JPS60234382A - Power loss stabilizing device for light-receiving element - Google Patents

Power loss stabilizing device for light-receiving element

Info

Publication number
JPS60234382A
JPS60234382A JP59090417A JP9041784A JPS60234382A JP S60234382 A JPS60234382 A JP S60234382A JP 59090417 A JP59090417 A JP 59090417A JP 9041784 A JP9041784 A JP 9041784A JP S60234382 A JPS60234382 A JP S60234382A
Authority
JP
Japan
Prior art keywords
light
receiving element
power loss
emitting element
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59090417A
Other languages
Japanese (ja)
Inventor
Takao Katayama
貴雄 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59090417A priority Critical patent/JPS60234382A/en
Publication of JPS60234382A publication Critical patent/JPS60234382A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/395Linear regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]

Landscapes

  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To hold the power loss in the light-receiving element in a stabilized manner by a method wherein the quantity of light of the light-emitting element is subjected to a load-feedback control according to the current to run on the light-receiving element. CONSTITUTION:The current I to run on a light-receiving element 57 all runs on a load resistor RL, as the load resistor RL has a resistance lower sufficiently than the input impedance of an arithmetic amplifier 58. The voltage V of this load resistor RL is represented by a formula of V=IXRL. The difference between the reference voltage Vref and the voltage V of the load resistor RL is amplified in the arithmetic amplifier 58 and a control elemnt 54 is controlled by the output signal of the arithmetic amplifier 58. Accordingly, the current to run on a light-emitting element 53 is changed and the quantity of light emission is controlled so that the power loss in the light-emitting element 57 becomes constant. As a result, even in the case of the deterioration of the light-emitting element 57 and in the case when a shield is made to interpose between the light- emitting element and the light-receiving element and the quantity of incident light of the light-receiving element is changed, the power loss is automatically held at constant value, and moreover, manual adjustment is unnecessitated.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、例えば7 *ト)ランノスタやフォトダイ
オード等の寿命試験に適用される受光素子の電力損失一
定化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a device for stabilizing power loss of a light-receiving element, which is applied to, for example, a life test of a runnostar, a photodiode, and the like.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

受光素子の寿命試験には、受光素子の電力損失を一定と
して長期間放置し、初期の特性と放置後の特性を比較す
る試験がある。
A life test of a light receiving element includes a test in which the power loss of the light receiving element is kept constant for a long period of time, and the initial characteristics are compared with the characteristics after being left unused.

第1図、第2図は上記試験の従来構成を示すものである
。第1図において、電源vcc1と接地間には発光素子
11と可変抵抗RF、が直列接続され、電源■。c2と
接地間には前記発光素子11に対向された受光素子12
と抵抗R1,とが直列接続されている。第2図は第1図
とは異なり、抵抗REが固定され、抵抗九が可変される
ようになっている。第3図、第4図はそれぞれ第1図、
第2図の具体的な回路を示すものであり、第3図、第4
図において、発光素子11としては発光ダイオードを使
用し、受光素子12としてはフォトトランジスタを使用
したものである。このような構成において、寿命試験を
行う場合、第1図、第3図においては発光側の可変抵抗
RF、を可変して受光素子12の電力損失が調整され、
第2図、第4図においては可変抵抗RLを可変して受光
素子12の電力損失が調整された後、長期間放置される
FIGS. 1 and 2 show the conventional configuration of the above test. In FIG. 1, a light emitting element 11 and a variable resistor RF are connected in series between a power supply vcc1 and ground, and a power supply ■. Between c2 and ground is a light receiving element 12 facing the light emitting element 11.
and resistor R1 are connected in series. In FIG. 2, unlike FIG. 1, the resistor RE is fixed and the resistor 9 is variable. Figure 3 and Figure 4 are respectively Figure 1 and Figure 4.
This shows the specific circuit in Figure 2, and Figures 3 and 4.
In the figure, a light emitting diode is used as the light emitting element 11, and a phototransistor is used as the light receiving element 12. In such a configuration, when performing a life test, in FIGS. 1 and 3, the power loss of the light receiving element 12 is adjusted by varying the variable resistance RF on the light emitting side.
In FIGS. 2 and 4, after the power loss of the light receiving element 12 is adjusted by varying the variable resistor RL, the light receiving element 12 is left as it is for a long period of time.

