, return to machine origin 0. 3. In step 214, if position I:! is not set 1) add 1 object J'IO. If the diameter is within a predetermined range Cr1 (ino (same as ゛, j-, i++)) = error processing is performed fj<z. Then, slap 2
At 34, information regarding the abnormality is transmitted to the boss combination coater. - The <l method measurement process is performed as described in /, :Ik'+, and in the small storage computer, the pass/fail judgment of step 10 /I (゛, addition) is made. In case of failure, the step In step 1114, the rejected product is processed (line 1) and passed (
- In some cases, the following 13+1-object processing is performed. Swipe '11- from step 106
17 -10 (, 1, 13 This is a cutting measurement routine for cutting objects. In the case of +371111 objects, △ processing objects are different values of 0, L, A3, A4, A5, A6 (J Even if the brush cutting is different in this way, the same path will be processed when processing the △ workpiece without reprogramming the operation order and direction. The process of measuring a processed object using one method is carried out by one method. In such one method measurement, regardless of the type of workpiece, the order and direction of movement of the 1-1 pot are common and the same. The difference lies in the amount of motion movement.Therefore, this system 10 stores the 11th vector string storage unit 12 that stores information on the motion order and motion direction. In this single i o vector sequence [)
The data in the storage unit 12 is engraved on various types of processed articles and converted into oil. FIG. 6 shows an example of the shape of another piece of wood. As shown in Fig. 6(a), the combination U of the circular hand-shaped objects
, even if it is eccentric, its outer diameter and diameter (respectively the length and axial length can be measured with a Junior high school 11
.. \Circle (1-shaped center hole A + J 6b (・A) (
(J, t for such \1 method measurement)
'll always have two or two. (91 Song Dynasty of Invention) 1, A11IIfJJ, it, 1. ni' lI
+Il all 'A v:11. , *jl l'l
(1) As long as the data of the person has been updated, f
It is possible to combine the vectors (゛sa, f Ishi1. two),【·
S (it points each drive 11 + axis to drive IJ + Rirl,
- It is possible to ffe'l (Ii) the second driving fi'il.
111 'l-For the crystal of the object (Φfu, pass 11 of the additive of f. −,'. ,!,: lj J, S19i fixed u> y=mendai, 1
,) /-IFJl 1'l 4s1+Bot I-LL
11 If it is (゛sadon,, (,Y)(,It
Bo Soto It, II Rei 11 Ren 11'li is wishing for a memory combination... 1 ← + U <Use it. 4. Translation of drawings 1
Gushim (゛Aru 3, Figure 2 it 4\Concrete I of Light 1)
Book related to Act #14+A 115th issue of fixed-sized mechanical section 5) Small size (14 construction drawings - 1 (゛), ff13 is the Ml using the same example device
The entire connection relationship of 'l is small rib block die no. 11
3, Figure 14 shows the details of the small pump 2-ta used in the same embodiment.
Figure 1. L Qllll all 菰-1's Senpaku explained]
n −7I・−t−. [Figure 5 is a small perspective view of the shape of another object to be added, and Figure 7 is a small explanatory diagram of the method of applying the shape of the object. FIG. 8 is an explanatory diagram ζ゛ for explaining the operating cost of the device of this embodiment. ...Beau f 22...
1''/l, 23...Arm holding base 24...)'-mu 25)...Gripping part!i'1, 4), i...Luminous water r1]2,;)4. ...Light receiving cable 40...1〈Sa711 Fixed plate 43...(¥ Judgment 1 + 30...1 object -20- Fig. 1 □ Ray -,, -, J Fig. 2 Fig. 3 Illustration ■ 31 helmets

Claims (1)

