JPS60234808A - Manufacture of high-strength concrete beam - Google Patents

Manufacture of high-strength concrete beam

Info

Publication number
JPS60234808A
JPS60234808A JP9150484A JP9150484A JPS60234808A JP S60234808 A JPS60234808 A JP S60234808A JP 9150484 A JP9150484 A JP 9150484A JP 9150484 A JP9150484 A JP 9150484A JP S60234808 A JPS60234808 A JP S60234808A
Authority
JP
Japan
Prior art keywords
concrete
strength
stress
prestress
girder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9150484A
Other languages
Japanese (ja)
Inventor
徹 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maeta Concrete Industry Ltd
Original Assignee
Maeta Concrete Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeta Concrete Industry Ltd filed Critical Maeta Concrete Industry Ltd
Priority to JP9150484A priority Critical patent/JPS60234808A/en
Publication of JPS60234808A publication Critical patent/JPS60234808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高グレストレスを導入した高強度コンクリート
桁の製造方法に関するものでめる。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a high-strength concrete girder incorporating high glare stress.

〔従来の技術〕[Conventional technology]

橋桁等に多用されているプレキャスト(PC;)コンク
リート桁は、設計理論上曲げ強度を著しく増大でき、橋
桁を低(できるメリットをもっが、その製造方法は従来
、通常のコンクリート配合を混練し、PC鋼を配設した
型枠中に投入。
Precast (PC) concrete girders, which are often used for bridge girders, have the advantage of being able to significantly increase the bending strength in terms of design theory and making the bridge girder low-strength. Pour into the formwork containing the PC steel.

成形するとともに、PO4に140〜160kg/cm
” r)プレストレスを与え、その後養生していた。
While molding, 140-160kg/cm of PO4
” r) Prestressed and then cured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記配合及び製造方法では、養生として蒸気養生を行っ
ても、そのコンクリート強度なJIS(日本工業規格)
に定めた500kg/c+w”以上とすることは困難で
めった。
With the above formulation and manufacturing method, even if steam curing is performed, the concrete strength will not exceed JIS (Japanese Industrial Standards).
It was difficult and rare to achieve a value of 500 kg/c+w'' or more, which is specified in the above.

もつとも最近は比較的小型のコンクリートパイル等では
、いわゆるオートクレーブ養生により、SOO〜900
kg/CM?程度のコンクリート強度を有するものが製
作され、「PHCパイル」としてJIS化されて市販さ
れており、また、特殊な混和剤の使用により、同様な高
強度パイルを得る試みもなされているか、コンクリート
橋桁の如き大型の製品では、オートクレーブ養生を行う
には大型の設備を要し、また市販の特殊混和剤は高価な
上、取扱いが難しいなどの理由から、1000kg/c
1+I?以上のコンクリート強度をもつPC橋桁を実用
的な製造方法で得ることはできなかった。
Recently, however, relatively small concrete piles, etc., have been cured in an autoclave to achieve a
kg/CM? PHC piles with a certain level of concrete strength have been manufactured and are commercially available as "PHC piles" as standardized by JIS standards.Also, attempts have also been made to obtain similar high-strength piles by using special admixtures.Concrete bridge girder For large products such as 1000 kg/c, large equipment is required for autoclave curing, and commercially available special admixtures are expensive and difficult to handle.
1+I? It was not possible to obtain a PC bridge girder with a concrete strength higher than that using a practical manufacturing method.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は製造技術上の上記問題点を解決し、設計理論土
酸も有利な仕様の高強度コンクリート桁を得ることがで
きる製造方法を提供せんとするもので、その要旨とする
ところは、普通セメント、砂、粗骨材を適量混合したP
C桁用コンクリート配曾中に、セメントの外側り10〜
30%のシリカヒユームと、同3〜10%の分敵剤を添
加してミキサーで3〜5分混練し、これをPC鋼材を断
面に適当数配置した型枠内に打設。
The present invention aims to solve the above-mentioned problems in manufacturing technology and provide a manufacturing method that can obtain high-strength concrete girders with specifications that are advantageous in terms of design theory and soil acid. P mixed with appropriate amounts of cement, sand, and coarse aggregate
During the concrete placement for C girder, the outer edge of the cement was 10~
Add 30% silica hume and 3-10% dividing agent, mix in a mixer for 3-5 minutes, and pour this into a formwork with an appropriate number of prestressed steel materials arranged in its cross section.