ところで、上記従来の寿命試験においては、受光素子1
2の電力損失を試験開始時に調整した後は殆んど再度調
整されない。このため、試験の途中で発光素子1ノの発
光量が温度変化等によって変化したわ、発光素子1ノと
受光素子12との間に塵埃等の遮蔽物が入シ込んだ場合
、受光素子12の電力損失が変化するという問題を有し
ていた。
By the way, in the above conventional life test, the light receiving element 1
After adjusting the power loss of 2 at the beginning of the test, it is rarely adjusted again. Therefore, during the test, the amount of light emitted from the light emitting element 1 changes due to changes in temperature, etc. If a shielding object such as dust enters between the light emitting element 1 and the light receiving element 12, the amount of light emitted from the light receiving element 12 changes. The problem is that the power loss varies.

また、上記電力損失の調整は受光素子を換える毎に人手
によって行う亀のであり、しかも、その際損失を計算す
る必要がある。即ち、受光素子の電力損失Pけ P=IoXVc、=IoX(V、、c2−RLXIC)
但(2、■C:受光素子に流れる電流 Vo□;受光素子に加わる電圧 でまる。第1図、第3図の場合、受光量により電流Tc
1電圧V。つが変化するため、計算を行い損失をめる必
要がある。第2図、第4図の場合、受光素子の感度誤差
や発光素子の光量誤差により、受光素子に流れる電流I
。が異なる。
Further, the power loss adjustment described above is performed manually each time the light receiving element is replaced, and furthermore, it is necessary to calculate the loss at that time. That is, the power loss of the light receiving element P = IoXVc, = IoX (V, , c2 - RLXIC)
However, (2, ■C: Current Vo□ flowing through the light-receiving element; determined by the voltage applied to the light-receiving element. In the case of Figures 1 and 3, the current Tc varies depending on the amount of light received.
1 voltage V. Since the value changes, it is necessary to perform calculations to account for losses. In the case of Figures 2 and 4, the current I flowing through the light receiving element is due to the sensitivity error of the light receiving element and the light amount error of the light emitting element.
. are different.

このため、可変抵抗RLを変化させ電圧■。を変化させ
ている。受光素子のI−■特性は電圧Vに依存するもの
であシ、この場合も設定状態におけるIと■の積を計算
する必要がある。このように従来の装置は種々の問題を
有していた。
Therefore, the variable resistor RL is changed to obtain the voltage ■. is changing. The I--characteristic of the light-receiving element depends on the voltage V, and in this case as well, it is necessary to calculate the product of I and (2) in the set state. As described above, conventional devices have had various problems.

〔発明の目的〕[Purpose of the invention]

この発明は上記事情に基づいてなされたものであυ、そ
の目的とするところは発光素子の劣化や発光素子と受光
素子の間に遮蔽物が介在して受光素子の入射光量が変化
した場合においても自動的に電力損失が一定に保持され
、しかも、入手による調整が不要な受光素子の電力損失
−電化装置を擾供しようとするものである。
This invention was made based on the above circumstances, and its purpose is to prevent the light emitting element from deteriorating or when a shielding object is interposed between the light emitting element and the light receiving element, and the amount of light incident on the light receiving element changes. The present invention also aims to provide a power loss electrification device for a light-receiving element in which the power loss is automatically maintained constant and does not require adjustment upon acquisition.

〔発明の概要〕[Summary of the invention]

この発明は、受光素子に流れる電流に応じて発光素子の
光量を負帰還制御することにより、受光素子の電力損失
を一定に保持するものであるO 〔発明の実施例〕 以下、この発明の一実施例について図面を参照して説明
する。
This invention maintains the power loss of the light receiving element constant by negative feedback controlling the light amount of the light emitting element according to the current flowing through the light receiving element. Examples will be described with reference to the drawings.