【特許請求の範囲】[Claims] (1)加工物体を把持し、移動さ已る1−1ボットど、
該ロボットの動作軌跡において、加]物体が所定の位置
に同速したことを検出Jる位西ピンリと、前記ロボッ1
〜の各駆動軸を駆動りる駆動装置と、前記センサからの
信号を入ノ」し、M記馴仙装置へ各駆動軸の駆動量を制
御する信号を出力づる制御装置とから成り、 該制tIl装置は、前記1]ボツトの動作軌跡を構成す
る動作61ベクトル列に銅比1ノ、イの駆動4り要素ベ
クトルの11位ベク]ヘルを動作順序に従って記憶した
111位ベクトル列れ+! 1m部と、前記動作要素ベ
クトル列の大きさの列を人力し、記憶jる動作要素ベク
トルの人ささ列入力部と、前記大きさ刺入ノJ部に記憶
されI、: 1lJl’i=費累ベクトルの大きさ列ど
、前記111位ベクトル列配憶部に記憶されたti位ベ
ク1〜ルと/)r tら動作61ベクトル−1− 列を合成づる合成部と、 該合成部によって合成された動作61ベクトル列に従っ
て、前記各駆動軸を駆動づるための制御信号を発生−5
1’ a ToIJ御信号発生部と、前記センサからの
入力信号の有無を判定づる判定部とから成ることを特徴
とりる累月形状判定狭量。
(1) A 1-1 bot that grips and moves the workpiece,
In the motion trajectory of the robot, the robot 1 detects that the object has moved to a predetermined position at the same speed.
It consists of a drive device that drives each drive shaft of ~, and a control device that inputs the signal from the sensor and outputs a signal that controls the drive amount of each drive shaft to the M recording device, The control device adds the 111th vector sequence in which the 11th vector of the driving 4 element vector of 1] is stored in the 61st vector sequence constituting the movement locus of the bot in the order of the movements. ! 1m section, the size column of the motion element vector column is manually entered and stored in the motion vector column input section and the size insertion section I: 1lJl'i= a combining unit that combines the size sequence of the cost accumulation vector, the ti-order vectors 1 to 1 stored in the 111th-order vector sequence storage unit, and the /) r t et al. operation 61 vector-1- sequence; Generate control signals for driving each of the drive shafts according to the motion 61 vector sequence synthesized by -5
1'a A lunar shape determination narrow unit characterized by comprising a ToIJ control signal generation section and a determination section for determining the presence or absence of an input signal from the sensor.
JP9356184A 1984-05-10 1984-05-10 Device for deciding shape of material Granted JPS60236011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9356184A JPS60236011A (en) 1984-05-10 1984-05-10 Device for deciding shape of material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9356184A JPS60236011A (en) 1984-05-10 1984-05-10 Device for deciding shape of material

Publications (2)

Publication Number Publication Date
JPS60236011A true JPS60236011A (en) 1985-11-22
JPH0517483B2 JPH0517483B2 (en) 1993-03-09

Family

ID=14085657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9356184A Granted JPS60236011A (en) 1984-05-10 1984-05-10 Device for deciding shape of material

Country Status (1)

Country Link
JP (1) JPS60236011A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260442A (en) * 1994-03-24 1995-10-13 Ngk Insulators Ltd Method and apparatus for measuring profile of tubular body
JPH0814876A (en) * 1994-06-28 1996-01-19 Mitsutoyo Corp System for automatically measuring dimensions of workpiece
EP2937172A1 (en) * 2014-04-25 2015-10-28 Aktiebolaget SKF Workpieces processing machine and method for automatically controlling the dimensions of workpieces in such a machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517663A (en) * 1974-07-08 1976-01-22 Tokyo Shibaura Electric Co KOGYOYOROBOTSUTO
JPS5952304A (en) * 1982-09-17 1984-03-26 Nissan Motor Co Ltd Preparation of teaching data for welding robot

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS517663A (en) * 1974-07-08 1976-01-22 Tokyo Shibaura Electric Co KOGYOYOROBOTSUTO
JPS5952304A (en) * 1982-09-17 1984-03-26 Nissan Motor Co Ltd Preparation of teaching data for welding robot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07260442A (en) * 1994-03-24 1995-10-13 Ngk Insulators Ltd Method and apparatus for measuring profile of tubular body
JPH0814876A (en) * 1994-06-28 1996-01-19 Mitsutoyo Corp System for automatically measuring dimensions of workpiece
EP2937172A1 (en) * 2014-04-25 2015-10-28 Aktiebolaget SKF Workpieces processing machine and method for automatically controlling the dimensions of workpieces in such a machine

Also Published As

Publication number Publication date
JPH0517483B2 (en) 1993-03-09

Similar Documents

Publication Publication Date Title
US4163183A (en) Programmable automatic assembly system
US4260941A (en) Programmable automatic assembly system
KR890005032B1 (en) Operation teaching method and apparatus for industrial robot
US8972056B2 (en) Method of finding feasible joint trajectories for an n-dof robot with rotation invariant process (n&gt;5)
JPS59218513A (en) Arc control method of industrial robot
JPS60193016A (en) Robot device
JPS61281305A (en) Articulated robot control device
JPS63291104A (en) Control of terminal effector for industrial robot
EP2523786B1 (en) Method of finding feasible joint trajectories for an n-dof robot with rotation invariant process (n&gt;5)
JP2009134352A (en) Robot motion path creating device, and robot motion path creating method
JPH06508706A (en) machine tool control system
US4814998A (en) Digitizing method
JP7022260B1 (en) Numerical control system
JPS60236011A (en) Device for deciding shape of material
JPH054181A (en) Robot control device
EP0015650B1 (en) Tracer control apparatus
JP2629291B2 (en) Manipulator learning control method
CN112643674A (en) Robot following machining workpiece surface compensation method, robot and storage device
JP2000194409A (en) Program converting device for robot
JPH1190868A (en) Robot control device
Maťuga Control and positioning of robotic arm on CNC cutting machines and their applications in industry
Tyapin et al. Long arm manipulator path interpolation using 4th order b-splines
Stanišié et al. Inverse velocity and acceleration solutions of serial robot arm subassemblies using the canonical coordinate system
WO2022131327A1 (en) Numerical control device, and numerical control system
Lin Path generation for robot polishing system based on cutter location data