成形し、脱型後蒸気養生を行うとともに、200kg/
cm”以上のプレストレスを導入することを要旨とする
After molding and demolding, steam curing is performed, and 200 kg/
The gist is to introduce a prestress of cm'' or more.

上記PC桁用コンクリート配合の一例は表1のとおりで
るる。
An example of the concrete mix for the above PC girder is shown in Table 1.

表 1 上記シリカヒユームは、フェロシリコン、メタルシリコ
ン等の生産過程で副産物として生れる粒径α1ミクロン
程度の超微粒子で、「シリカヒユーム」、「シリカダス
ト」又は「シリカフラワーJ等と呼ばれており、市販販
されているものの化学組成の一例は表2のとおりでるる
Table 1 The above silica hume is an ultrafine particle with a particle size of approximately α1 micron that is produced as a by-product in the production process of ferrosilicon, metal silicon, etc., and is called "silica fume", "silica dust", "silica flower J, etc." An example of the chemical composition of commercially available products is shown in Table 2.

flA名 MICROPOZ (vイクoポズつ 表 
2本発明で は上記シリカヒユームをセメントの10〜30%(外側
)、前記コンクリート配合に添加するが、10%未満で
はコンクリート強度の増加が充分でなく、また30%を
超過して添加したときは殊に蒸気養生を施す場曾、かえ
って強度が低下するので、経済性を考慮すると20〜3
0%が最良でるる。
flA name MICROPOZ
2 In the present invention, 10 to 30% of the silica fume (outer side) of the cement is added to the concrete mixture, but if it is less than 10%, the concrete strength will not increase sufficiently, and if it is added in excess of 30%, it will cause special problems. If steam curing is applied to the steel, the strength will actually decrease, so considering economic efficiency, the
0% is the best.

分散剤は例えばアルキルアリルスルホン酸系の分散性に
優れた高性能減水剤がよ(、市販のものでは、部品名「
マイティ150」等かめる。
For example, a high-performance water reducing agent with excellent dispersibility such as an alkylallylsulfonic acid type is recommended as a dispersant.
Mighty 150” etc.

本発明においてはセメントの3〜10%(鳩入好ましく
は4〜8%(同)を水に溶解して前記コンクリート配合
に添加して用いる。
In the present invention, 3 to 10% (preferably 4 to 8%) of cement is dissolved in water and added to the concrete mixture.

ミキシング(混線)は粗骨材、砂、前記シリカヒユーム
、セメントの順でミキサーに供給し、前記「マイティ1
50」を水に溶解したものを最後に加えて3〜5分混練
する。
For mixing (mixing), coarse aggregate, sand, the silica hume, and cement are supplied to the mixer in this order, and the "Mighty 1"
50'' dissolved in water was added last and kneaded for 3 to 5 minutes.

コンクリートの打設、成形は、通常の振動締固め方式を
用い、脱型も通常と同様でよい。
Concrete can be placed and shaped using the usual vibration compaction method, and demolding can be done in the same way as usual.

蒸気養生は昇温速度20℃/時、最高温度80℃程度と
し、これを約6時間保持し、その後自然冷却する。
Steam curing is performed at a heating rate of 20° C./hour and a maximum temperature of about 80° C., which is maintained for about 6 hours and then naturally cooled.

上記最高温度は65℃程度でもよいが、保持時間が12
時間程度と2倍必要となり、冷却時間な考慮すると実用
上好ましくない。
The maximum temperature mentioned above may be around 65℃, but the holding time is 12
This requires approximately twice as much time, which is not practical in terms of cooling time.

以上の如き本発明方法によれば、JISの約2〜3倍の
コンクリート強度、1000kg/c111t〜150
0にシーか特別の設備を設けずとも容易に得ることがで
きる。
According to the method of the present invention as described above, concrete strength is approximately 2 to 3 times that of JIS, 1000 kg/c111t to 150
0 can be easily obtained without any special equipment.

