JPH07260442A - Method and apparatus for measuring profile of tubular body - Google Patents

Method and apparatus for measuring profile of tubular body

Info

Publication number
JPH07260442A
JPH07260442A JP5348194A JP5348194A JPH07260442A JP H07260442 A JPH07260442 A JP H07260442A JP 5348194 A JP5348194 A JP 5348194A JP 5348194 A JP5348194 A JP 5348194A JP H07260442 A JPH07260442 A JP H07260442A
Authority
JP
Japan
Prior art keywords
tubular body
measuring
laser displacement
robot
measuring head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5348194A
Other languages
Japanese (ja)
Inventor
Iwao Owada
大和田  巌
Shigeki Kira
茂樹 吉良
Ryoichi Hata
亮一 畑
Takashi Matsuoka
貴志 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP5348194A priority Critical patent/JPH07260442A/en
Publication of JPH07260442A publication Critical patent/JPH07260442A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To realize highly accurate measurement of profile by shifting a measuring head equipped with laser displacement gauges in accordance to a design profile preset in a robot and irradiating the surface of a tubular body vertically with a laser beam while keeping the outer periphery of the tubular body within the range of the displacement gauges. CONSTITUTION:A tubular body W is mounted on a surface plate 3 which is the elevated by means of a cylinder and set at a predetermined height. A robot 5 is disposed on the side of a measuring position and a measuring head 6 is fixed to the forward end of the arm thereof. The measuring head 6 is equipped with laser displacement gauges 7 in three stages in order to measure the profile of the tubular body W simultaneously at three heights. Since the laser displacement gauge 7 has limited range of high accuracy measurement, the design profile of the tubular body W is preset in the robot 5 and the arm thereof is rotated or telescoped to shift the measuring head 6 according to the design profile thus keeping the tubular body W within a range. Furthermore, the head 6 is rotated at the forward end of the arm and the surface of the tubular body W is irradiated vertically with a laser beam thus measuring the profile accurately.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばハニカム構造体
のような筒状体の外形測定方法及び装置に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring the outer shape of a tubular body such as a honeycomb structure.

【0002】[0002]

【従来の技術】自動車の排気ガス浄化用の触媒担体とし
て用いられるハニカム構造体は、セラミック製品である
ために焼成時の収縮等によって設計形状からわずかに変
形することが避けられない。このためその外形状を正確
に測定することが必要であるが、接触式の測定器を使用
すると肉薄の表面が欠けたりするおそれがあるため、非
接触式の測定器を使用することが好ましい。
2. Description of the Related Art Since a honeycomb structure used as a catalyst carrier for purifying exhaust gas of an automobile is a ceramic product, it is inevitable that the honeycomb structure is slightly deformed from its designed shape due to shrinkage during firing. For this reason, it is necessary to accurately measure the outer shape, but when using a contact-type measuring device, the thin surface may be chipped, so it is preferable to use a non-contact-type measuring device.

【0003】従来、この目的のためにターンテーブルの
上に置かれて回転するハニカム構造体の端面に平行光線
を照射し、光線が遮断される位置の変化を受光器により
測定する外形測定方法が開発されており、特開昭64-759
04号公報等によって知られている。ところがこの方法で
は、角度によっては光線が到達しない凹部を持つような
ハニカム構造体については、外形を正確に測定できない
という問題があった。
Conventionally, for this purpose, there is a contour measuring method for irradiating an end face of a rotating honeycomb structure placed on a turntable with parallel light rays and measuring a change in a position where the light rays are blocked by a light receiver. Developed, JP-A 64-759
It is known from the 04 publication. However, this method has a problem that the outer shape cannot be accurately measured for a honeycomb structure having a concave portion to which a light ray does not reach depending on an angle.

