JPS60235709A - Carbon film - Google Patents

Carbon film

Info

Publication number
JPS60235709A
JPS60235709A JP59090777A JP9077784A JPS60235709A JP S60235709 A JPS60235709 A JP S60235709A JP 59090777 A JP59090777 A JP 59090777A JP 9077784 A JP9077784 A JP 9077784A JP S60235709 A JPS60235709 A JP S60235709A
Authority
JP
Japan
Prior art keywords
film
acrylonitrile
carbon film
carbon
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59090777A
Other languages
Japanese (ja)
Inventor
Masahiro Tanaka
雅裕 田中
Takashi Fushiie
節家 孝志
Yuichi Fukui
福居 雄一
Yoshitaka Imai
今井 義隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP59090777A priority Critical patent/JPS60235709A/en
Publication of JPS60235709A publication Critical patent/JPS60235709A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:A carbon film that is obtained by forming a specific acrylonitrile polymer into a film and roasting it, thus showing high mechanical strength and high electroconductivity. CONSTITUTION:An acrylonitrile polymer consisting of more than 60wt% of acrylonitrile and less than 40wt% of other polymerizable monomers such as methacrylic acid is dissolved in a solvent such as dimethylformamide, the solution is extruded through a die or slit nozzle into a film, drawn, washed and dried to form a precursor film of acrylonitrile of 0.1-100mum thickness. Then, the film is heat-treated at 200-350 deg.C in an oxidative atmosphere to get flame-resistant structure and heated at 400-3,000 deg.C in an inert atmosphere to give the objective carbon film.

Description

【発明の詳細な説明】 〔技術分野〕 本発明は新規な炭素フィルムに関するものである。[Detailed description of the invention] 〔Technical field〕 The present invention relates to a novel carbon film.

〔背景技術〕[Background technology]

1イ来より炭素材t゛)は金F7′iに匹敵する導電体
であ7)にもかかわらず、その機械的な脆さの為にフィ
ルム状に賦形されたものは少ない。
Although carbon material t') has been a conductor comparable to gold F7'i since 1997, it has rarely been shaped into a film due to its mechanical fragility.

一般に工業化されている炭素フィルムは、黒鉛粒子を物
理的に圧着して賦形されたものである。
Generally, industrialized carbon films are formed by physically compressing graphite particles.

このようにして作られた炭素フィルムは、厚みも0.5
朋前後とフィルムとしてははなはだjワいもので、機械
強度的にも極めて弱い。
The carbon film made in this way has a thickness of 0.5
As a film, it is extremely weak, and its mechanical strength is also extremely weak.

次に導電性のあるフィルムとい5観点よりツメた場合、
一般に工業化されているものは、予め高分子樹脂をフィ
ルム状に賦形(2、そのフィルムの上に金属などの導電
体をイオ/プレーティ/グ、真空蒸着、スパッタリング
などの物理的手法で被覆し7たものか、あるいは高分子
樹脂中に炭素繊維や微粉末の金属や黒鉛などの導電体を
混入させ、フィルム状に賦形したものである。
Next, when considering a conductive film from five viewpoints,
Generally, industrialized products are made by forming a polymer resin into a film in advance (2) and coating the film with a conductor such as metal using physical methods such as ion/plating/gluing, vacuum deposition, or sputtering. Alternatively, carbon fibers, finely powdered metals, graphite, or other conductors are mixed into a polymer resin, and the mixture is formed into a film.

つまり、これらの導電性フィルムは、全て絶縁体である
高分子樹脂と導電物質との組合せであるということがで
きる。このことはフイルノ・とじての賦形の制約を受け
るばかりでな(、製造コストにも大きな影響を受ける。
In other words, these conductive films can be said to be a combination of a polymer resin, which is an insulator, and a conductive substance. This is not only subject to the constraints of the shaping process (it is also greatly affected by manufacturing costs).

又物理的手法を用いて被覆したものについては、樹脂フ
ィルムとの密着性や耐摩耗性などに問題がある。
Furthermore, those coated using physical methods have problems in adhesion to resin films, abrasion resistance, etc.

