JPS60234780A - Method for fitting of sleeve onto revolving shaft - Google Patents

Method for fitting of sleeve onto revolving shaft

Info

Publication number
JPS60234780A
JPS60234780A JP9036584A JP9036584A JPS60234780A JP S60234780 A JPS60234780 A JP S60234780A JP 9036584 A JP9036584 A JP 9036584A JP 9036584 A JP9036584 A JP 9036584A JP S60234780 A JPS60234780 A JP S60234780A
Authority
JP
Japan
Prior art keywords
sleeve
shaft
fitting
turbine rotor
rotating shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9036584A
Other languages
Japanese (ja)
Inventor
Masuo Morita
森田 益夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP9036584A priority Critical patent/JPS60234780A/en
Publication of JPS60234780A publication Critical patent/JPS60234780A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding

Abstract

PURPOSE:To form a coating layer for preventing seizure to the bearing part of a revolving shaft such as a turbine rotor with the powerful tightening force equal to the tightening force of a shrinkage fit in the stage of forming said layer to said bearing part by enclosing the bearing part with a sleeve having a two-split construction and subjecting the sleeve and bearing part to rolling under heating after tack welding. CONSTITUTION:The two-split sleeves 20 made of a low alloy steel having the inside diameter larger by about 1-5mm. from the outside diameter of a bearing journal part 11 made of a 12% Cr steel of the turbine rotor, etc. and 5-20mm. thickness are butted at a groove 21 to the outside circumference of the part 11 in the stage of forming the coating layer consisting of a low alloy steel for preventing seizure to the part 11. The groove 21 is build-up-welded by arc welding 23 to form the sleeves 20 into an annular shape; further the one end face of the sleeve 20 is tack-welded 25 to the bearing journal 11 of the rotor shaft. A spacing ring 30 sliding together with the sleeve during rolling is inserted to the other side face of the sleeve 20 and thereafter the sleeve 20 is heated to 400-550 deg.C by a high-frequency induction coil 40 and is rolled to coat powerfully the sleeve 20 to the part 11. The seizure preventive layer is thus formed.

Description

【発明の詳細な説明】[Detailed description of the invention] 【発明の属する技術分野】[Technical field to which the invention pertains]

本発明は、タービンロータなどの回転軸の所定部分の表
面に被覆層を形成するためのスリーブの嵌め込み方法に
関し、軸端の大径のカップリング部の強度を損なうこと
なくスリーブを嵌め込みできるようにしたものである。
The present invention relates to a method for fitting a sleeve to form a coating layer on the surface of a predetermined portion of a rotating shaft such as a turbine rotor. This is what I did.

【従来技術とその問題点】[Prior art and its problems]

一般に、合金鋼の母材からなるタービンロータなどの回
転軸の軸受ジャナール部は焼付防止の問題があり、この
問題を解決するために回転軸の基部が低合金鋼の被覆層
で囲まれる構造となっており、第1図に示すタービンロ
ータにおいて、この構造を説明する。 近年蒸気タービンの高効率化、大容量化に伴って高温、
高応力に耐えるタービンの設計が要求され、ローターの
素材も高圧タービン、中圧夕−ビンにおいてはクローム
モリブデンバナジウム鋼のような低合金鋼から12%ク
ローム系のような高合金鋼への変更が必要となってきて
いる。一方、12%クローム鋼をロータ材として使用す
る場合には、第1図の一点鎖線で囲む部分では12%ク
ローム鋼の基部lが低合金鋼の被覆層2で囲まれる構造
となっている。この被覆層2は基部1の表面に低合金鋼
が溶着されて形成されるが、低合金鋼を溶着した際に生
した不均一な残留応力を除去するために応力除去焼鈍を
する必要があり、この応力除去焼鈍を行う場合、12%
クローム鋼の熱膨張率が小さいのに比べて低合金鋼の熱
膨張率は大きく、600〜700℃の焼鈍温度で溶着に
よる残留応力を消滅させても、冷却されると 熱膨張率
の差により再び大きな残留応力が生じ、このため応力除
去焼鈍には高度な技術を必要としていた。 また、被覆層2は溶着のかわりに低合金鋼のスリーブが
嵌め込まれることもあるが、この場合。 軸端の大径のカップリング部3をロータ材と一体に形成
することが不可能になる。このためカップリング部3は
嵌め込み構造となり、強度、振動の点で信転性を損なう
おそれがあった。
In general, bearing journals of rotating shafts such as turbine rotors made of alloy steel base material have the problem of preventing seizure, and to solve this problem, a structure in which the base of the rotating shaft is surrounded by a coating layer of low alloy steel has been developed. This structure will be explained using the turbine rotor shown in FIG. In recent years, with the increase in efficiency and capacity of steam turbines, high temperatures and
Turbine designs that can withstand high stress are required, and the rotor material for high-pressure turbines and medium-pressure turbines must be changed from low-alloy steel such as chrome-molybdenum-vanadium steel to high-alloy steel such as 12% chromium-based steel. It's becoming necessary. On the other hand, when 12% chrome steel is used as the rotor material, the base l of the 12% chrome steel is surrounded by the coating layer 2 of low alloy steel in the area surrounded by the dashed line in FIG. This coating layer 2 is formed by welding low-alloy steel to the surface of the base 1, but it is necessary to perform stress relief annealing to remove uneven residual stress that occurs when the low-alloy steel is welded. , when performing this stress relief annealing, 12%
Compared to chrome steel, which has a small coefficient of thermal expansion, low-alloy steel has a large coefficient of thermal expansion. Again, large residual stresses were generated, which required sophisticated techniques for stress relief annealing. In addition, the coating layer 2 may be fitted with a sleeve of low alloy steel instead of being welded, but in this case. It becomes impossible to form the large-diameter coupling portion 3 at the shaft end integrally with the rotor material. For this reason, the coupling portion 3 has a fitted structure, which may impair reliability in terms of strength and vibration.