【0004】そこで本発明者等は、市販されているレー
ザ変位計を用いたハニカム構造体等の筒状体の外形測定
方法を開発中であり、図5に示すように回転円盤21から
垂下された腕22にレーザ変位計23を取付け、この回転円
盤21を定盤24上に置かれたハニカム構造体等の筒状体W
の上方で回転させることによりレーザ変位計23を筒状体
Wの外周で円周軌道を描いて回転させ、筒状体Wの外形
測定を行う技術を開発した。ところがこの方法は筒状体
Wが円筒体である場合には正確な測定が行え実用的であ
るものの、図6に示すように筒状体Wの外形形状・大き
さに汎用性を持たせると測定精度が低下することが判明
した。
Therefore, the present inventors are developing a method for measuring the outer shape of a tubular body such as a honeycomb structure using a commercially available laser displacement meter, and it is suspended from a rotary disk 21 as shown in FIG. A laser displacement meter 23 is attached to the arm 22 and the rotating disk 21 is placed on a surface plate 24, and a cylindrical body W such as a honeycomb structure is formed.
A technique for measuring the outer shape of the cylindrical body W by rotating the laser displacement meter 23 in a circular orbit around the outer circumference of the cylindrical body W by rotating the laser displacement meter 23 above was developed. However, this method is practical when the cylindrical body W is a cylindrical body and can perform accurate measurement, but as shown in FIG. 6, if the outer shape and size of the cylindrical body W are made versatile. It was found that the measurement accuracy was reduced.

【0005】その第1の理由は、レーザ変位計23として
筒状体Wの外形形状・大きさの変化に対応できる測定レ
ンジの広いものを使用すると、レーザ変位計23の測定精
度が悪いものになってしまうからである。その第2の理
由は、レーザ変位計23は被測定物の表面に対して垂直に
レーザを照射した場合に高い測定精度が得られるのであ
るが、レーザ変位計23を円周軌道を描いて回転させると
レーザ変位計23は常にその回転中心を向いているため、
筒状体Wの形状によってはその表面に対して垂直にレー
ザを照射することができなくなるためである。
The first reason is that if a laser displacement meter 23 having a wide measurement range that can cope with changes in the outer shape and size of the cylindrical body W is used, the measurement accuracy of the laser displacement meter 23 becomes poor. Because it will be. The second reason is that the laser displacement meter 23 obtains high measurement accuracy when the laser is irradiated perpendicularly to the surface of the object to be measured, but the laser displacement meter 23 is rotated in a circular orbit. Then the laser displacement meter 23 always faces the center of rotation,
This is because, depending on the shape of the tubular body W, it becomes impossible to irradiate the laser perpendicularly to the surface thereof.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記した問題
点を解決し、筒状体Wの形状・大きさに汎用性があり、
かつ常に高精度なレーザ変位計で正確に外形測定を行う
ことができる筒状体の外形測定方法及び装置を提供する
ためになされたものである。
SUMMARY OF THE INVENTION The present invention solves the above problems and has a versatility in the shape and size of the tubular body W,
In addition, the present invention has been made to provide a method and apparatus for measuring the outer shape of a cylindrical body, which can always accurately measure the outer shape with a highly accurate laser displacement meter.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めになされた本発明の筒状体の外形測定方法は、レーザ
変位計を備えた測定ヘッドを、予め筒状体の設計形状が
セットされたロボットによって筒状体の外周面から略一
定の距離を保って移動させつつ、筒状体の外形を測定す
ることを特徴とするものである。また本発明の筒状体の
外形測定装置は、被測定物体である筒状体が置かれる定
盤と、この定盤の側方に配置され、アームの先端に取り
付けられたレーザ変位計を備えた測定ヘッドを予めセッ
トされた設計形状に従って筒状体の外周面から略一定の
距離を保って移動させるロボットとからなることを特徴
とするものである。
In order to solve the above-mentioned problems, a method for measuring the outer shape of a cylindrical body according to the present invention comprises a measuring head equipped with a laser displacement meter, the design shape of the cylindrical body being set in advance. It is characterized in that the outer shape of the tubular body is measured while the robot is moved while keeping a substantially constant distance from the outer peripheral surface of the tubular body. Further, the tubular outer shape measuring device of the present invention comprises a surface plate on which a cylindrical body which is an object to be measured is placed, and a laser displacement meter which is arranged on the side of the surface plate and attached to the tip of an arm. And a robot for moving the measuring head according to a preset design shape while keeping a substantially constant distance from the outer peripheral surface of the cylindrical body.

