JPS602346A - Manufacture of inside box for heat-insulating box - Google Patents

Manufacture of inside box for heat-insulating box

Info

Publication number
JPS602346A
JPS602346A JP11127783A JP11127783A JPS602346A JP S602346 A JPS602346 A JP S602346A JP 11127783 A JP11127783 A JP 11127783A JP 11127783 A JP11127783 A JP 11127783A JP S602346 A JPS602346 A JP S602346A
Authority
JP
Japan
Prior art keywords
sheet
inner box
stretching
box
stretched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11127783A
Other languages
Japanese (ja)
Inventor
Hiroto Nakama
啓人 中間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP11127783A priority Critical patent/JPS602346A/en
Publication of JPS602346A publication Critical patent/JPS602346A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • B29C55/143Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively firstly parallel to the direction of feed and then transversely thereto

Abstract

PURPOSE:To prevent the occurrence of whitening and cracking of a synthetic resin sheet when being cooled by a method in which a synthetic resin sheet of a given thickness is subjected to monoaxial stretching process at 120-150 deg.C, and the stress-concentrating portion of the sheet is subjected to a stretching process in the direction orthogonal to the stretching direction of the sheet. CONSTITUTION:A synthetic resin, e.g., ABS resin, etc., is melted at about 220 deg.C in an extruder 7, passed through a die 8 to regulate its thickness to a fixed one, passed through a polishing roll 9 to give it a gloss, and hen passed through stretching process rolls 11 at 120-150 deg.C to obtain a sheet 10'. The sheet 10' is heated and covered on a vacuum mold 12 with a vacuum hole, pressed into the mold 12 by means of a plug 13 from above, and then molded by evacuation to vacuum. In this case, a rib 5 for rack receiver as a stress-concentrating portion 6 is formed and stretched even to the direction (y) orthogonal to the stretching direction (x) of the sheet 10', and therefore, the portion 6 of the inside box 2 is stretched to two directions.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷蔵庫、冷凍庫等に用いる断熱箱体用内箱の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of manufacturing an inner box for a heat insulating box used for refrigerators, freezers, etc.

従来例の構成とその問題点 以下に従来の内箱の製造方法とその構成について第1図
〜3図を参考に説明する。
Conventional Structure and Problems Therebelow, a conventional method of manufacturing an inner box and its structure will be explained with reference to FIGS. 1 to 3.

第1図において、1は冷蔵庫等の断熱箱体である。2は
ABS等の合成樹脂製の内箱、3は外箱、4は例えば発
泡ポリウレタン等の発泡断熱材で内箱2と外箱3の間に
一体発泡されている。6は内箱2の作成時に設けられる
棚受用リプであり、例えばその先端のフランジ近傍は応
力が集中する応力集中部6である。第2図は第1図の断
面箱体をn−n’線によって切断した時の断面図であシ
、付記した番号は第1図と同じものを表わす。
In FIG. 1, 1 is a heat insulating box such as a refrigerator. 2 is an inner box made of synthetic resin such as ABS, 3 is an outer box, and 4 is a foamed heat insulating material such as polyurethane foam, which is integrally foamed between the inner box 2 and the outer box 3. Reference numeral 6 denotes a shelf support lip that is provided when the inner box 2 is created, and for example, near the flange at the tip thereof is a stress concentration portion 6 where stress is concentrated. FIG. 2 is a sectional view taken along the line nn' of the cross-sectional box shown in FIG. 1, and the appended numbers represent the same items as in FIG. 1.

次に上記した内箱2の製造方法及びその動作について説
明する。第3図において7は押出機、8はダイス、9は
ポリッシングロールである。ABS等の合成樹脂が、押
出機7で220℃程度の温度で溶融され、ダイス8で一
定厚に調整され、ポリッシングロール9で光沢がつけら
れ、シート10が作成される第1次工程を有し次にこの
シート1゜が真空成形されて前述した応力集中部6を有
する内箱2が形成される第2次工程どおり製造されるも
のである。
Next, a method of manufacturing the above-described inner box 2 and its operation will be explained. In FIG. 3, 7 is an extruder, 8 is a die, and 9 is a polishing roll. It has a first step in which a synthetic resin such as ABS is melted at a temperature of about 220°C in an extruder 7, adjusted to a constant thickness with a die 8, and polished with a polishing roll 9 to create a sheet 10. This sheet 1° is then vacuum formed to form the inner box 2 having the stress concentration portion 6 described above, which is the second step.