【発明の目的】[Purpose of the invention]

本発明は上記のような点に鑑み、簡単な方法で軸端の大
径のカンプリング部の強度を損なうことなく焼成めと同
様な締め付は力を持たせて被覆層を形成することかでき
るスリーブの嵌め込み方法を提供することを目的とする
In view of the above-mentioned points, the present invention provides a simple method for forming a coating layer with a tightening force similar to that of firing without impairing the strength of the large-diameter camp ring portion at the end of the shaft. The purpose of the present invention is to provide a method for fitting a sleeve into the sleeve.

【発明の要点】[Key points of the invention]

本発明によれば上記の目的は、タービンロータなどの回
転軸の所定部分の表面に被覆層を形成するためのスリー
ブの嵌め込み方法であって、前記スリーブの内径を前記
軸部の外径よりは大きく加工して該スリーブを軸心方向
に分割する工程と、該分割されたスリーブを前記軸部の
外周で相互に突き合わせて環状に溶接する工程と、該環
状のスリーブと前記軸部との間の隙間をほぼ均一にして
該スリーブの一方の端面側を前記軸部に仮止め溶 □接
するとともに該スリーブの他方の端面側の隙間に該スリ
ーブの端部を支持可能な間隔環を挿入する工程と、該仮
止めされたスリーブを所定の温度に加熱する工程と、該
加熱されたスリーブを前記軸部に密着するまで軸心方向
に圧延する工程と、該圧延されたスリーブの両端面を加
工し外径を所定寸法に仕上げる工程とを含むことによっ
て達せられる。
According to the present invention, the above-mentioned object is a method for fitting a sleeve to form a coating layer on the surface of a predetermined portion of a rotating shaft such as a turbine rotor, in which the inner diameter of the sleeve is set to be smaller than the outer diameter of the shaft portion. A step of dividing the sleeve in the axial direction by machining it into a large size, a step of abutting the divided sleeves against each other on the outer periphery of the shaft portion and welding them into an annular shape, and a step between the annular sleeve and the shaft portion. Temporarily welding one end surface of the sleeve to the shaft portion with substantially uniform gaps, and inserting a spacing ring capable of supporting the end of the sleeve into the gap on the other end surface of the sleeve. a step of heating the temporarily secured sleeve to a predetermined temperature; a step of rolling the heated sleeve in the axial direction until it comes into close contact with the shaft portion; and processing both end surfaces of the rolled sleeve. This is achieved by including the step of finishing the outer diameter to a predetermined size.