第5図において、接続端子51.52の相互間には発光
素子53が接続され、この接続端子51には電源V。1
が接続されている。前記接続端子52と接地間VtC,
は例えば電流制御素子からなる制御素子54が接続され
ている。一方、接続端子55.56の相互間にFi被試
験物としての受光素子57が接続され、接続端子55に
は電源vc2が接続されている。前記接続端子56と接
地間には負荷抵抗RLが接続されている。この負荷抵抗
九と接続端子56の接続点には演算増幅器58の反転入
力端が接続されている。この演算増幅器58の非反転入
力端と接地間には基準電圧vrefを発生する電源59
が接続され、この演算増幅器58の出力端子は前記制御
素子54に接続されている。
In FIG. 5, a light emitting element 53 is connected between connecting terminals 51 and 52, and a power source V is connected to this connecting terminal 51. 1
is connected. VtC between the connection terminal 52 and ground,
A control element 54 made of, for example, a current control element is connected thereto. On the other hand, a light receiving element 57 as an Fi test object is connected between the connecting terminals 55 and 56, and a power source VC2 is connected to the connecting terminal 55. A load resistor RL is connected between the connection terminal 56 and ground. An inverting input terminal of an operational amplifier 58 is connected to the connection point between the load resistor 9 and the connection terminal 56. A power supply 59 that generates a reference voltage vref is connected between the non-inverting input terminal of the operational amplifier 58 and the ground.
is connected, and the output terminal of this operational amplifier 58 is connected to the control element 54.

上記構成において動作について説明する。受光素子57
に流れる電流工は、負荷抵抗町が演算増幅器58の入力
インピーダンスより充分低いため、全てRLに流れる。
The operation in the above configuration will be explained. Light receiving element 57
Since the load resistance is sufficiently lower than the input impedance of the operational amplifier 58, all of the current flowing to RL flows to RL.

この負荷抵抗RLの電圧Vは V=IXRL ・・・・・・・ (1)となる。演算増
幅器58では基準電圧vrefと負荷抵抗九の電圧Vの
差が増幅され、この演算増幅器58の出力信号によって
制御素子54が制御される。したがって、発光素子53
に流れる電流が変化され、発光素子57の電力損失が一
定となるよう発光量が制御される。例えば、受光素子5
7に流れる電流(受光電流)■がI+Δ工となった場合
、各部の条件は次表のようになる。
The voltage V of this load resistance RL is V=IXRL (1). The operational amplifier 58 amplifies the difference between the reference voltage vref and the voltage V across the load resistor 9, and the control element 54 is controlled by the output signal of the operational amplifier 58. Therefore, the light emitting element 53
The current flowing through the light emitting element 57 is changed, and the amount of light emitted is controlled so that the power loss of the light emitting element 57 is constant. For example, the light receiving element 5
When the current (light-receiving current) flowing through 7 is I+Δ, the conditions for each part are as shown in the table below.

表 光量を変化するKは演算増幅器58の出力電圧を変化す
ることによって対処できる。つまり光量Eは Eoc演算増幅器の出力電圧 、’、E=α・A(Vr e t ”) −−(2)と
なる。但し、Aは演算増幅器の増幅度、αは比例定数で
ある。ここで、表と(2)式の関係よシ光量の変化分を
考えると、 ΔE=−αAΔV ・・・・・・(3)となる。(3)
式を(1)式を用いて変形すると、ΔE−−αARL×
ΔI ・mm・ (4)(4)式よυ、受光電流がΔ■
だけ増大しようとすると、光量Eは逆に減衰しようとす
る。即ち、発光素子53は受光電流の変化を抑えるよう
負帰還制御される。
K, which changes the amount of surface light, can be dealt with by changing the output voltage of the operational amplifier 58. In other words, the amount of light E is the output voltage of the Eoc operational amplifier, ', E = α · A (Vret'') -- (2). However, A is the amplification degree of the operational amplifier, and α is the proportionality constant. Considering the relationship between the table and equation (2) and the change in light amount, we get ΔE=-αAΔV (3). (3)
Transforming the equation using equation (1), ΔE−−αARL×
ΔI ・mm・ (4) According to equation (4), υ, the light receiving current is Δ■
If the amount of light E is increased by the amount of light E, the amount of light E will be attenuated. That is, the light emitting element 53 is controlled by negative feedback so as to suppress changes in the light receiving current.