この様にして内箱2が成形され、第1〜2図で示した如
く断熱箱体1として使用される時内箱2が冷却されると
、内箱2のフランジ近傍の応力集中部6に、ポリウレタ
ン等の発泡断熱材4と内箱2との熱膨張係数及び弾性率
の差により生じる応力が集中すると、第1図X方向に対
しては、真空成形による延伸の効果によシ白化や割れが
生じることはないが、y方向の応力に対しては、延伸の
効果がないため、白化や割れが生じるという欠点を有し
ていた。この欠点を解消する方法の1つとして、上記応
力集中部6の形状のアールをだらすという方法が一般に
採用されているが、この方法では、内箱2の形状がシャ
ープでなくなり見かけ上悪く棚受は機能も損われるとい
う欠点があった。
The inner box 2 is formed in this way, and when the inner box 2 is cooled when used as the heat insulating box 1 as shown in FIGS. , when the stress caused by the difference in thermal expansion coefficient and elastic modulus between the foam insulation material 4 such as polyurethane and the inner box 2 is concentrated, whitening or whitening may occur in the X direction in Figure 1 due to the stretching effect of vacuum forming. Although cracking does not occur, the stretching has no effect on stress in the y direction, so it has the drawback of causing whitening and cracking. One method to overcome this drawback is generally to make the radius of the shape of the stress concentration part 6 sloppy. However, with this method, the shape of the inner box 2 becomes unsharp and it looks bad. Uke had the disadvantage that its functionality was also impaired.

他の方法として、上記応力集中部6に、ポリウレタン等
の発泡断熱材4側から、水溶性アクリル系接着剤等の保
護材料を塗布する方法や粘着テープを貼布する方法があ
った。しかし、これらのものは内箱22発泡断熱材4と
も密着性が高いため、熱応力発生時には内箱2に熱応力
が接着剤層を介在して直接作用するため割れ防止の効果
が得られなかった。又応力集中部6にポリエチレンフィ
ルムを貼布するものもあるが、発泡断熱材4との密着性
が悪く内箱2とわずかなカで離型するが、もしくは常時
離型してい。ため内箱2の外観上好ましくないという欠
点を有していた。
Other methods include applying a protective material such as a water-soluble acrylic adhesive to the stress concentration area 6 from the foamed heat insulating material 4 side such as polyurethane, or applying an adhesive tape. However, since these materials have high adhesion to the inner box 22 and the foam insulation material 4, when thermal stress occurs, the thermal stress acts directly on the inner box 2 through the adhesive layer, making it impossible to prevent cracking. Ta. In some cases, a polyethylene film is attached to the stress concentration area 6, but it has poor adhesion to the foamed heat insulating material 4 and is released from the inner box 2 with a slight force, or is constantly released from the mold. Therefore, the inner box 2 had a disadvantage in that it had an unfavorable appearance.

発明の目的 本発明は、上記従来例の欠点を除去するものであり、A
BS樹脂等の合成樹脂で応力集中部をもつ内箱を作成し
て断熱箱体として使用する時、応力集中部が冷却された
時に白化や割れを生ずることを防止することを目的とす
るものである。
OBJECTS OF THE INVENTION The present invention eliminates the drawbacks of the above-mentioned conventional examples, and
When an inner box with a stress concentration area is made of synthetic resin such as BS resin and used as a heat insulating box, the purpose is to prevent the stress concentration area from whitening or cracking when cooled. be.

発明の構成 本発明は、上記目的を達成するだめに、応力集中部に抽
出成形等のシート作成時に、約120〜160℃で一軸
方向に延伸加工を加え、かつ真空成形等の熱成形時に前
記応力集中部にシート延伸方向の垂直方向に延伸を加え
もって2方向の延伸加工によって応力集中部への応力集
中にょシ白化。
Structure of the Invention In order to achieve the above-mentioned object, the present invention applies stretching processing in a uniaxial direction at about 120 to 160°C during sheet production such as extraction molding to the stress concentration portion, and also applies the stretching process in the uniaxial direction during thermoforming such as vacuum forming. The stress concentration area is stretched in the direction perpendicular to the sheet stretching direction, and by stretching in two directions, the stress concentration in the stress concentration area causes whitening.

割れを防止したものである。This prevents cracking.