【発明の実施例】[Embodiments of the invention]

以下本発明を実施例を示す図面に基づいて説明する。第
2図ないし第5図は本発明の実施例を示すもので、図に
おいて、第1図と同じ構成要素には同一符号を付してそ
の説明を省略する。 調質の終了した12%クローム鋼よりなるタービンロー
タ(以下ロータ軸と呼ぶ。) 10の軸受ジャナール部
の基部11を所定寸法に切削加工し、この基部11の寸
法に会わせて低合金鋼材でスリーブ2゜を製作する。 その際スリーブ20の内径は基部11の外径より1〜5
n程度大きく、径方向の厚さは5〜20in程度とし、
軸心方向に切断して2分割し切断面に開先21を取る。 この2分割されたスリーブ2oを基部11の外周で突き
合わせ、裏あて金22をロータ軸の基部11とスリーブ
20との間の隙間に挿入した後、アーク溶接23で開先
21部に肉盛溶接してスリーブ2゜を環状にし、裏あて
金22を前記隙間から取り除く。 これにより、溶接時のスパッタがロータ軸やスリーブに
付着するのが防止できる。 次に第4図、第5図に示すように、スリーブ2゜とロー
タ軸の基部11との間の隙間24がほぼ一定になるよう
に保ち、スリーブ20の一方の端面側をロータ軸の基部
11に仮止め溶接25を行い、スリーブ20の他方の端
面側にはスリーブ2oが圧延された際、スリーブ20を
案内しながらロータ軸の基部11上を摺動できる間隔環
30を挿入する。 次いでスリーブ20の外周側にコイル4oを配置して高
周波誘導加熱によってスリーブ2oを400〜550℃
に加熱し、加熱中はスリーブとロータ軸基部との間の隙
間24に窒素ガスを流してロータ軸の基部11の温度上
昇とスリーブ20の内径面の酸化防止し、スリーブ20
が均一に温度上昇した時点で加熱を停止してスリーブの
圧延作業を行う。 このスリーブの圧延方法を第6図に示し、この圧延はロ
ータ軸10の軸心と任意の角度で交差しかつロータ軸1
0の軸心方向に移動できる圧延ローラ50によって行う
。まずロータ軸10を図示しない装置に移し、圧延ロー
ラ50によってロータ軸10の軸心と交差させる。この
交差角度θはほぼ306とし、タービン軸10を51矢
視方向に回転させながらローラ軸52を順次下方に向か
って下げるとともにスリーブの仮止め溶接25側から5
3矢視方向すなわちスリーブ20の軸心方向に送る。こ
れにより、ローラ50はスリーブ20の外周面に当たっ
た時点で54矢視方向に回転し、スリーブ20は両側の
端部を除いてその軸心に向かって変位しなから53矢視
方向に間隔環30に案内されて延びる。そして、この動
作をスリーブ20の内径がロータ軸の基部11の外径に
密着するまで行い、その後はスリーブ20の温度が常温
に戻るまで放置する。 スリーブ20は常温に戻ると温度差に相当して収縮し、
締め付は力が生じてロータ軸の基部11と一体構造とな
る。このロータ軸10を図示しない工作機に移し、スリ
ーブの仮止め溶接部25、間隔環30側の不要部分を切
削除去した後外径を所定寸法に仕上げスリーブ20の嵌
め込み作業が完了する。
The present invention will be described below based on drawings showing embodiments. 2 to 5 show embodiments of the present invention, and in the figures, the same components as in FIG. 1 are denoted by the same reference numerals, and their explanations will be omitted. A turbine rotor (hereinafter referred to as rotor shaft) made of 12% chromium steel that has been tempered. The base 11 of the ten bearing journals is cut to a predetermined size, and the base 11 is made of low alloy steel to match the dimensions of this base 11. Make sleeve 2°. At this time, the inner diameter of the sleeve 20 is 1 to 5 mm larger than the outer diameter of the base 11.
The diameter is about 5 to 20 inches, and the thickness in the radial direction is about 5 to 20 inches.
Cut it in the axial direction, divide it into two pieces, and make a bevel 21 on the cut surface. The two divided sleeves 2o are butted together at the outer periphery of the base 11, and the backing metal 22 is inserted into the gap between the base 11 of the rotor shaft and the sleeve 20, and then arc welding 23 is used to overlay the groove 21. The sleeve 2° is made into an annular shape, and the backing metal 22 is removed from the gap. This can prevent spatter from adhering to the rotor shaft or sleeve during welding. Next, as shown in FIGS. 4 and 5, the gap 24 between the sleeve 2° and the base 11 of the rotor shaft is kept approximately constant, and one end surface of the sleeve 20 is placed at the base of the rotor shaft. 11 is temporarily welded 25, and a spacing ring 30 that can slide on the base 11 of the rotor shaft while guiding the sleeve 20 when the sleeve 2o is rolled is inserted into the other end surface of the sleeve 20. Next, a coil 4o is placed on the outer circumferential side of the sleeve 20, and the sleeve 2o is heated to 400 to 550°C by high-frequency induction heating.
During heating, nitrogen gas is flowed into the gap 24 between the sleeve and the rotor shaft base to prevent the temperature rise of the rotor shaft base 11 and the oxidation of the inner diameter surface of the sleeve 20.
When the temperature rises uniformly, heating is stopped and the sleeve is rolled. A method of rolling this sleeve is shown in FIG.
This is carried out using a rolling roller 50 that can move in the axial direction of 0. First, the rotor shaft 10 is transferred to a device (not shown), and the rolling roller 50 intersects the axis of the rotor shaft 10. This intersection angle θ is approximately 306, and while rotating the turbine shaft 10 in the direction of arrow 51, the roller shaft 52 is sequentially lowered downward, and from the temporary welding 25 side of the sleeve,
It is sent in the direction of arrow 3, that is, in the axial direction of the sleeve 20. As a result, the roller 50 rotates in the direction of the arrow 54 when it hits the outer circumferential surface of the sleeve 20, and the sleeve 20, except for the ends on both sides, is not displaced toward its axis and is spaced apart in the direction of the arrow 53. It extends guided by the ring 30. This operation is continued until the inner diameter of the sleeve 20 comes into close contact with the outer diameter of the base 11 of the rotor shaft, and then the sleeve 20 is left until the temperature returns to room temperature. When the sleeve 20 returns to room temperature, it contracts corresponding to the temperature difference,
When tightened, a force is generated to form an integral structure with the base 11 of the rotor shaft. The rotor shaft 10 is transferred to a machine tool (not shown), and after cutting off the temporarily welded portion 25 of the sleeve and unnecessary parts on the spacing ring 30 side, the outer diameter is finished to a predetermined size and the fitting work of the sleeve 20 is completed.

