JPS6023401B2 - Magnetic recording and reproducing method - Google Patents

Magnetic recording and reproducing method

Info

Publication number
JPS6023401B2
JPS6023401B2 JP51127936A JP12793676A JPS6023401B2 JP S6023401 B2 JPS6023401 B2 JP S6023401B2 JP 51127936 A JP51127936 A JP 51127936A JP 12793676 A JP12793676 A JP 12793676A JP S6023401 B2 JPS6023401 B2 JP S6023401B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
recording
magnetization
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51127936A
Other languages
Japanese (ja)
Other versions
JPS5352407A (en
Inventor
龍司 白幡
達治 北本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP51127936A priority Critical patent/JPS6023401B2/en
Publication of JPS5352407A publication Critical patent/JPS5352407A/en
Publication of JPS6023401B2 publication Critical patent/JPS6023401B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は新規な磁気記録再生方法、さらに群しくは2層
からなる磁性層を使用し、短波長の信号をも記録再生で
きるようにした新規な磁気記録再生方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a novel magnetic recording and reproducing method, and more particularly to a novel magnetic recording and reproducing method that uses a magnetic layer consisting of two layers and is capable of recording and reproducing short wavelength signals as well. It is something.

磁気テープ等の磁気記録体の表面に近接して磁気ヘッド
等の電磁変換素子を移動させて情報の記録、再生を行な
う磁気記録はオーデオ信号、ビデオ信号、計測信号ある
いは電算機用のデジタル信号等の記録再生等に広く使用
されている。
Magnetic recording, in which information is recorded and reproduced by moving an electromagnetic conversion element such as a magnetic head close to the surface of a magnetic recording medium such as a magnetic tape, can be used to record or reproduce information such as audio signals, video signals, measurement signals, or digital signals for computers. It is widely used for recording and reproducing.