次に高グレストレスの導入について述べる。Next, we will discuss the introduction of high glare stress.

プレストレスの導入法としてはプレテンション方式やボ
ストテンション方式が通常採用されているが、本発明に
おいてはどちらによっテモよい。
As a method for introducing prestress, a pretension method or a post tension method is usually adopted, but in the present invention, either method is suitable.

本発明方法においては、前述のコンクリート自体の性能
同上に伴い飛躍的に高グレストレスの導入が可能となり
、曲げ性能に優れた桁を製造することができ、またセメ
ント粒子間にシリカヒユーム粒子が入り込んで結合する
ことにより高密夫な構造となるので、弾性係数か30〜
60%大となり、弾性変形による応力ロスが減少するた
め、高グレストレス導入に更に有利となる。 これにつ
いて詳述すると、 まず、プレストレスコンクリート桁(10桁)の曲げ性
能を抵抗曲げモーメント即ち、6ひびわれ曲げモーメン
ト“で表わすと、 Mc−(crce+σbt)・Ze トなる0ここに、
MC;材部材の下縁のひyわれで決まる抵抗曲げモーメ
ント σce;W効グレスドグレストレス;コンクリートの曲
げ引張強度、Ze ; PC鋼材もコンクリートに換算
した断面係数 上式から抵抗曲げモーメントは、有効プレストレス、曲
げ引張強度及び断面係数で決定される。
In the method of the present invention, it is possible to dramatically increase the glare stress in accordance with the above-mentioned performance of the concrete itself, and it is possible to manufacture a girder with excellent bending performance. By combining, it becomes a highly dense structure, so the elastic modulus is 30 ~
This is 60% larger, reducing stress loss due to elastic deformation, which is more advantageous for introducing high glare stress. To explain this in detail, first, the bending performance of a prestressed concrete girder (10 digits) is expressed as a resistance bending moment, that is, a 6-crack bending moment.
MC: Resistance bending moment determined by the cracks of the lower edge of the material member σce: W effect gress-de-gres stress: Bending tensile strength of concrete, Ze; Determined by effective prestress, bending tensile strength and section modulus.

このうちコンクリートの曲は引張強度はめまり変化がな
(、断面係数はPC鋼材が2倍となっても僅かしか増加
しないので、結局有効プレストレスが最も大きい要素と
なる。そこで有効プレストレスにつき更に詳細に検討す
ると、(1)PC鋼材の初期緊張総荷重PIは次のよう
に表わされる。
Among these, the tensile strength of the concrete curve does not change due to fit (and the section modulus only increases slightly even if the PC steel material doubles, so the effective prestress is the largest element after all.Therefore, the effective prestress is When examined in detail, (1) the initial total tension load PI of the PC steel material is expressed as follows.

Pl−σp:・Ap ここに、σpi;PC鋼材許容応力度、Ap;PC鋼材
断面積 また、 (2) プレストレス導入直後のPC鋼材の引張応力度
σptは次のように表わされる ここにRo;ストレス導入時までの応力ロス(蒸気養生
によるレラクセ ーションなど) nl;ストレス導入時の弾性係数比 AC;コンクリート所面積 (3このとき、コンクリート断面に導入される初期プレ
ストレスσctは、 (4) コンクリートのクリープ及び乾燥収縮によるP
C鋼材の応力ロスΔσpψは ここにn;コンクリート弾性係数、 ψ;コンクリートのクリープ係数、 εS;コンクリートの乾燥状縮度、 Es ; PC鋼材の弾性係数 (5また、プレストレスを与えた後のPC鋼材のレラク
セーションによる応力ロスΔσprは Δσprツ(R−Ro) σρt ここにR; PC鋼材のレラクセーションによる応力ロ
ス (6) PC鋼材の有効引張応力度σpeは、σpeI
Iwσpt−(Δδptp+Δapr>(7) PC鋼
材の有効緊張力peは、ρe−σpe−Ap 従って、 ここにm ; PC鋼材本数。
Pl-σp:・Ap Here, σpi: Allowable stress level of PC steel material, Ap: Cross-sectional area of PC steel material. (2) Tensile stress degree σpt of PC steel material immediately after introducing prestress is expressed as follows.Here, Ro ; Stress loss until stress is introduced (relaxation due to steam curing, etc.) nl; Elastic modulus ratio AC at the time of stress introduction; Concrete area (3 At this time, the initial prestress σct introduced to the concrete cross section is (4 ) P due to creep and drying shrinkage of concrete
Here, the stress loss Δσpψ of C steel material is n: elastic modulus of concrete, ψ: creep coefficient of concrete, εS: dry state shrinkage of concrete, Es: elastic modulus of PC steel material (5 Also, PC after applying prestress Stress loss Δσpr due to relaxation of steel material is Δσprtsu(R-Ro) σρt where R; Stress loss due to relaxation of PC steel material (6) Effective tensile stress degree σpe of PC steel material is σpeI
Iwσpt-(Δδptp+Δapr>(7) The effective tensile force pe of the PC steel material is ρe-σpe-Ap. Therefore, m here is the number of PC steel materials.