まだ、受光素子57の電力損失Pは P = I X (Vc2−V) ・・=−(5)で表
わされる。一般に、演算増幅器の利得Aが十分大きい場
合、演算増幅器の両入力端子間の電圧は非常に小さく、 Vref−V ・・・・・・・(6) の関係が成立する。(6)式より(5)式はP= I 
X (VC2−Vr、、) ・・・・・・(7)となる
。一方、受光電流工は(1)式と(6)式よシv−■×
RL=Vref となる。(8)式を(7)式に代入すると受光素子57
の電力損失Pは となる。(9)式は■。2を固定した供給電源とすると
、基準電圧vre、と負荷抵抗R07によシミ力損失を
決定できることになる。
Still, the power loss P of the light receiving element 57 is expressed as P=IX(Vc2-V)...=-(5). Generally, when the gain A of the operational amplifier is sufficiently large, the voltage between both input terminals of the operational amplifier is very small, and the following relationship holds: Vref-V (6). From equation (6), equation (5) becomes P=I
X (VC2-Vr,,)...(7). On the other hand, the light receiving electrician is calculated by equations (1) and (6).
RL=Vref. Substituting equation (8) into equation (7), the light receiving element 57
The power loss P is as follows. Equation (9) is ■. 2 is a fixed power supply, the stain force loss can be determined by the reference voltage vre and the load resistance R07.

第6図は第5図の具体的な回路例を示すものである。発
光素子53としては発光ダイオードが用いられ、受光素
子57としてはフォトトランジスタが用いられている。
FIG. 6 shows a specific example of the circuit shown in FIG. A light emitting diode is used as the light emitting element 53, and a phototransistor is used as the light receiving element 57.

電流制御素子54としてはトランジスタが用いられ、こ
のトランジスタ54のコレクタは抵抗61を介して接続
端子52に接続され、エミッタは接地される。
A transistor is used as the current control element 54. The collector of the transistor 54 is connected to the connection terminal 52 via a resistor 61, and the emitter is grounded.

また、ベースは抵抗62を介して演算増幅器58の出力
端に接続されている。この演算増幅器68の両入力端間
には発振防止用のコンデンサ63が接続され、非反転入
力端は接地きれている。さらに、負荷抵抗町は接続端子
56と電源−V、間に接続されている。
Further, the base is connected to the output terminal of the operational amplifier 58 via a resistor 62. A capacitor 63 for preventing oscillation is connected between both input terminals of this operational amplifier 68, and the non-inverting input terminal is grounded. Furthermore, the load resistor is connected between the connection terminal 56 and the power supply -V.

尚、発光ダイオード53とフォトトランジスタ57の距
離は最短4瓢に設定されており、端子64は電圧モニタ
ー用に使用される。
Incidentally, the distance between the light emitting diode 53 and the phototransistor 57 is set to a minimum of four meters, and the terminal 64 is used for voltage monitoring.

上記実施例によれば、受光素子57に流れる電流を検出
し、この検出電流の変化量に応じて発光素子53の発光
量を負帰還制御している。
According to the embodiment described above, the current flowing through the light receiving element 57 is detected, and the amount of light emitted from the light emitting element 53 is controlled by negative feedback in accordance with the amount of change in the detected current.

したがって、発光素子53が劣化した場合や、発光素子
53と受光素子57の間に塵埃等の遮蔽物が介在して受
光素子57の入射光量が変化した場合においても自動的
に電力損失が一定に保持されるため、受光素子57の寿
命試験に適用して極めて便利なものである。
Therefore, even if the light emitting element 53 deteriorates or if a shielding object such as dust is present between the light emitting element 53 and the light receiving element 57 and the amount of light incident on the light receiving element 57 changes, the power loss is automatically kept constant. Since it is retained, it is extremely convenient to apply to the life test of the light receiving element 57.