近年では、記録密度をより高くするために磁気記録体に
、より短波長の信号を記録する方法が求められている。
しかしながら従来の磁気記録方式では記録減磁作用のた
めあまり短い波長の信号を記録するのは困難であった。
すなわち磁気記録体が記録へッドもこ対して移動する際
、記録体中の記録点は記録ヘッドからの信号磁場の極性
反転を受けるために、磁気記録体に回転磁化モードが生
じる。この回転磁化モードは閉磁路構造であるため磁気
記録体外部への漏洩磁束は著しく減少し、再生ヘッドに
よってピックアップされるべき磁力線が無いために見掛
け上記録されてなかったと同様になり再生出力が得られ
ない。この現象は記録波長が短か〈なる程著しく、記録
電流を増加させれば再生出力はある程度増加するが、こ
れはすぐ最大値に達し、さらに記録電流を増加させると
急激に再生出力が減少した後再び第2の極大値をとると
いうディップ現象として端的に現れる。この現象はバイ
アス方式による磁気記録の場合と無バイアス方式による
磁気記録の場合のいずれでも認められ、磁気記録の高密
度化を図る上で大きな障害となっていた。しかしながら
上述の回転磁化モードの閉磁路造を、記録体外部に漏洩
磁束を生ずる開磁路線、に変換することにより、従来記
録再生が不可能とされていた大振幅の短波長をも記録再
生可能となることが、特関昭51一17421号の公報
に開示されている。この方法では、磁気記録体に記録ヘ
ッドによりバイアス方式あるいは無バイアス方式によっ
て通常の磁気記録を行なった後、実質的に磁気記録体の
厚み方向に直流磁場を印加することにより回転磁化モー
ドを破壊して垂直磁化成分を発生させ、これを再生へッ
ド‘こよって読み出すものである。直流磁場の大きさは
磁気記録体の抗磁力の2〜5倍で、磁場の印加方向は磁
気記録体の面に垂直な軸より少し傾斜させるのが良いと
している。しかしながら、この方法では直流磁場として
500〜2000尤もの大きな磁場を使用しなければな
らず、磁気記録再生装置にこのような高直流磁場印加装
置を取り付けるのは実用的でない。さらにこの方法では
印加された直流磁場によって回転磁化モードが完全に破
壊されてしまうため、直流磁場を印加して再調整を行な
ったり、回転磁化モ−ドとして信号を再保存して置くこ
と等ができず実用化には適さないという難点がある。こ
のような事情に鑑みて本発明は回転磁化モードの閉滋路
構造を、大きな直流磁場を使用することなく開磁路構造
に変換することができ、したがって実用的な装置によっ
て充分な再生出力をもって短波長記録をすることができ
、しかも回転磁化モードを完全に破壊することがない、
磁気記録再生方法を提供することを目的とするものであ
る。
In recent years, there has been a demand for a method of recording shorter wavelength signals on a magnetic recording medium in order to further increase the recording density.
However, in conventional magnetic recording systems, it is difficult to record signals with very short wavelengths due to the recording demagnetization effect.
That is, when the magnetic recording body moves in opposition to the recording head, the recording point in the recording body receives polarity reversal of the signal magnetic field from the recording head, so that a rotational magnetization mode occurs in the magnetic recording body. Since this rotating magnetization mode has a closed magnetic path structure, the leakage magnetic flux to the outside of the magnetic recording medium is significantly reduced, and since there are no lines of magnetic force to be picked up by the reproducing head, it appears as if no recording had been made, and no reproducing output is obtained. I can't do it. This phenomenon was more pronounced when the recording wavelength was short.If the recording current was increased, the reproduction output increased to some extent, but this soon reached its maximum value, and when the recording current was further increased, the reproduction output suddenly decreased. After that, it clearly appears as a dip phenomenon in which it takes a second maximum value again. This phenomenon is observed in both bias magnetic recording and non-bias magnetic recording, and has been a major obstacle in increasing the density of magnetic recording. However, by converting the closed magnetic path structure of the above-mentioned rotating magnetization mode into an open magnetic path that generates leakage magnetic flux outside the recording medium, it is possible to record and reproduce short wavelengths with large amplitudes that were conventionally considered impossible to record and reproduce. This is disclosed in the official gazette of Tokukan Sho 51-17421. In this method, after normal magnetic recording is performed on a magnetic recording medium using a bias method or a non-bias method using a recording head, the rotational magnetization mode is destroyed by applying a DC magnetic field substantially in the thickness direction of the magnetic recording medium. This generates a perpendicular magnetization component, which is then read out by a reproducing head. It is said that the magnitude of the DC magnetic field is 2 to 5 times the coercive force of the magnetic recording medium, and that the direction of application of the magnetic field is preferably slightly inclined from the axis perpendicular to the surface of the magnetic recording medium. However, in this method, a large magnetic field of 500 to 2000 degrees must be used as a DC magnetic field, and it is not practical to attach such a high DC magnetic field applying device to a magnetic recording/reproducing apparatus. Furthermore, in this method, the rotating magnetization mode is completely destroyed by the applied DC magnetic field, so it is necessary to readjust it by applying a DC magnetic field or to re-save the signal as the rotating magnetization mode. The problem is that it is not suitable for practical use. In view of these circumstances, the present invention is capable of converting a closed magnetic path structure in a rotating magnetization mode into an open magnetic path structure without using a large direct current magnetic field, and therefore can achieve sufficient reproduction output with a practical device. It is capable of short wavelength recording and does not completely destroy the rotating magnetization mode.
The object is to provide a magnetic recording and reproducing method.