導電体を樹脂中に混入させ、フィルム状に賦形したもの
については厚みを混入物質の大きさ以下には出来ないと
いう制約と、導電体を均一に分散させるのが回軸である
という問題がある。
When a conductor is mixed into a resin and formed into a film, there is a restriction that the thickness cannot be made less than the size of the mixed substance, and there is a problem that the rotation axis is required to uniformly disperse the conductor. be.

○t1らの問題点から0.1 mm以下の厚さで柔軟性
に富む導電体のt)’+−−物質とし7てのフィルムは
いfだ一般に工業化されていない状況[ある。
○ Due to the problems of t1 and others, films as t)'+-- materials, which are highly flexible conductors with a thickness of 0.1 mm or less, have not generally been industrialized.

〔発明の目的〕[Purpose of the invention]

本発明は機械的に高強度上つ導電性のある炭素フィルム
を入手することを目的としている。
The object of the present invention is to obtain a carbon film having high mechanical strength and conductivity.

〔発明の構成〕[Structure of the invention]

即ち、本発明の要旨とするとごろは、アクリロニトリル
□ Q wt%以上含有するアクリロニトリル系重合体
をフィルム状に賦形し、そのフィルムを焼成して得られ
る炭素フィルムにある。
That is, the gist of the present invention lies in a carbon film obtained by shaping an acrylonitrile polymer containing at least □ Q wt % of acrylonitrile into a film and firing the film.

本発明を実施するに際して用いる重合体は、アクリロニ
トリルを5 Q wt%以上と必要に応じて他のコモノ
マー例えばアクリル酸、メタクリル酸、メチルアクリレ
ート、エチルアク17レート、ブチルアクリレート等を
40 wt%未満の量で適宜組合せ、水系の乳化又は懸
濁重合法で水系重合により作ることが出来る。重合はバ
ッチ法又は連続法で行なわれる。
The polymer used in carrying out the present invention contains at least 5 Q wt% of acrylonitrile and, if necessary, other comonomers such as acrylic acid, methacrylic acid, methyl acrylate, ethyl acrylate, butyl acrylate, etc. in an amount of less than 40 wt%. It can be produced by aqueous emulsion or suspension polymerization by appropriately combining and aqueous polymerization. Polymerization is carried out batchwise or continuously.

次にフィルムを賦形するに際して、前述重合体を溶解す
る溶媒としては、ジメチルホルムアミド、ジメチルアセ
トアミド、ジブチルスルホキシド系の有機溶剤を用いて
、フィルム賦形原液をつ(る。
Next, when shaping a film, a film shaping stock solution is prepared using an organic solvent such as dimethylformamide, dimethylacetamide, or dibutyl sulfoxide as a solvent for dissolving the polymer.

この原液をTダイ又はスリットノズルなどを用い半乾式
−半湿式法にて賦形し、延伸、洗浄。
This stock solution is shaped by a semi-dry/semi-wet method using a T-die or slit nozzle, stretched, and washed.

乾燥を経て、アクリロニトリルプレカーサーフィルムを
得る。
After drying, an acrylonitrile precursor film is obtained.

か(の如(して得られるプレカーサーフィルムの厚みは
、Tダイ又はスリットノズルなどの吐出部でのスリット
部間隙調整と吐出量の増減及び延伸の倍率により決定さ
れる。本発明のプレカーサーフィルムの厚みは0.1μ
m以上100μm以下が望ましい。
The thickness of the precursor film obtained in this manner is determined by adjusting the gap between the slits in the discharge section of the T-die or slit nozzle, increasing or decreasing the discharge amount, and the stretching ratio. Thickness is 0.1μ
The thickness is preferably 100 μm or more.

すなわち厚みが0.1μm未満の場合はフィルム自体の
強度がなく、延伸から巻取迄の工程中で切断や皺の問題
が生じる。
That is, when the thickness is less than 0.1 μm, the film itself has no strength, and problems such as cutting and wrinkling occur during the process from stretching to winding.