また、受光素子57の電力損失は負荷抵抗九と基準電圧
vrefによって一義的に定まるため、被試験物として
の受光素子57を取換える毎に調整が不要となる利点を
有している。
Further, since the power loss of the light receiving element 57 is uniquely determined by the load resistance 9 and the reference voltage vref, there is an advantage that adjustment is not required every time the light receiving element 57 as the test object is replaced.

尚、上記実施例では制御素子54として電流制御素子を
使用したが、これに限らず、電圧制御素子を発光素子5
3に並列接続するようにしてもよい。
Although the current control element is used as the control element 54 in the above embodiment, the present invention is not limited to this, and the voltage control element may be used as the light emitting element 5.
3 may be connected in parallel.

また、受光電流は抵抗九によって検出したが、抵抗九に
代えてダイオードを使用することも可能である。
Furthermore, although the photodetection current was detected using resistor 9, a diode may be used in place of resistor 9.

その他、この発明の要旨を変えない範囲で種種変形実施
可能なことは勿論である。
It goes without saying that other modifications can be made without departing from the gist of the invention.

〔発明の効果〕〔Effect of the invention〕

以上、詳述したようにこの発明によれば、発光素子の劣
化や発光素子と受光素子の間に遮蔽物が介在して受光素
子の入射光量が変化した場合においても自動的に電力損
失が一定に保持され、しかも、人手による調整が不安な
受光素子の電力損失一定化装置を提供できる。
As detailed above, according to the present invention, power loss is automatically kept constant even when the amount of light incident on the light receiving element changes due to deterioration of the light emitting element or a shielding object is interposed between the light emitting element and the light receiving element. Therefore, it is possible to provide a device for stabilizing the power loss of a light-receiving element, which is maintained at a constant value, and which is difficult to manually adjust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図はそれぞれ従来の受光素子の寿命試験装
置を概略的に示す構成図、第3図、第4図はそれぞれ第
1図、第2図の回路構成図、第5図はこの発明に係わる
受光素子の電力損失一定化装置の一実施例を示す概略構
成図、第6図は第5図を具体的に示す回路構成図である
。 53・・・発光素子、54・・制御素子、57・・受光
素子、58・・・演算増幅器、RL・・・抵抗、Vr、
、、、。 基準電圧。 第1図 第2図 第3図 第4図
Figures 1 and 2 are block diagrams schematically showing conventional life test equipment for light-receiving elements, Figures 3 and 4 are circuit diagrams of Figures 1 and 2, respectively, and Figure 5 is FIG. 6 is a schematic configuration diagram showing an embodiment of the power loss stabilizing device for a light receiving element according to the present invention, and FIG. 6 is a circuit configuration diagram specifically showing FIG. 5. 53... Light emitting element, 54... Control element, 57... Light receiving element, 58... Operational amplifier, RL... Resistor, Vr,
,,,. Reference voltage. Figure 1 Figure 2 Figure 3 Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1)発光素子と、この発光素子に対向して配設された
受光素子と、この受光素子の受光電流を検出する手段と
、この検出された受光電流の変化量に対応して前記発光
素子の発光量を負帰還制御する手段とを具備したことを
特徴とする受光素子の電力損失一定化装置。
(1) A light-emitting element, a light-receiving element disposed opposite to the light-emitting element, means for detecting a light-receiving current of the light-receiving element, and a means for detecting a light-receiving current of the light-receiving element; 1. A device for constant power loss of a light-receiving element, comprising means for controlling the amount of light emitted by negative feedback.
(2)前記受光電流を検出する手段は抵抗からなること
を特徴とする特許請求の範囲第1項記載の受光素子の電
力損失一定化装置。
(2) The device for stabilizing power loss in a light receiving element according to claim 1, wherein the means for detecting the light receiving current comprises a resistor.
(3)前記発光素子の発光量を負帰還制御する手段は発
光素子に接続された制御素子および検出された受光電流
の変化分を増幅し、前記制御素子を制御する増幅器から
なることを特徴とする特許請求の範囲第1項記載の受光
素子の電力損失一定化装置。
(3) The means for controlling the amount of light emitted by the light emitting element by negative feedback includes a control element connected to the light emitting element and an amplifier that amplifies the detected change in the light receiving current and controls the control element. A power loss equalizing device for a light receiving element according to claim 1.
(4)前記制御素子は電流制御素子からなることを特徴
とする特許請求の範囲第3項記載の受光素子の電力損失
一定化装置。
(4) The power loss stabilizing device for a light receiving element according to claim 3, wherein the control element is a current control element.
(5)前記制御素子は電圧制御素子からなること庖喘徴
とする特許請求の範囲第3項記載の受光素子の電力損失
一定化装置。
(5) The power loss stabilizing device for a light receiving element according to claim 3, wherein the control element is a voltage control element.
(6)前記増幅器は一方入力端に基準電圧が供給された
演算増幅器であることを特徴とする特許請求の範囲第3
項記載の受光素子の電力損失一定化装置。
(6) Claim 3, wherein the amplifier is an operational amplifier to which a reference voltage is supplied to one input terminal.
A power loss constant device for a light-receiving element as described in 1.
JP59090417A 1984-05-07 1984-05-07 Power loss stabilizing device for light-receiving element Pending JPS60234382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59090417A JPS60234382A (en) 1984-05-07 1984-05-07 Power loss stabilizing device for light-receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59090417A JPS60234382A (en) 1984-05-07 1984-05-07 Power loss stabilizing device for light-receiving element