本発明の方法は、低温下では常温下より抗磁力が低い第
1の磁性層と、この第1の磁性層上に設けられた、常温
においてはこの第1の磁性層より抗磁力が低く、低温下
では高くなる第2の磁性層からなる2層構造の磁性層を
有する磁気記録体に常温下で第2の磁性層のみを磁化し
得る大きさの信号磁場を印加して信号を記録し、次にこ
の記録体を冷却して低温下で、第1の磁性層のみを磁化
し得る大きさの直流磁場を磁気記録体の厚さ方向に印加
し、その後、常温下でその信号を再生することを特徴と
するものである。すなわち本発明の方法によれば、まず
常温下において、両磁性層の抗磁力の差を利用して、第
2の磁性層のみに信号が記録されるが、この際信号が短
波長であると、前述のように磁化パターンがループ状閉
磁路となってしまうため充分な再生出力が得られない。
次に記録体を冷却して第1の磁性層が第2の磁性層より
抗磁力が高くなるようにして、直流磁場を印加すると、
第1の磁性層のみが直流磁化される。次にこのように第
1の磁性層が直流磁化を有し、第2の磁性層が閉磁路構
造の磁化成分を有する記録体を常温に戻すと、第2の磁
性層の抗磁力が第1の磁性層の抗磁力より低くなるため
、第2の磁性層の閉磁路構造は第1の磁性層の直流磁化
の影響を受けて、この直流磁化と同一方向の磁化が強め
られ、反対方向の磁化が弱められるため、開磁路構造に
変換される。したがって外部漏洩磁束が生じ、充分な再
生出力が得られることになる。このように本発明の方法
によれ‘よ、短波長の信号でも最終的に充分な再生出力
を有するように記録することができる。さらに、前記特
開昭51一17421号記載の方法とは異なり、第1の
磁性層として、低温における抗磁力が極めて小さくなる
もの、例えばNh−Bi合金を主体とする磁性粉末等を
使用すれば比較的4・さい直流磁場の印加によって磁化
パターンを開磁路構造とすることができる。
The method of the present invention comprises: a first magnetic layer having a lower coercive force at low temperatures than at room temperature; A signal is recorded by applying a signal magnetic field of a magnitude that can magnetize only the second magnetic layer at room temperature to a magnetic recording medium having a two-layered magnetic layer consisting of a second magnetic layer that increases in temperature at low temperatures. Next, this recording body is cooled and a DC magnetic field of a magnitude that can magnetize only the first magnetic layer is applied in the thickness direction of the magnetic recording body at a low temperature, and then the signal is reproduced at room temperature. It is characterized by: That is, according to the method of the present invention, a signal is first recorded only in the second magnetic layer at room temperature by utilizing the difference in coercive force between the two magnetic layers. As mentioned above, since the magnetization pattern becomes a loop-shaped closed magnetic path, a sufficient reproduction output cannot be obtained.
Next, when the recording medium is cooled so that the first magnetic layer has a higher coercive force than the second magnetic layer, and a DC magnetic field is applied,
Only the first magnetic layer is DC magnetized. Next, when the recording medium in which the first magnetic layer has direct current magnetization and the second magnetic layer has a magnetization component with a closed magnetic path structure is returned to room temperature, the coercive force of the second magnetic layer becomes the same as that of the first magnetic layer. Since the coercive force of the magnetic layer is lower than that of the magnetic layer, the closed magnetic circuit structure of the second magnetic layer is influenced by the DC magnetization of the first magnetic layer, and the magnetization in the same direction as this DC magnetization is strengthened, and the magnetization in the opposite direction is Since the magnetization is weakened, it is converted into an open magnetic path structure. Therefore, external leakage magnetic flux is generated, and sufficient reproduction output can be obtained. As described above, according to the method of the present invention, even short wavelength signals can be recorded with sufficient final reproduction output. Furthermore, unlike the method described in JP-A-51-17421, it is possible to use a material whose coercive force at low temperatures is extremely small, such as a magnetic powder mainly composed of Nh-Bi alloy, as the first magnetic layer. The magnetization pattern can be formed into an open magnetic path structure by applying a DC magnetic field of relatively 4 cm.

また、第2の磁性層の開磁路構造は、第1の磁性層の直
流磁化の影響を受けて開磁路構造となるのであるから「
第1の磁性層の直流磁化を除去することによってほぼ元
の状態の閉磁路構造に戻すことができる。
Furthermore, the open magnetic path structure of the second magnetic layer becomes an open magnetic path structure under the influence of the DC magnetization of the first magnetic layer.
By removing the DC magnetization of the first magnetic layer, the closed magnetic circuit structure can be returned to the almost original state.