又厚みが100μmを越した場合は、焼成段階における
初期酸化工程の処理時間が長(なるばかりでなく、次の
炭素化工程での処理により、フィルム厚みの中心部分に
穴ができ中空状となる。
In addition, if the thickness exceeds 100 μm, the initial oxidation process in the firing stage will not only take a long time (not only will the process in the next carbonization process cause holes in the center of the film thickness, making it hollow). .

次にこのプレカーサーフィルムな初期酸化工(呈の酸化
性雰囲気中200°′C〜350℃で熱処理し、このプ
レカーサーフィルムに耐炎化構造を付与する。
Next, this precursor film is subjected to initial oxidation treatment (heat treatment at 200°C to 350°C in an oxidizing atmosphere) to impart a flame-resistant structure to this precursor film.

この場合伸長し1よがも処理を行なうことで得られろシ
ートの柔軟性と強度を向上させることができる。
In this case, the flexibility and strength of the resulting sheet can be improved by stretching and further processing.

又過大な伸長はフィルムの走行方向と平行の裂けが生じ
、伸長の範囲としては1%から20係が好ましい。
Excessive elongation may cause tears parallel to the running direction of the film, and the preferable elongation range is 1% to 20%.

次いで炭素化工程の不活性雰囲気中400℃〜3000
 ’Cで熱処理し、炭素フィルムとする。
Then, in an inert atmosphere in the carbonization step, the temperature is 400°C to 3000°C.
Heat treated at 'C to form a carbon film.

この炭素化工程においても伸長を行なうことで炭素フ4
ルムの機械的引張強度を向上させることができる。
Also in this carbonization step, the carbon film is
The mechanical tensile strength of the lume can be improved.

炭素化工程の熱処理温度は、特に高い引張強度の炭素フ
ィルムを得よりとする場合は、処理温度を1500℃以
下にすることが望揉しく・。
The heat treatment temperature in the carbonization step is desirably 1500° C. or lower, especially if a carbon film with high tensile strength is to be obtained.

又導電性の良好な炭素フィルムを得る場合は、処理温度
を2400℃以−ヒの高温で焼成することが望ましい。
Further, in order to obtain a carbon film with good conductivity, it is desirable to perform firing at a processing temperature of 2400° C. or higher.

〔実施例〕〔Example〕

以下実施例によつ1本発明の詳細な説明する。 The present invention will be explained in detail below by way of examples.

実施例1 組成がアクリロニトリル(以−トANと略称)98 w
teI)及びメタクリル酸(以下MAAと略称)2wt
%でその比粘度(0,]J’の重合体に0.1モルのロ
ダンソーダを含有するジメチルホルムアミドIQOml
K溶解し25°Cで測定)が0,20のANN電車合体
以下の条件で水系重合にて連続的に調整した。
Example 1 Composition is acrylonitrile (hereinafter abbreviated as AN) 98w
teI) and methacrylic acid (hereinafter abbreviated as MAA) 2wt
Dimethylformamide IQOml containing 0.1 mol of rhodan soda in a polymer whose specific viscosity is (0,]J' in %
It was continuously prepared by aqueous polymerization under conditions below the ANN train coalescence with K dissolved at 25°C) of 0.20.

単量体’ AN/MAA = 98/2単量体/水の重
量比 1/6 触媒:過硫酸アンモニウム/酸性 亜硫酸ソーダ系レドックス開始剤 pH:硫酸を使用しpH3±0.2に制御温度=55℃ 平均滞在時間ニア0分 重合釜は内容積5001であり攪拌しながら上記単素体
、水及び触媒水溶液、硫酸を連続的に滴下し、なから重
合釜オーバーフローしながら連続的に重合率75%の状
態で重合スラリーを取出し、蓚酸ソーダを加えて、重合
を停止トさせ、ついで脱水及び洗浄を行なった。
Monomer' AN/MAA = 98/2 Monomer/water weight ratio 1/6 Catalyst: Ammonium persulfate/acidic sodium sulfite redox initiator pH: Use sulfuric acid to control pH to 3±0.2 Temperature = 55 °C Average residence time: Near 0 minutes The polymerization pot has an internal volume of 5001, and the above-mentioned monomer, water, catalyst aqueous solution, and sulfuric acid are continuously added dropwise while stirring, and the polymerization rate is continuously increased to 75% while the polymerization pot overflows. The polymerization slurry was taken out in this state, sodium oxalate was added to stop the polymerization, and then it was dehydrated and washed.