【0008】[0008]

【作用】本発明によれば、レーザ変位計を備えた測定ヘ
ッドをロボットに予めセットした設計形状に従って移動
させることにより、測定ヘッドを筒状体の外周面から略
一定の距離を保って移動させつつ筒状体の外周面までの
距離を測定する。このため、筒状体の外周面を常にレー
ザ変位計の高精度で測定可能な測定レンジ内に収めるこ
とができる。またロボットにより測定ヘッドの角度を変
えて筒状体の表面に対して常に垂直にレーザを照射する
ことができる。一般にレーザ変位計において、レーザ照
射方向と測定表面が垂直でなくなりその間の角度が小さ
くなると、精度が悪くなる。ロボットを使用すれば、レ
ーザ照射方向が常に測定表面に対して垂直となるようレ
ーザ変位計を配置できる。これらの理由により本発明に
よれば各種の断面形状を持つ筒状体の外形を精度よく測
定することが可能となる。
According to the present invention, the measuring head equipped with the laser displacement gauge is moved according to the design shape preset in the robot, so that the measuring head is moved at a substantially constant distance from the outer peripheral surface of the cylindrical body. While measuring the distance to the outer peripheral surface of the tubular body. For this reason, the outer peripheral surface of the tubular body can always be kept within the measurement range of the laser displacement meter, which enables highly accurate measurement. Further, the robot can change the angle of the measuring head to irradiate the laser always perpendicularly to the surface of the cylindrical body. Generally, in a laser displacement meter, if the laser irradiation direction is not perpendicular to the measurement surface and the angle between them becomes small, the accuracy deteriorates. A robot can be used to position the laser displacement gauge so that the laser irradiation direction is always perpendicular to the measurement surface. For these reasons, according to the present invention, it is possible to accurately measure the outer shape of a tubular body having various cross-sectional shapes.

【0009】[0009]

【実施例】以下に本発明を図示の実施例によって更に詳
細に説明する。図1において、1は機台、2は機台上に
設けられたレール、3はこのレール2上を図示を略した
1軸ロボットにより走行する定盤である。定盤には筒状
体Wを所定位置にセットするため、筒状体Wの外周形状
を示すマークが設けてある。ただしそのマークに対する
筒状体Wのセットは、必ずしも高度の正確さを要求され
るものではない。図1に想像線で示す位置において筒状
体Wは定盤3の上に載せられ、定盤3とともに実線で示
す測定位置まで走行する。測定位置には定盤3を水平に
保つつつ突き上げるためのシリンダ4が設けられてお
り、定盤3とともに筒状体Wを所定の高さに置く。
The present invention will be described below in more detail with reference to the illustrated embodiments. In FIG. 1, 1 is a machine base, 2 is a rail provided on the machine base, and 3 is a surface plate which runs on the rail 2 by a uniaxial robot (not shown). A mark indicating the outer peripheral shape of the tubular body W is provided on the surface plate in order to set the tubular body W at a predetermined position. However, the setting of the tubular body W for the mark does not necessarily require a high degree of accuracy. At the position shown by the imaginary line in FIG. 1, the tubular body W is placed on the surface plate 3 and travels together with the surface plate 3 to the measurement position shown by the solid line. A cylinder 4 for pushing up the surface plate 3 while keeping the surface plate 3 horizontal is provided at the measurement position, and the cylindrical body W is placed at a predetermined height together with the surface plate 3.

【0010】この測定位置の側方には、ロボット5が設
置されている。このロボット5のアームの先端には図2
に拡大して示したような測定ヘッド6が取り付けられて
いる。実施例の測定ヘッド6は上下3段にレーザ変位計
7を備えたものであり、同時に3つの高さで筒状体Wの
外形を測定することができるようになっているが、レー
ザ変位計7は1つであっても差し支えない。
A robot 5 is installed on the side of this measurement position. As shown in FIG.
A measuring head 6 as shown enlarged in FIG. The measuring head 6 of the embodiment is provided with laser displacement gauges 7 in upper and lower three stages, and the outer shape of the cylindrical body W can be simultaneously measured at three heights. 7 may be one.