この直流磁化を除去するためには磁気記録体を再び冷却
して、第1の磁性層の抗磁力を第2の磁性層の抗磁力よ
り低くして、第2の磁性層に影響を与えない大きさの減
衰交流磁場を印加して第1の磁性層のみを消磁すればよ
い。なお、第2の磁性層に信号を記録するには、バイア
ス方式でも無バイアス方式でもさしっかえない。以下図
面を参照して本発明の実施例を詳細に説する。
In order to remove this DC magnetization, the magnetic recording body is cooled again, and the coercive force of the first magnetic layer is made lower than the coercive force of the second magnetic layer, so that the second magnetic layer is not affected. It is sufficient to demagnetize only the first magnetic layer by applying an attenuated alternating current magnetic field of the same magnitude. Note that in order to record a signal on the second magnetic layer, either a bias method or a non-bias method may be used. Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に使用される磁気記録体の一例を示す断
面図である。
FIG. 1 is a sectional view showing an example of a magnetic recording body used in the present invention.

本例の記録体1は非磁性基体10の上に第1の磁性層1
1と第2の磁性層12をこの順に積属してなっている。
The recording body 1 of this example has a first magnetic layer 1 on a nonmagnetic substrate 10.
1 and a second magnetic layer 12 are stacked in this order.

第1磁性層11は低温下では抗磁力が常温下よりも低く
、第2磁性層12は抗磁力が常温では第1磁性層11よ
り低く、低温下では高くなる。第1磁性層1 1の磁性
材料としてはNm−Bi合金を主体とするものが望まし
い。
The first magnetic layer 11 has a coercive force lower than that at room temperature at low temperatures, and the second magnetic layer 12 has a coercive force lower than that of the first magnetic layer 11 at room temperature, but becomes higher at low temperatures. The magnetic material for the first magnetic layer 11 is desirably composed mainly of Nm-Bi alloy.

Mn一Bi合金は第2図の曲線Aに示すように常温では
数100のe以上もの高抗磁力を有するが、低温下では
抗磁力が著しく低下し、特に−200o0付近では10
のe程度に低下する。その他第1磁性層11に使用され
る磁性材料としてはM旧iのように常温付近において大
きい磁気異方性定数を有し、常温以下に冷却すると磁気
異万性定数の減少するような磁性材料あるいはまたバリ
ウムフェライトのようにノK/ls値(K:磁気異万性
定数、ls:飽和磁化)が低温にいく程小さくなって、
常温での単磁区購造が低温では多磁区横造となり抗磁力
の低くなるような磁性材料が使用される。また第2磁性
層12を構成する磁性材料としては第1磁性層11の磁
性材料との関係もあるが、常温で第1磁性層より抗磁力
が低く、低温に冷却した際抗磁力が高くなるが、変化し
ない磁性材料、あるいは抗磁力が低下しても第1磁性層
1 1の抗磁力よりは高いような磁性材料を用いればよ
く、その選択の範囲は広い。これには従釆より使用され
ている酸化鉄磁性粉末、Co含有酸化鉄磁性粉末、Cr
02磁性粉末、合金磁性粉末等が特に好ましい。比較の
ために合金粉末(Fe70%、Co30%)とCo含有
酸化鉄粉末の抗磁力の温度変化を第2図にそれぞれ曲線
BおよびCで示す。本発明の方法においては、第1図に
示すような記録体1上に、第3A図に示すように磁気記
録ヘッド20を移動させて、この記録体1に短波長の信
号磁場を印放する。
As shown by curve A in Figure 2, the Mn-Bi alloy has a high coercive force of several hundred e or more at room temperature, but the coercive force decreases markedly at low temperatures, especially around -200o0.
It decreases to about e. Other magnetic materials used for the first magnetic layer 11 include magnetic materials that have a large magnetic anisotropy constant near room temperature, such as M old i, and whose magnetic anisotropy constant decreases when cooled to below room temperature. Or, like barium ferrite, the K/ls value (K: magnetic anisotropy constant, ls: saturation magnetization) decreases as the temperature decreases,
A magnetic material is used in which a single magnetic domain structure at room temperature becomes a multi-domain horizontal structure at low temperatures, resulting in a low coercive force. Although the magnetic material constituting the second magnetic layer 12 has a relationship with the magnetic material of the first magnetic layer 11, it has a lower coercive force than the first magnetic layer at room temperature, and increases in coercive force when cooled to a low temperature. However, it is sufficient to use a magnetic material that does not change, or a magnetic material that has a coercive force higher than that of the first magnetic layer 11 even if its coercive force decreases, and the range of selection is wide. This includes iron oxide magnetic powder, Co-containing iron oxide magnetic powder, Cr
Particularly preferred are 02 magnetic powder, alloy magnetic powder, and the like. For comparison, temperature changes in coercive force of alloy powder (70% Fe, 30% Co) and Co-containing iron oxide powder are shown in FIG. 2 as curves B and C, respectively. In the method of the present invention, a magnetic recording head 20 is moved as shown in FIG. 3A over a recording medium 1 as shown in FIG. 1, and a short wavelength signal magnetic field is applied to this recording medium 1. .