実施例の説明 以下に本発明の一実施例について第1図から第6図を参
考に説明する。まず第1次工程はへBS等の合成樹脂が
、押出機7で220℃程度で溶融サレ、ダイス8で一定
厚に調整され、ポリッシングロール9で光沢がつけられ
た後、このシート1゜は従来の如く直ちに真空成形され
ず、−担延伸加工用ロール11により約120℃から1
50℃で延伸加工(第4図中X方向)を加えられたシー
ト10′になる。次に第2次工程として、第6図で示す
ように真空穴を有する真空成形金型12に、前記延伸加
工を加えられたシー)10’を加熱してかぶせ、上部よ
りプラグ1−3にて前記金型12に添う様押し込み、そ
、してさらに真空脱気して成形する。この真空成形にお
いて同時に前述した応力集中部6としての棚受は用リブ
5が形成される。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 to 6. First, in the first step, a synthetic resin such as HeBS is melted at about 220°C in an extruder 7, adjusted to a constant thickness with a die 8, and polished with a polishing roll 9. Unlike the conventional method, it is not immediately vacuum formed, but is heated from about 120°C to 1
The sheet 10' is stretched at 50° C. (in the X direction in FIG. 4). Next, as a second step, as shown in FIG. 6, the stretched sheet 10' is heated and covered with the vacuum forming mold 12 having a vacuum hole, and the plug 1-3 is inserted from above. Then, it is pressed so as to fit into the mold 12, and then further vacuum degassed and molded. At the same time in this vacuum forming, the ribs 5 for the shelf supports as the stress concentration portions 6 described above are formed.

すなわち応力集中部6の形成によって延伸加工を加えら
れたシー)10’の延伸方向又と直交するy方向にも延
伸を加えられることになるだめ製造された内箱2は、応
力が集中する応力集中部6ではx、yの2方向に延伸加
工が加えられたことになる。第6図と第7図は一軸及び
二軸延伸加工における温度と内箱2に割れが生じる臨界
歪値との関係を示すグラフである。第6図、第7図共、
横軸は延伸加工温度を示しており、単位は℃である。
That is, by forming the stress concentration portion 6, the inner box 2 is stretched in the stretching direction of the sheet 10' or in the y direction perpendicular to the stretching direction of the sheet 10'. In the concentrated portion 6, stretching has been applied in two directions, x and y. FIGS. 6 and 7 are graphs showing the relationship between temperature and critical strain value at which cracks occur in the inner box 2 in uniaxial and biaxial stretching processes. Both Figures 6 and 7,
The horizontal axis indicates the stretching temperature, and the unit is °C.

縦軸は、上記温度にて延伸加工された内箱2に割れが生
じる臨界歪値を示している。これらの図より、−軸及び
二軸延伸加工において、加工温度を上げていくと約12
0℃から約150’C’jでは、内箱2に割れが生じる
臨界歪値はほぼ一定であるが、それ以上の温度になると
臨界歪値は低下していくことが分る。又内箱2に割れが
生じる臨界歪値は一軸延伸加工の場合よりも、二軸延伸
加工の方が大きいだめ、二軸延伸加工の方が、内箱2に
割れを生じさせない効果が大きいことが分る。
The vertical axis indicates the critical strain value at which cracks occur in the inner box 2 stretched at the above temperature. From these figures, in -axial and biaxial stretching processing, when the processing temperature is increased, approximately 12
It can be seen that from 0°C to about 150'C'j, the critical strain value at which cracks occur in the inner box 2 is almost constant, but as the temperature rises above that, the critical strain value decreases. In addition, the critical strain value at which cracks occur in the inner box 2 is larger in biaxial stretching than in uniaxial stretching, so biaxial stretching is more effective in preventing cracks in the inner box 2. I understand.