【0011】レーザ変位計7は前述したように高精度で
測定可能な測定レンジが比較的狭いのであるが、本発明
では測定しようとする筒状体Wの設計形状をロボット5
にセットしておき、図3、図4に示すようにロボット5
のアームを回転及び伸縮させることにより、測定ヘッド
6をセットされた設計形状に従って移動させる。またこ
れと同時に測定ヘッド6自体もロボット5のアームの先
端で回転させる。この結果、レーザ変位計7は筒状体W
の外周面から略一定の距離を保ち、しかもレーザ光線が
常に筒状体Wの外周面に対して垂直に照射される状態で
移動することとなる。
As described above, the laser displacement meter 7 has a relatively narrow measurement range in which high precision measurement is possible. In the present invention, however, the robot 5 has the designed shape of the cylindrical body W to be measured.
The robot 5 as shown in FIGS. 3 and 4.
The measuring head 6 is moved in accordance with the set design shape by rotating and expanding / contracting the arm. At the same time, the measuring head 6 itself is rotated by the tip of the arm of the robot 5. As a result, the laser displacement meter 7 is
The laser beam moves while being kept at a substantially constant distance from the outer peripheral surface of the cylindrical body W, and the laser beam is always irradiated perpendicularly to the outer peripheral surface of the cylindrical body W.

【0012】このとき、レーザ変位計7は筒状体Wの外
周面を常にその測定レンジ内で捉えることができるの
で、筒状体Wの外周面までの距離を高い精度で測定する
ことができる。また移動中におけるレーザ変位計7自体
の座標はロボット5にセットされたデータに基づいて正
確に把握できるので、筒状体Wの断面形状が円だけでな
く多円弧集合体のような形状の場合も、筒状体Wの外形
状の正確な測定が可能である。特に実施例のように複数
のレーザ変位計7を測定ヘッド6に設けておけば、同時
に複数の高さにおける筒状体Wの外形状を測定すること
ができる。
At this time, since the laser displacement meter 7 can always capture the outer peripheral surface of the cylindrical body W within its measurement range, the distance to the outer peripheral surface of the cylindrical body W can be measured with high accuracy. . Further, since the coordinates of the laser displacement meter 7 itself during movement can be accurately grasped based on the data set in the robot 5, when the sectional shape of the cylindrical body W is not only a circle but also a multi-arc assembly, Also, the outer shape of the tubular body W can be accurately measured. In particular, if a plurality of laser displacement gauges 7 are provided in the measuring head 6 as in the embodiment, the outer shape of the tubular body W at a plurality of heights can be measured at the same time.

【0013】なお、実施例の測定ヘッド6には高さ測定
用リニアゲージ8が設けてある。この高さ測定用リニア
ゲージ8はレーザ変位計7による測定が終了した後に測
定ヘッド6を回転させ、高さ測定用リニアゲージ8の下
端を筒状体Wの上面に接触させて筒状体Wの高さを測定
するためのものであるが、本発明においては必須のもの
ではない。このようにして1個の筒状体Wの測定が終了
したら、定盤3は下降し、1軸ロボットにより取り出し
位置まで戻る。
The measuring head 6 of the embodiment is provided with a linear gauge 8 for height measurement. The height measuring linear gauge 8 rotates the measuring head 6 after the measurement by the laser displacement meter 7 is finished, and the lower end of the height measuring linear gauge 8 is brought into contact with the upper surface of the cylindrical body W to make the cylindrical body W It is for measuring the height of the, but is not essential in the present invention. When the measurement of one cylindrical body W is completed in this way, the surface plate 3 is lowered and returned to the take-out position by the uniaxial robot.

【0014】[0014]

【発明の効果】以上に説明したように、本発明の筒状体
の外形測定方法及び装置によれば、ロボットにより測定
ヘッドを予めセットされた設計形状に従って筒状体の外
周面から略一定の距離を保って移動させつつ、筒状体の
外形を測定するようにしたので、筒状体Wの形状が円筒
形から大きく外れた場合にも常に正確にその外形測定を
行うことができる利点がある。よって本発明はハニカム
構造体のような筒状体の外形測定に好適なものである。
As described above, according to the method and apparatus for measuring the outer shape of the cylindrical body of the present invention, the measuring head is substantially constant from the outer peripheral surface of the cylindrical body according to the preset design shape by the robot. Since the outer shape of the tubular body is measured while moving the tubular body W while maintaining the distance, there is an advantage that the outer shape of the tubular body W can always be accurately measured even when the shape of the tubular body W deviates greatly from the cylindrical shape. is there. Therefore, the present invention is suitable for measuring the outer shape of a tubular body such as a honeycomb structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

【図2】実施例の測定ヘッドの拡大斜視図である。FIG. 2 is an enlarged perspective view of the measuring head of the embodiment.