この信号磁場の大きさは常温における第1、第2磁性層
11,12の抗磁力の差を考慮して第2磁性層12のみ
に信号が記録されるように選択されるが、第1磁性層1
1にMh−Bi合金を用い、第2磁性層12に前述した
ような磁性材料を用いる場合には、常温下ではMh−B
i合金の抗磁力がそれらの材料に比して極めて大きいた
め、信号磁場の大きさは従釆一般に使用されている大き
さでよい。この際、信号が短波長であるため、前述のよ
うに第2磁性層12にはル−プ状閉磁路31が形成され
る。
The magnitude of this signal magnetic field is selected so that a signal is recorded only in the second magnetic layer 12, taking into consideration the difference in coercive force between the first and second magnetic layers 11 and 12 at room temperature. layer 1
When a Mh-Bi alloy is used for the second magnetic layer 12 and a magnetic material as described above is used for the second magnetic layer 12, the Mh-Bi alloy is used at room temperature.
Since the coercive force of the i-alloy is extremely large compared to those materials, the magnitude of the signal magnetic field may be the magnitude commonly used. At this time, since the signal has a short wavelength, a loop-shaped closed magnetic path 31 is formed in the second magnetic layer 12 as described above.

次にこのようにした記録体1を冷却してこの記録体1の
厚さ方向に、すなわち第1、第2磁性層11,12と交
差する方向に直流磁場を印加する。この直流磁場の大き
さは低温における両磁性層の抗磁力を考慮して第1磁性
層11のみを磁化するように選択されるが、Mn−Bi
合金の場合には低温下では極めて抗磁力が低いから比較
的小さい磁場でよい。これによって、第3B図に示すよ
うに第1磁性層11は磁化されて直流磁場32が発生す
る。直流磁場を印加する方向は矢印21で示すように磁
気記録体1の面に垂直な軸13に対して幾分懐いている
のがよい、その煩きの大きさは実験的に容易に決定する
ことができる。このように、第1磁性層11が直流磁化
32を有し、第2磁性層12がループ状閉磁路31を有
する記録体1を常温に戻すと、第2磁性層12の抗磁力
が第1磁性層11より低くなるため、第2磁性層12の
閉磁路31が第1磁性層1 1の直流磁化32の影響を
受けて、開磁路構造に変換される(第3C図参照)。す
なわちループ状閉磁路31のうち直流磁化32と同一方
向のものが強められ、反対方向のものが弱められて一方
向性磁化33が生ずる。この一方向性磁化33による外
部漏洩磁束は再生ヘッド22によって充分ピックアップ
することができる。したがって本発明の方法によれば短
波長の信号でも充分な再生出力をもって記録再生するこ
とができる。また上述の一方向性磁化33は第1磁性層
11の直流磁化32による磁場により得られているため
、その直流磁化32を除去してやれば第2磁性層12に
印加される直流磁場がなくなるので、第2磁性層12の
磁化パターンはある程度、元のループ状磁化パターンに
戻る。
Next, the recording body 1 thus constructed is cooled and a DC magnetic field is applied in the thickness direction of the recording body 1, that is, in a direction intersecting the first and second magnetic layers 11 and 12. The magnitude of this DC magnetic field is selected so as to magnetize only the first magnetic layer 11 in consideration of the coercive force of both magnetic layers at low temperatures.
In the case of alloys, the coercive force is extremely low at low temperatures, so a relatively small magnetic field is sufficient. As a result, the first magnetic layer 11 is magnetized and a DC magnetic field 32 is generated, as shown in FIG. 3B. The direction in which the DC magnetic field is applied should be somewhat aligned with the axis 13 perpendicular to the surface of the magnetic recording medium 1, as shown by the arrow 21, and the magnitude of this disturbance can be easily determined experimentally. be able to. In this way, when the recording medium 1 in which the first magnetic layer 11 has the DC magnetization 32 and the second magnetic layer 12 has