Publications (1)

Publication Number Publication Date
JPS60234382A true JPS60234382A (en) 1985-11-21

Family

ID=13998016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59090417A Pending JPS60234382A (en) 1984-05-07 1984-05-07 Power loss stabilizing device for light-receiving element

Country Status (1)

Country Link
JP (1) JPS60234382A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140175A (en) * 1982-02-16 1983-08-19 Toshiba Corp Abnormality detecting method for semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140175A (en) * 1982-02-16 1983-08-19 Toshiba Corp Abnormality detecting method for semiconductor laser device

Similar Documents

Publication Publication Date Title
US5404585A (en) Power detector that employs a feedback circuit to enable class B operation of a detector transistor
US5548112A (en) Photodetecting circuit using avalanche photodiode
JPH0548964B2 (en)
US8901475B1 (en) Avalanche photodiode biasing system including a current mirror, voltage-to-current converter circuit, and a feedback path sensing an avalanche photodiode voltage
JPH02113640A (en) Automatic gain controller
KR100318039B1 (en) Exothermic Resistance Air Flow Meter
EP0609018B1 (en) Apparatus for measuring optical power in an optical receiver or the like
US4889985A (en) Combined optical power meter and receiver
US4599527A (en) Device for stabilizing gain of a photosensitive avalanche member
US5536934A (en) Light intensity deterioration detecting circuit with compensation for resistance errors
JPS6377171A (en) Optical receiver
JPS60234382A (en) Power loss stabilizing device for light-receiving element
US4262220A (en) Optical current isolator circuit
JPH04271607A (en) Offset reduction circuit for differential amplifier
US4864120A (en) Electronic correction of photodiode radiant sensitivity
CN217034616U (en) Laser instrument current control circuit based on V-I conversion
JPH0837331A (en) Semiconductor laser controller
JP3062213B2 (en) Semiconductor laser control circuit
JP2776501B2 (en) Optical transmitter
JPH04184202A (en) Position detector
JP2840275B2 (en) Semiconductor laser controller
JP2994442B2 (en) Semiconductor laser controller
JP2589744Y2 (en) Photoelectric detector
JP2848495B2 (en) Optical receiver
SU1019412A1 (en) Direct current stabilizer