上記の式におけるストレス導入までの応力ロスROは蒸
気養生によるPC鋼材の応力ロスでめるが、もしもオー
トクレーブ養生を行うとすると、このRoの値は30〜
40%となり、非常に不利になる。
The stress loss RO until stress introduction in the above equation is determined by the stress loss of the PC steel material due to steam curing, but if autoclave curing is performed, the value of this Ro will be 30~
It will be 40%, which is very disadvantageous.

これが本発明方法においてオートクレーブ養生を行わな
い理由の一つでるる。
This is one of the reasons why autoclave curing is not performed in the method of the present invention.

またの式におけるコンクリートの弾性係数n′は、通常
のPC桁では材令2日で25〜&0×10” kVcI
IP(圧縮強[350〜400kg/c+w’ ) l
ii y テるるか、本発明による場合はこれt’ 4
0 X 10”kgβとすることができ、ここでのロス
をかなり防ぐことが可能となる。
In addition, the elastic modulus n' of concrete in the formula is 25 to 0 x 10" kVcI in 2 days for a normal PC girder.
IP (compression strength [350-400kg/c+w') l
ii y teruruka, or according to the present invention, this t' 4
0×10”kgβ, and it is possible to considerably prevent losses here.

上記(3) 式において、コンクリート断面に導入され
る初期プレストレスσctは、例えば土木学会プレスト
レスコンクリート標方書によれば、圧縮強度(ストレス
導入時) 400kg/cI++”に対し145にβ、
同sookgA+’ K対し i7okg/cd テh
 ’) 、nl大でも圧縮強度の1/1.7以下とされ
ているから、これを本発明のPC桁強度目標1.000
〜1.500 kg/C−に適用すれば、理論的にはσ
ctは588〜882kg/cxl 、圧縮強度600
 kg/cdの場合でも283〜42skvゴとなるか
ら、有効プレストレスは非常に大きな値となってPC桁
の曲げ性能に寄与する度合は一段と高まる。しかしPC
桁の断面形状に対するPC鋼材の直径1本数による、制
限もるり、又、無制限に高強度コンクリ−訃を得ること
は設備的にも不経済である。
In the above equation (3), the initial prestress σct introduced into the concrete cross section is β to 145 for a compressive strength (at the time of stress introduction) of 400 kg/cI++”, for example, according to the Japan Society of Civil Engineers Prestressed Concrete Specifications.
Same sookgA+' K vs. i7okg/cd Teh
'), even if nl is large, it is said to be less than 1/1.7 of the compressive strength, so this is the PC digit strength target of 1.000 of the present invention.
If applied to ~1.500 kg/C-, theoretically σ
ct is 588-882kg/cxl, compressive strength 600
Even in the case of kg/cd, it is 283 to 42 skv, so the effective prestress becomes a very large value and its contribution to the bending performance of the PC girder further increases. However, the PC
It is also uneconomical in terms of equipment to obtain high-strength concrete walls without any restriction due to the number of diameters of PC steel materials for the cross-sectional shape of the girder.

そこで本発明においてはコンクリート強度ヲ1.000
〜1.500kgN程度としたのでるる。
Therefore, in the present invention, the concrete strength is 1.000.
~1.500kgN was determined.