【図3】測定状態を示す側面図である。FIG. 3 is a side view showing a measurement state.

【図4】測定状態を示す平面図である。FIG. 4 is a plan view showing a measurement state.

【図5】円盤式の測定装置を示す側面図である。FIG. 5 is a side view showing a disc type measuring device.

【図6】円盤式の測定装置におけるレーザ変位計と筒状
体Wの外周面との距離の変化を示す平面図である。
FIG. 6 is a plan view showing a change in distance between the laser displacement meter and the outer peripheral surface of the cylindrical body W in the disc type measuring device.

【符号の説明】[Explanation of symbols]

3 定盤、5 ロボット、6 測定ヘッド、7 レーザ
変位計、W 筒状体
3 surface plate, 5 robots, 6 measuring heads, 7 laser displacement meter, W cylindrical body

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松岡 貴志 愛知県名古屋市瑞穂区須田町2番56号 日 本碍子株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takashi Matsuoka 2-56 Sudacho, Mizuho-ku, Aichi Prefecture Nagoya City

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 レーザ変位計を備えた測定ヘッドを、予
め筒状体の設計形状がセットされたロボットによって筒
状体の外周面から略一定の距離を保って移動させつつ、
筒状体の外形を測定することを特徴とする筒状体の外形
測定方法。
1. A measuring head equipped with a laser displacement gauge is moved by a robot having a design shape of a tubular body set in advance while keeping a substantially constant distance from the outer peripheral surface of the tubular body,
A method for measuring the outer shape of a tubular body, which comprises measuring the outer shape of the tubular body.
【請求項2】 レーザ照射方向が測定表面に対してほぼ
垂直である請求項1 に記載の筒状体の外形測定方法。
2. The method for measuring the outer shape of a cylindrical body according to claim 1, wherein the laser irradiation direction is substantially perpendicular to the measurement surface.
【請求項3】 被測定物体である筒状体が置かれる定盤
と、この定盤の側方に配置され、アームの先端に取り付
けられたレーザ変位計を備えた測定ヘッドを予めセット
された設計形状に従って筒状体の外周面から略一定の距
離を保って移動させるロボットとからなることを特徴と
する筒状体の外形測定装置。
3. A surface plate on which a tubular body, which is an object to be measured, is placed, and a measuring head provided with a laser displacement meter, which is arranged on the side of the surface plate and is attached to the tip of an arm, is preset. An outer shape measuring device for a tubular body, comprising: a robot that moves according to a design shape while keeping a substantially constant distance from the outer peripheral surface of the tubular body.
JP5348194A 1994-03-24 1994-03-24 Method and apparatus for measuring profile of tubular body Pending JPH07260442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5348194A JPH07260442A (en) 1994-03-24 1994-03-24 Method and apparatus for measuring profile of tubular body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5348194A JPH07260442A (en) 1994-03-24 1994-03-24 Method and apparatus for measuring profile of tubular body

Publications (1)

Publication Number Publication Date
JPH07260442A true JPH07260442A (en) 1995-10-13

Family

ID=12944042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5348194A Pending JPH07260442A (en) 1994-03-24 1994-03-24 Method and apparatus for measuring profile of tubular body

Country Status (1)