押出成形機7にょる押出成形等のシート10作成時に、
延伸加工用ロール11により延伸加工を加えていない従
来の内箱2の熱応力集中部6は、冷蔵庫としての冷却運
転のような実動運転時や倉庫等のストック時にポリウレ
タン等の発泡断熱材4と前記内箱2との熱膨張係数及び
弾性率の差より、熱応力が生じ更に使用されるフロン1
1等の発泡剤のケミカルアタックにより割れが生じるこ
とがある。この割れが生じる臨界歪は、それぞれの熱応
力集中部6や内箱2の種類によって異なるが、棚受用リ
プ6の先端の場合、通常の冷蔵庫としての使用条件ある
いは厳寒地域でのストック時において測定した結果0.
3チ〜0.8%という値を得ることができた。
When creating the sheet 10 by extrusion molding using the extrusion molding machine 7,
The thermal stress concentration part 6 of the conventional inner box 2 which has not been stretched by the stretching roll 11 is covered with a foamed heat insulating material 4 such as polyurethane during actual operation such as cooling operation as a refrigerator or during stocking in a warehouse or the like. Due to the difference in coefficient of thermal expansion and modulus of elasticity between the inner box 2 and the inner box 2, thermal stress is generated and
Cracks may occur due to chemical attack by the No. 1 blowing agent. The critical strain at which this crack occurs differs depending on the thermal stress concentration area 6 and the type of inner box 2, but in the case of the tip of the shelf support lip 6, it is measured under normal refrigerator usage conditions or when stocked in extremely cold regions. The result was 0.
We were able to obtain a value of 0.8%.

そこで、先に説明した二軸延伸加工を加えた内箱を採用
することにより、例えば、シート10の押出成形機7に
よる押出成形等のシート10作成工時にシート10′延
伸の垂直方向に延伸を加えた内箱2においては、割れが
生じる臨界歪値は0.88%であるため、通常の冷蔵庫
としての使用条件あるいは厳寒地域でのストック時にお
いて割れが生じるような0.3%から0.8チの歪がか
かっても割れが生じないという効果が得られるものであ
る。
Therefore, by adopting the inner box that has been subjected to the biaxial stretching process described above, for example, during the sheet 10 production process such as extrusion molding using the extrusion molding machine 7, the sheet 10' can be stretched in the direction perpendicular to the sheet 10' stretching process. In the added inner box 2, the critical strain value at which cracking occurs is 0.88%, so the critical strain value at which cracking occurs is 0.3% to 0.5%, which would cause cracking under normal use conditions as a refrigerator or when stocked in a severely cold region. This provides the effect that no cracking occurs even when a strain of 8 inches is applied.

発明の効果 以上の説明から明らかなように、本発明は、フランジ近
傍に応力集中部をもつABS等の熱可塑性樹脂製内箱の
作成にりだり、前記応力集中部に押出成形等のシート作
成時に、約120℃から150℃で一軸方向に延伸加工
を加えかつ真空成形時にシートの延伸方向の垂直方向に
延伸を加えたものであるから、この方法を利用すること
により二軸延伸加工効果を加えた内箱を製造できること
により内箱に割れが生じる臨界歪値が向上するだめ、上
記応力集中部に、0.3%〜0.8チ程度の歪がかがら
ても割れが生じないという効果が得られるものであり、
又現在内箱の応力集中部に割れが生じるのを防ぐために
使用されている水溶性アクリル系接着剤等の保護材料や
粘着テープを廃止できるという効果も得られる。
Effects of the Invention As is clear from the above explanation, the present invention is applicable to the production of an inner box made of thermoplastic resin such as ABS having a stress concentration part near the flange, and to the production of a sheet such as extrusion molding in the stress concentration part. Sometimes, stretching is applied in the uniaxial direction at about 120°C to 150°C, and stretching is also applied in the direction perpendicular to the stretching direction of the sheet during vacuum forming, so by using this method, the effect of biaxial stretching can be improved. By being able to manufacture an inner box with added stress, the critical strain value at which cracks occur in the inner box is improved, and it is said that cracks will not occur even if a strain of about 0.3% to 0.8 inches is applied to the stress concentration area. It is effective,
Furthermore, it is possible to eliminate protective materials such as water-soluble acrylic adhesives and adhesive tapes, which are currently used to prevent cracks from occurring in stress concentration areas of the inner box.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は断熱箱体の斜視図、第2図は第111i911
−■′線の断面図、第3図は従来の内箱製造工程の説明
図、第4図は本発明一実施例の内箱製造工程の説明図、
第6図は真空成形機の外観図、第6図、第7図は一軸延
伸加工、二軸延伸加工における延伸加工温度と内箱に割
れが生じる臨界歪値の関係を示すグラフである。 2・・・・・内箱、5・・・・・・棚受用リプ、6・・
・・・・応力集中部、x、y・・・・・・延伸方向。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名兜1
図 第2図 、9 纂5図 第6図 −1、コ≦イ中ノぴ工温Δシ 第7図 二 #姓イーP2りtrjX 蚤イ随。
Figure 1 is a perspective view of the insulation box, Figure 2 is the 111i911
3 is an explanatory diagram of the conventional inner box manufacturing process, FIG. 4 is an explanatory diagram of the inner box manufacturing process of an embodiment of the present invention,
FIG. 6 is an external view of the vacuum forming machine, and FIGS. 6 and 7 are graphs showing the relationship between the stretching temperature and the critical strain value at which cracks occur in the inner box in uniaxial stretching and biaxial stretching. 2...Inner box, 5...Shelf support lip, 6...
... Stress concentration part, x, y ... Stretching direction. Name of agent: Patent attorney Toshio Nakao and 1 other person Kabuto 1
Figures 2, 9, 5, Figure 6-1, Ko≦I, Nakanopi, Δ, Figure 7, 2, # Surname Yi, P2, trjX, Flea, Zui.