洗浄、脱水されたウエットポリマーヲー、Elベレット
に成型し、ついで100〜130℃の空気中で乾燥し、
重合体を得た。得られた重合体粒子を粉砕機で微粉末化
し、次のフィルム賦形工程に移した。
The washed and dehydrated wet polymer was molded into an El pellet, and then dried in air at 100 to 130°C.
A polymer was obtained. The obtained polymer particles were pulverized using a pulverizer and transferred to the next film shaping step.

該重合体粉末なジメチルホルムアミドに客解し、26 
wt%の原液を調製し、その原液な脱泡して80℃に保
温し、フィルム賦形原液とした。
The polymer powder was dissolved in dimethylformamide, and 26
A wt% stock solution was prepared, and the stock solution was defoamed and kept at 80° C. to obtain a film-forming stock solution.

この原液を、通常の半乾式−半湿式法により厚さ1.O
ttmのブレカーサ−フィルムを得た。
This stock solution was applied to a thickness of 1.5 mm using the normal semi-dry-semi-wet method. O
A TTM breaker film was obtained.

フィルム賦形においては、スリット長50朋でスリット
部間隙を] OOttm としたノズルより原yf(を
吐出させ、−1fi空気中を5層上行させたのちに、1
0℃に保温された7 5 wt%のジメチルホルムアミ
ド水溶液中に導き、凝固を完結させたのち、熱水中で洗
浄しながら5倍延伸した。ついで油剤処理、乾燥を行な
い巻取った。
In film shaping, original yf (was ejected from a nozzle with a slit length of 50 mm and a slit gap of ]OOttm, and after traveling up 5 layers in -1fi air, 1
The film was introduced into a 75 wt % dimethylformamide aqueous solution kept at 0°C to complete coagulation, and then stretched 5 times while being washed in hot water. Then, it was treated with an oil agent, dried, and rolled up.

得られたブレカーサ−フィルムを一旦空気中で200℃
から270 ”Cの昇温勾配をもっ熱処理炉で5%の伸
長をかけなから耐炎化処理した。
The obtained breaker film was heated in air at 200°C.
After being elongated by 5% in a heat treatment furnace with a temperature gradient of 270"C, flame resistance treatment was performed.

次いで窒素中で400℃から1500”Cの昇温勾配を
もつ熱処理炉で5%の伸長をかけなが1つ炭素化し、厚
さ6μmの炭素フィルムN1を得た。さらにこの炭素フ
ィルムN]を窒素中2600℃で熱処理して、厚さ5.
5μmの炭素フィルム歯2を得た。
Next, carbonization was carried out in a heat treatment furnace with a temperature increase gradient from 400°C to 1500"C in nitrogen while elongating by 5% to obtain a carbon film N1 with a thickness of 6 μm. Further, this carbon film N] was Heat treated at 2600°C in nitrogen to a thickness of 5.
A carbon film tooth 2 of 5 μm was obtained.

第1表に本発明で得られた炭素フィルムNQ]と−2の
引張強度と工業化されている黒鉛フィルム(日本カーボ
ン(株)製、二カフィルム)及びポリエステル樹脂の引
張強さを示す。
Table 1 shows the tensile strength of the carbon film NQ] and -2 obtained by the present invention, the industrialized graphite film (manufactured by Nippon Carbon Co., Ltd., Nika Film), and the tensile strength of polyester resin.

第2表に本発明で得られた炭素フィルム猶1とl’I&
12と一般の黒鉛質材、ポリエステル樹脂及び銅の体積
固有抵抗を示す。
Table 2 shows the carbon films obtained by the present invention.
12 shows the volume resistivity of general graphite material, polyester resin, and copper.