Country Link
JP (1) JPH07260442A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489060A1 (en) * 2002-03-27 2004-12-22 Ngk Insulators, Ltd. Honeycomb structural body, method of manufacturing the structural body, and method of measuring outer peripheral distortion of the structural body
CN107110641A (en) * 2014-12-30 2017-08-29 安萨尔多能源公司 Device for the uniformity of the rotor disk of testing gas turbine
JP2020134178A (en) * 2019-02-13 2020-08-31 株式会社ブリヂストン Sector mold inspection device
JP2020142244A (en) * 2019-03-04 2020-09-10 鋼鈑工業株式会社 Tail end detection device and detection method for coiled metal plate
JP2020169829A (en) * 2019-04-01 2020-10-15 株式会社日立製作所 Surface inspection device and surface defect determination method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236011A (en) * 1984-05-10 1985-11-22 Toyoda Autom Loom Works Ltd Device for deciding shape of material
JPS62242812A (en) * 1986-04-15 1987-10-23 Daihatsu Motor Co Ltd Automatic measuring instrument
JPH01174907A (en) * 1987-12-29 1989-07-11 Central Glass Co Ltd Method and apparatus for measuring shape of curved surface
JPH05187859A (en) * 1992-01-14 1993-07-27 Tokyo Seimitsu Co Ltd Method for measuring contour and shape of object
JP4098710B2 (en) * 2003-12-19 2008-06-11 セーラー万年筆株式会社 Applicator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60236011A (en) * 1984-05-10 1985-11-22 Toyoda Autom Loom Works Ltd Device for deciding shape of material
JPS62242812A (en) * 1986-04-15 1987-10-23 Daihatsu Motor Co Ltd Automatic measuring instrument
JPH01174907A (en) * 1987-12-29 1989-07-11 Central Glass Co Ltd Method and apparatus for measuring shape of curved surface
JPH05187859A (en) * 1992-01-14 1993-07-27 Tokyo Seimitsu Co Ltd Method for measuring contour and shape of object
JP4098710B2 (en) * 2003-12-19 2008-06-11 セーラー万年筆株式会社 Applicator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1489060A1 (en) * 2002-03-27 2004-12-22 Ngk Insulators, Ltd. Honeycomb structural body, method of manufacturing the structural body, and method of measuring outer peripheral distortion of the structural body
EP1489060A4 (en) * 2002-03-27 2005-11-09 Ngk Insulators Ltd Honeycomb structural body, method of manufacturing the structural body, and method of measuring outer peripheral distortion of the structural body
CN107110641A (en) * 2014-12-30 2017-08-29 安萨尔多能源公司 Device for the uniformity of the rotor disk of testing gas turbine
CN107110641B (en) * 2014-12-30 2020-02-28 安萨尔多能源公司 Device for testing the consistency of a rotor disk of a gas turbine
JP2020134178A (en) * 2019-02-13 2020-08-31 株式会社ブリヂストン Sector mold inspection device
JP2020142244A (en) * 2019-03-04 2020-09-10 鋼鈑工業株式会社 Tail end detection device and detection method for coiled metal plate
WO2020179717A1 (en) * 2019-03-04 2020-09-10 鋼鈑工業株式会社 Device and method for detecting tail end of coiled metal sheet
JP2020169829A (en) * 2019-04-01 2020-10-15 株式会社日立製作所 Surface inspection device and surface defect determination method

Similar Documents

Publication Publication Date Title
JP5527719B2 (en) Method and apparatus for measuring an object to be measured
EP2162701B1 (en) Methods for calibrating a scanning head
US4080741A (en) Measuring apparatus
US5461797A (en) Object measuring system
US5574233A (en) Non-contact railway wheel test apparatus and method
US11092430B2 (en) Measurement of toothed articles utilizing multiple sensors
JPS6238642B2 (en)
CN112378345B (en) Gear angle offset measuring device and method based on laser displacement sensor
CN112254667B (en) Gear offset measurement method based on laser displacement sensor
JP2006194739A (en) Apparatus and method for measuring fluctuation of object to be measured
JPH05332731A (en) Form measuring device
US5097602A (en) Apparatus and method for automated inspection of a surface contour on a workpiece
CN1357099A (en) Device for contactless three-dimensional measurement of bodies and method for determining co-ordinate system for measuring point co-ordinates
JPH0515964B2 (en)
JPH07260442A (en) Method and apparatus for measuring profile of tubular body
JPH08122050A (en) Contour shape-measuring method and tool for measurement
JP2000146564A (en) Precision confirmation device for contact system measuring instrument of tube inner diameter
CN214149047U (en) Round hole centre of a circle positioner
JP3776526B2 (en) Measuring method
CN112833733A (en) Circular hole circle center positioning device and positioning method
JP2010085341A (en) Spherical shape measuring device and spherical shape measuring method
US4828524A (en) Rail mapping method and apparatus
JP2000136924A (en) Calibration device for contact-type pipe-inside-diameter measuring apparatus
JPS6334405B2 (en)
JPH03113304A (en) Method and device for noncontact shape measurement

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980714