〔実施例〕〔Example〕

第1図、第2図に示すPC橋桁を得るため、表3に示す
配合材料を、粗骨材、砂、シリカヒユーム、セメントの
順にミキサー中に投入し、ここで1分間空疎すした後、
これにマイティ150を水に加えて30秒間攪拌溶解し
たものを加え、4分間混練を行い、これを第1図、第2
図のようにPC鋼材(細径のもの)1を2本と、同(大
径のもの)2を9本、各々上下に配置するようスターラ
ッグ3でまとめたものを配設した厘枠内に役人打設し、
振動締固めを行う。
In order to obtain the PC bridge girders shown in Figures 1 and 2, the blended materials shown in Table 3 were put into a mixer in the order of coarse aggregate, sand, silica hume, and cement, and after being evacuated for 1 minute,
Mighty 150 was added to water and dissolved by stirring for 30 seconds, then kneaded for 4 minutes.
As shown in the figure, two pieces of PC steel (small diameter) 1 and nine pieces of PC steel (large diameter) 2 are placed one above the other, held together by star lugs 3, in a frame. Officials installed the
Perform vibration compaction.

脱盤を通常通り行ったのち、シートをかげて昇温速度2
0℃/時、最高温に80℃で6時間保持した後自然放冷
を行った。
After removing the disk as usual, cover the sheet and set the temperature increase rate to 2.
The temperature was maintained at 0° C./hour for 6 hours at the maximum temperature of 80° C., and then allowed to cool naturally.

プレストレスの導入は養生後に行ったが、曲げモーメン
ト計算から細径のPCC鋼材 asoohgt/本太径
のPC鋼材九&800kgf/本の引張力を加えること
により、 表3 kg/cxl 有効プレストレスはコンクリート桁の上縁で45kv−
2、下縁テ270kg/cd (!: fx、 6 C
トカ予1111 サれた。(ひびわれ荷X 9.500
kgf 、破壊荷重17.60okgf ) 試験は第3図に示すように、PC桁を支間&000で両
端支持し、中央に支間100の荷重合を置いてこの中央
に荷重pをかけた。
Prestress was introduced after curing, but from the bending moment calculation, by adding a tensile force of 9 & 800 kgf/piece for small diameter PCC steel material, Table 3 kg/cxl effective prestress for concrete 45kv at the upper edge of the girder
2. Lower edge 270kg/cd (!: fx, 6 C
Tokayo 1111 was sold out. (Cracked load x 9.500
kgf, breaking load 17.60 kgf) In the test, as shown in Fig. 3, a PC girder was supported at both ends with spans &000, the load of the span 100 was placed in the center, and a load p was applied to the center.

その結果、ひびわれ荷重、破壊荷重は表4の如くでるり
、又、有効プレストレスは表5の如くなつた。
As a result, the cracking load and breaking load were as shown in Table 4, and the effective prestress was as shown in Table 5.

表4 表5 尚、表5における有効プレストレス(実測値)は次式に
よりめた。即ち、 σas −Md/Zc ここK、Md:再開ひびゎれ時のモーメントMCw= 
(aO@+σtlt)*z6において、fIbtI=〇
としたもの、またzc;コンクリート下縁Mffi係数
(2820cIII8) 上記表4.5により明らかなように本発明によるPC桁
はひびわれ荷重、破壊荷重、有効プレストレスに関し、
実施例1.2.3とも設計値を満足する実測値を得たば
かりでなく、従来方法によるPC桁に比しはるかに高い
値を得亀〔発明の効果〕 上記の如き本発明によれば次の効果かめる。
Table 4 Table 5 The effective prestress (actually measured value) in Table 5 was determined by the following formula. That is, σas −Md/Zc where K, Md: Moment at the time of reopening crack MCw=
(aO @ + σtlt) Regarding prestress,
In Examples 1, 2, and 3, we not only obtained measured values that satisfied the design values, but also obtained values that were much higher than those of the PC digit obtained by the conventional method. [Effects of the Invention] According to the present invention as described above, the following Feel the effect.