第1表 第 2 表 〔発明の効果〕 本発明による炭素フ4ルムは、微粉末黒鉛を圧着した黒
鉛フィルムや一般的な導電性フィルムの支持体となるポ
リエステル樹脂などに比べ飛曜的に高い強度をもつ。又
良導体であるところの銅には及ばないが黒鉛質材並の導
電性をもつものである。
Table 1 Table 2 [Effects of the Invention] The carbon film according to the present invention has significantly higher carbon film resistance than graphite films with finely powdered graphite bonded to them or polyester resins used as supports for general conductive films. Has strength. Although it is not as good as copper, which is a good conductor, it has conductivity comparable to graphite material.

Claims (1)

【特許請求の範囲】[Claims] アクリロニトリルを6 (l wt%以上含有するアク
リロニトリル系重合体をフィルム状に賦形し、そのフィ
ルムを焼成して得られる炭素フィルム。
A carbon film obtained by shaping an acrylonitrile polymer containing 6 (l wt% or more) into a film and firing the film.
JP59090777A 1984-05-07 1984-05-07 Carbon film Pending JPS60235709A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59090777A JPS60235709A (en) 1984-05-07 1984-05-07 Carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59090777A JPS60235709A (en) 1984-05-07 1984-05-07 Carbon film

Publications (1)

Publication Number Publication Date
JPS60235709A true JPS60235709A (en) 1985-11-22

Family

ID=14008030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59090777A Pending JPS60235709A (en) 1984-05-07 1984-05-07 Carbon film

Country Status (1)

Country Link
JP (1) JPS60235709A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330754A (en) * 2019-08-05 2019-10-15 中国科学院山西煤炭化学研究所 Primary film, polyacrylonitrile film, polyacrylonitrile-radical C film and preparation method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330754A (en) * 2019-08-05 2019-10-15 中国科学院山西煤炭化学研究所 Primary film, polyacrylonitrile film, polyacrylonitrile-radical C film and preparation method

Similar Documents

Publication Publication Date Title
EP1425166B1 (en) Method of forming conductive polymeric nanocomposite materials and materials produced thereby
EP3012359A1 (en) Polyacrylonitrile-based precursor fiber for carbon fibre, and production method therefor
WO1999010572A1 (en) Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and carbon fiber obtained from the precursor fiber
KR101577429B1 (en) Polyacrylonitrile polymer and the spinning solution comprising the same
JPH0826462B2 (en) Method for producing molded product of surface metallized polymer
JPS60235709A (en) Carbon film
CN102634209A (en) Preparation method of polyphenylene sulfide modified composite aggregate
US4048379A (en) Water-dispersion varnish for electrodeposition
KR20150024034A (en) Core-shell filler and method for preparing core-shell filler
DE3888922T2 (en) Film with high sliding properties.
JP2000199183A (en) Acrylonitrile fiber for producing carbon fiber
JPH0519241B2 (en)
CN114685827A (en) Preparation method of composite polyester film
US3060141A (en) Solution of polypyrrolidone in aqueous formic acid and method of preparing same
JP3227528B2 (en) Conductive acrylic fiber and method for producing the same
DE2453168B2 (en) Process for the production of a coated wire which can be soldered without detaching the coating by electrocoating with a water-dispersible paint
JPS59199817A (en) Production of ferrimagnetic spinnel fiber
JPS6088129A (en) Preparation of carbon yarn having high strength and high elasticity
KR20220048122A (en) Surface-modified polylactic acid particles and preparation method thereof
DE2460472A1 (en) METHOD FOR MANUFACTURING POLYESTERIMIDE POWDER
US4661572A (en) Process for producing acrylonitrile-based precursors for carbon fibers
JPH01193330A (en) Production of molded article of infusible aromatic polyether ketone
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JPH1036450A (en) Starting polyacrylonitrile/pitch material for production of carbonaceous material
JPS61152826A (en) High-elasticity carbon fiber and its production