【発明の効果】【Effect of the invention】

本発明は上記のように、分割したスリーブを溶接によっ
て一体化した後、温間でローラを掛けてスリーブをロー
タ軸に密着係合させたことにより、熱による残留応力の
発生を解消してかつ繰り返し曲げ応力に対する疲れ強さ
を高め、軸端の大径のカンプリング部の強度を損なうこ
となく軸受ジャナール部に被覆層を形成することができ
る回転軸のスリーブ嵌め込み方法を提供することができ
る。
As described above, the present invention eliminates the generation of residual stress due to heat by integrating the divided sleeves by welding and then applying warm rollers to tightly engage the sleeves with the rotor shaft. It is possible to provide a sleeve fitting method for a rotating shaft that can increase fatigue strength against repeated bending stress and form a coating layer on a bearing journal portion without impairing the strength of a large-diameter compaction portion at the shaft end.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例を示すタービンロータの一部の切り欠き
平面図、第2図ないし第5図は本発明の実施例を示し、
第2図はタービンロータ要部の平面図、第3図はスリー
ブの溶接工程を示すタービンロータ要部の横断面図、第
4図はスリーブの加熱状態を示すタービンロータ要部の
横断面図、第5図は第4図のA−A断面図、第6図はス
リーブの圧延状態を示すタービンロータ要部の平面図で
ある。 lO:タービンロータ、20ニスリーブ、25:仮止第
2図 zl 第3図 第4図 第5図
FIG. 1 is a partially cutaway plan view of a turbine rotor showing a conventional example, and FIGS. 2 to 5 show embodiments of the present invention.
Fig. 2 is a plan view of the main part of the turbine rotor, Fig. 3 is a cross-sectional view of the main part of the turbine rotor showing the welding process of the sleeve, and Fig. 4 is a cross-sectional view of the main part of the turbine rotor showing the heating state of the sleeve. FIG. 5 is a sectional view taken along the line A-A in FIG. 4, and FIG. 6 is a plan view of the main parts of the turbine rotor showing the rolled state of the sleeve. lO: Turbine rotor, 20 sleeves, 25: Temporary fixing Fig. 2 zl Fig. 3 Fig. 4 Fig. 5

Claims (1)