1)蒸気養生のみで、1000にシー以上のコンクリー
ト強度をもつコンクリート桁が簡単に得られる。
1) Concrete girders with a concrete strength of 1000 C or higher can be easily obtained by steam curing alone.

2)蒸気養生のみでるるから高額、大規模な設備は特に
必要ない。
2) Only steam curing is required, so there is no need for expensive or large-scale equipment.

3)高価且取扱いの難しい特殊混和剤が不要となる。3) Special admixtures that are expensive and difficult to handle become unnecessary.

4)コンクリート強度の増大により、PC鋼材に高いプ
レストレスが導入でき、曲げ強度を飛躍的に増大しうる
0 5)シリカヒユームの混和により、密実な組織となるか
ら、内部への水の浸入か防止され、これにより最近問題
となっている20桁の凍結又は塩害による損傷の発生を
防ぐ効果かめる。
4) By increasing the strength of concrete, high prestress can be introduced into the prestressing steel material, which can dramatically increase the bending strength. 5) The mixture of silica fume creates a dense structure, which prevents water from penetrating inside. This has the effect of preventing damage caused by freezing or salt damage in the 20s, which has become a problem recently.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による20桁の半裁正面図、第2図は同
断面図、第3図は試験状態図でめる。 1.2−・・pc@材、3・−・スターラップ。 特許出願人 前田製管株式会社 第1図 第2図 と 第3図 手続補正書 1、事件の表示 昭和511年特許願第91504 号 2、発明の名称 高強度コンクリート桁の襄造方法 3、補正をする者 事件との関係 特許出願人 住 所 氏 名 前田製管株式会社 4、代理人 6、 補正により増加する発明の数 (1) 明細!tJlt!13頁表4を下記の通り補正
する。 記 表4 以上
FIG. 1 is a half-cut front view of a 20-digit machine according to the present invention, FIG. 2 is a cross-sectional view of the same, and FIG. 3 is a test state diagram. 1.2--pc @ material, 3-- stirrup. Patent applicant Maeda Seikan Co., Ltd. Figure 1 Figure 2 and Figure 3 Procedural amendment 1, Indication of the case Patent application No. 91504 of 1982 2, Name of the invention Method for constructing high-strength concrete girders 3, Amendment Relationship with the case involving a patent applicant Address Name Maeda Seikan Co., Ltd. 4, Agent 6 Number of inventions increased by amendment (1) Details! tJlt! Table 4 on page 13 is corrected as follows. Table 4 and above

Claims (1)

【特許請求の範囲】 1、 セメント、砂、粗骨材を適当量混合したPC桁用
コンクリート配合中に、セメントの外割り10〜30%
のシリカヒユームと同3〜10%の分散剤を添加してミ
キサーで3〜5分混練し、これをPC@材を適当数配置
した型枠内に打設。 成形し、脱型後蒸気養生を行うとともに、200kg/
cri以上のプレストレスを導入することを特徴とする
高強度コンクリート桁の製造方法。
[Claims] 1. In the concrete mix for PC girders, which is a mixture of appropriate amounts of cement, sand, and coarse aggregate, 10 to 30% of the cement content is added.
The silica hume and the same 3-10% dispersant were added and kneaded in a mixer for 3-5 minutes, and poured into a mold in which an appropriate number of PC@ materials were placed. After molding and demolding, steam curing is performed, and 200 kg/
A method for manufacturing a high-strength concrete girder, characterized by introducing prestress of cr or higher.
JP9150484A 1984-05-08 1984-05-08 Manufacture of high-strength concrete beam Pending JPS60234808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9150484A JPS60234808A (en) 1984-05-08 1984-05-08 Manufacture of high-strength concrete beam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9150484A JPS60234808A (en) 1984-05-08 1984-05-08 Manufacture of high-strength concrete beam

Publications (1)

Publication Number Publication Date
JPS60234808A true JPS60234808A (en) 1985-11-21

Family

ID=14028239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9150484A Pending JPS60234808A (en) 1984-05-08 1984-05-08 Manufacture of high-strength concrete beam

Country Status (1)