Claims (1)

【特許請求の範囲】[Claims] ABS等の合成樹脂を押出成形等にて所定厚みのシート
を作成する第1次工程と、前記シートを加熱し棚受は用
リプ等の応力集中部としての凸部または凹部を有する箱
状に真空成形する第2次工程とを有し、前記第1次工程
において前記シートに12C)C〜160℃の温度条件
下で一軸方向に延伸加工を加えると共に、前記第2次工
程において前記応力集中部に前記シートの延伸方向と直
交する方向に延伸加工を加えた断熱箱体用内箱の製造方
法。
A first step of creating a sheet of a predetermined thickness by extrusion molding or the like from a synthetic resin such as ABS, and heating the sheet to form a box shape with a convex or concave portion as a stress concentration area such as a shelf support. a second step of vacuum forming; in the first step, the sheet is stretched in a uniaxial direction under a temperature condition of 12C to 160C; and in the second step, the sheet is stretched in a uniaxial direction; A method for manufacturing an inner box for a heat insulating box, in which a portion of the inner box is stretched in a direction perpendicular to the stretching direction of the sheet.
JP11127783A 1983-06-20 1983-06-20 Manufacture of inside box for heat-insulating box Pending JPS602346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11127783A JPS602346A (en) 1983-06-20 1983-06-20 Manufacture of inside box for heat-insulating box

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11127783A JPS602346A (en) 1983-06-20 1983-06-20 Manufacture of inside box for heat-insulating box

Publications (1)

Publication Number Publication Date
JPS602346A true JPS602346A (en) 1985-01-08

Family

ID=14557141

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11127783A Pending JPS602346A (en) 1983-06-20 1983-06-20 Manufacture of inside box for heat-insulating box

Country Status (1)

Country Link
JP (1) JPS602346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291048A (en) * 2008-05-30 2009-12-10 Toyota Industries Corp Overcurrent protective circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009291048A (en) * 2008-05-30 2009-12-10 Toyota Industries Corp Overcurrent protective circuit

Similar Documents

Publication Publication Date Title
US3041669A (en) Vacuum forming apparatus
US2444420A (en) Drawing and tempering plastic material
US3940195A (en) Refrigeration cabinet
US5211899A (en) Process for production of polypropylene sheets or films
KR20190012349A (en) Foam sheet containing skin layer, preparation method thereof, and Food container comprising the same
JPS602346A (en) Manufacture of inside box for heat-insulating box
US4256687A (en) Process for producing molded articles
WO2013191241A1 (en) Resin injection molding method and resin injection molded product
ES8106436A1 (en) Method and apparatus for the production of mouldings from thermoplastic material whose partially crystalline state can be adjusted by physical effects, more particularly temperature effects
JPS6127231A (en) Manufacture of fluorine plastic film
EP0068714A1 (en) Thermal-forming processes
JPH0133336B2 (en)
JPS58106374A (en) Panel for heat insulating box
JP3701299B2 (en) container
JPH0212086Y2 (en)
JPS60223922A (en) Manufacture of floor heating panel
JPH0753397B2 (en) Insert mold
JPH0939094A (en) Production of laminated sheet
JPH01263024A (en) Vacuum molding method for both-sides of laminated sheet
JPS59127735A (en) Method for molding expanded thermoplastic resin sheet
JPH0473110A (en) Surface fastener member for molding
KR200143458Y1 (en) Finishing material for panel
JPH1061336A (en) Frame material and manufacture thereof
JPS58168875A (en) Heat insulating door
JP2631931B2 (en) Manufacturing method of heat insulation and moisture proof material