【特許請求の範囲】 1)タービンロータなどの回転軸の所定部分の表面にス
リーブを嵌め込む方法であって、前記スリーブの内径を
前記軸部の外径よりは大きく加工して該スリーブを軸心
方向に分割する工程と、該分割されたスリーブを前記軸
部の外周で相互に突き合わせて環状に溶接する工程と、
該環状のスリーーブと前記軸部との間の隙間をほぼ均一
にして該スリーブの一方の端面側を前記軸部に仮り止め
溶接するとともに該スリーブの他方の端面側の隙間に該
スリーブの端部を支持可能な間隙環を挿入する工程と、
該仮止めされたスリーブを所定の温度に加熱する工程と
、該加熱されたスリーブを前記軸部に密着するまで軸心
方向に圧延する工程と、該圧延されたスリーブの両端面
を削除する工程とを含むことを特徴とする回転軸のスリ
ーブ嵌め込み方法。 2、特許請求の範囲第1項記載の嵌め込み方法において
、回転軸の母材が12%クローム鋼であり、スリーブの
母材が低合金鋼であることを特徴と回転軸のスリーブ嵌
め込み方法。
[Scope of Claims] 1) A method of fitting a sleeve onto the surface of a predetermined portion of a rotating shaft such as a turbine rotor, the sleeve being machined to have an inner diameter larger than an outer diameter of the shaft portion, and the sleeve being fitted onto the surface of a predetermined portion of a rotating shaft such as a turbine rotor a step of dividing the sleeve in the center direction; a step of abutting the divided sleeves against each other at the outer periphery of the shaft portion and welding them into an annular shape;
One end of the sleeve is temporarily welded to the shaft with a substantially uniform gap between the annular sleeve and the shaft, and the end of the sleeve is inserted into the gap on the other end of the sleeve. inserting a gap ring capable of supporting the
heating the temporarily secured sleeve to a predetermined temperature; rolling the heated sleeve in the axial direction until it comes into close contact with the shaft; and removing both end surfaces of the rolled sleeve. A method for fitting a rotating shaft into a sleeve, the method comprising: 2. A method for fitting a rotating shaft into a sleeve according to claim 1, wherein the base material of the rotating shaft is 12% chromium steel, and the base material of the sleeve is low alloy steel.
JP9036584A 1984-05-07 1984-05-07 Method for fitting of sleeve onto revolving shaft Pending JPS60234780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9036584A JPS60234780A (en) 1984-05-07 1984-05-07 Method for fitting of sleeve onto revolving shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9036584A JPS60234780A (en) 1984-05-07 1984-05-07 Method for fitting of sleeve onto revolving shaft

Publications (1)

Publication Number Publication Date
JPS60234780A true JPS60234780A (en) 1985-11-21

Family

ID=13996511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9036584A Pending JPS60234780A (en) 1984-05-07 1984-05-07 Method for fitting of sleeve onto revolving shaft

Country Status (1)

Country Link
JP (1) JPS60234780A (en)

Similar Documents

Publication Publication Date Title
US7464577B2 (en) Method for fabricating rotary machines
JPH0653307B2 (en) Welding repair method for cylindrical members
JP2554107B2 (en) Pilger equipment die
US4109978A (en) Electrically insulated sleeve bearing and method of making same
JP2006289501A (en) Method of repairing spline and seal teeth of claw component
US5295300A (en) Salvage method for turbocharger bearing housing
JPH0340202B2 (en)
US4208003A (en) Method of joining shaft sections
GB2371812A (en) Manufacturing split bearing rings
JPS60234780A (en) Method for fitting of sleeve onto revolving shaft
WO1996005331A1 (en) Process for reconditioning steel surfaces
RU2319592C2 (en) Shaft restoring method
JPH0138969B2 (en)
JP2593529B2 (en) Composite roll
FI81510C (en) FOERFARANDE FOER AOTERSTAELLANDE AV KAMAXLAR.
JPH03204412A (en) Manufacture of two-piece bearing
SU1371983A1 (en) Method of reconditioning cast iron camshafts
JPS585513A (en) Thrust collar of rotor made of chrome steel
JPH0160689B2 (en)
JPS6147283B2 (en)
JPH05141202A (en) Steam turbine rotor
JPS59101502A (en) Clad sleeve for turbine rotor journal
JP2002210558A (en) Hearth roll repairing method
JPS61115634A (en) Production of sleeve ring
JP2002361356A (en) Repairing method for roll and repaired roll