Country Link
JP (1) JPS60234808A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324792U (en) * 1989-07-20 1991-03-14
JPH03137044A (en) * 1989-10-19 1991-06-11 Fujita Corp Hydraulic composite material
JPH03137042A (en) * 1989-10-19 1991-06-11 Fujita Corp Hydraulic composite material
FR3029444A1 (en) * 2014-12-03 2016-06-10 Matiere PRECONTROL BENCH FOR PREFABRICATION OF A CONCRETE STRUCTURAL ELEMENT AND METHOD OF IMPLEMENTING SUCH A BENCH

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462217A (en) * 1977-10-28 1979-05-19 Dainichi Concrete Kogyo Kk Method of making pillar having high strength modulus
JPS5684356A (en) * 1979-12-07 1981-07-09 Nippon Hume Pipe Centrifugal manufacture of concrete product
JPS5712606A (en) * 1980-06-26 1982-01-22 Denki Kagaku Kogyo Kk Manufacture of prestressed concrete bridge girder
JPS5720305A (en) * 1980-07-11 1982-02-02 Nippon Hume Pipe Manufacture of concrete product

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5462217A (en) * 1977-10-28 1979-05-19 Dainichi Concrete Kogyo Kk Method of making pillar having high strength modulus
JPS5684356A (en) * 1979-12-07 1981-07-09 Nippon Hume Pipe Centrifugal manufacture of concrete product
JPS5712606A (en) * 1980-06-26 1982-01-22 Denki Kagaku Kogyo Kk Manufacture of prestressed concrete bridge girder
JPS5720305A (en) * 1980-07-11 1982-02-02 Nippon Hume Pipe Manufacture of concrete product

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0324792U (en) * 1989-07-20 1991-03-14
JPH03137044A (en) * 1989-10-19 1991-06-11 Fujita Corp Hydraulic composite material
JPH03137042A (en) * 1989-10-19 1991-06-11 Fujita Corp Hydraulic composite material
FR3029444A1 (en) * 2014-12-03 2016-06-10 Matiere PRECONTROL BENCH FOR PREFABRICATION OF A CONCRETE STRUCTURAL ELEMENT AND METHOD OF IMPLEMENTING SUCH A BENCH

Similar Documents

Publication Publication Date Title
RU2122985C1 (en) Concrete mix, concrete element, and method of solidification thereof
Ragavendra et al. Fibre reinforced concrete-A case study
JP5861985B2 (en) Seismic reinforcement method and repair method for reinforced concrete members
CN106517961A (en) High-toughness cement-based composite material with low drying shrinkage, and preparation method thereof
JP2006016900A (en) Tunnel constructing segment
CN108532833A (en) A kind of regeneration concrete coupled column and preparation method thereof
CN106278051B (en) A kind of shock resistance composite board and preparation method thereof
CN110509425B (en) Concrete prefabricated wallboard and production process thereof
CN107555919B (en) Bridge grouting material and method for rapidly repairing bridge expansion joint by adopting same
JPS60234808A (en) Manufacture of high-strength concrete beam
CN107311542B (en) High-ductility cement-based composite material for gradient pavement and preparation method thereof
CN112521081A (en) Building reinforced high-ductility concrete and preparation and construction method thereof
CN107445551A (en) A kind of integral type sound barrier column and preparation method thereof
Dharek et al. Stress strain characteristics of reinforced hollow concrete block masonry melded with mesh reinforcement
CN114873959A (en) Ultrahigh-performance concrete applying machine-made sand and preparation method thereof
JPS6225625B2 (en)
Tariq et al. Structural behavior of RC columns improved by different strengthening techniques
Maher Seyam et al. Effects of polypropylene fibers on ultra high performance concrete at elevated temperature
JP2004256317A (en) Reinforced concrete
JPH10121730A (en) Reduction construction method for crack due to temperature of concrete
JPS60239350A (en) Manufacture of high resistance concrete products
Mobin et al. Re-strengthening of reinforced concrete (RC) beam using near surface mounted (NSM) steel re-bars
Mathiraja Mechanical properties of concrete using bottom ash manufacturing sand and metallic fibres
Prakhya et al. Ferrocement plates with lightweight topping
JPS62113741A (en) Reinforced fiber mortar or concrete and manufacture