the loop-shaped closed magnetic path 31 is returned to room temperature, the coercive force of the second magnetic layer 12 changes to the first Since it is lower than the magnetic layer 11, the closed magnetic path 31 of the second magnetic layer 12 is influenced by the DC magnetization 32 of the first magnetic layer 11 and is converted into an open magnetic path structure (see FIG. 3C). That is, among the loop-shaped closed magnetic paths 31, those in the same direction as the DC magnetization 32 are strengthened, and those in the opposite direction are weakened, resulting in unidirectional magnetization 33. The external leakage magnetic flux due to this unidirectional magnetization 33 can be sufficiently picked up by the reproducing head 22. Therefore, according to the method of the present invention, even short wavelength signals can be recorded and reproduced with sufficient reproduction output. Furthermore, since the above-mentioned unidirectional magnetization 33 is obtained by the magnetic field caused by the DC magnetization 32 of the first magnetic layer 11, if the DC magnetization 32 is removed, the DC magnetic field applied to the second magnetic layer 12 will disappear. The magnetization pattern of the second magnetic layer 12 returns to the original loop-shaped magnetization pattern to some extent.

第2磁性層12が垂直方向にあまり大きな磁気異万性を
有しなければ特にこの煩向は強い。第1磁性層11の直
流磁化32を除去するには、磁気記録体1を低温に冷却
し減衰交流磁場を印加すれば第2磁性層12の抗磁力が
第1磁性層11より高くなるので、第1磁性層11の直
流磁化32のみ消去することができる。第1磁性層11
は直流磁場方向21に容易軸を有するように形成してお
けば、本発明の方法を実施する上で有利である。なお、
当然のことであるが、第1磁性層11と第2磁性層12
は、図示された実施例ではこの順に基体10上に積層さ
れているが、これはこの逆に積層されていてもよい。
This tendency is particularly strong if the second magnetic layer 12 does not have very large magnetic anisotropy in the perpendicular direction. In order to remove the DC magnetization 32 of the first magnetic layer 11, if the magnetic recording body 1 is cooled to a low temperature and an attenuated AC magnetic field is applied, the coercive force of the second magnetic layer 12 will be higher than that of the first magnetic layer 11. Only the DC magnetization 32 of the first magnetic layer 11 can be erased. First magnetic layer 11
It is advantageous in carrying out the method of the present invention if it is formed to have an easy axis in the direction 21 of the DC magnetic field. In addition,
As a matter of course, the first magnetic layer 11 and the second magnetic layer 12
are laminated in this order on the substrate 10 in the illustrated embodiment, but they may be laminated in the reverse order.

実用上、信号を記録する磁性層の深さはヘッドの磁束の
深さを変えることにより如何様にも変え得ることは周知
だからである。以上詳細に説明したように、本発明の方
法によれば短波長の信号であっても充分な再生出力を有
するように記録再生することができ、したがって高密度
で信号を記録することができる。
This is because, in practice, it is well known that the depth of the magnetic layer for recording signals can be varied in any way by changing the depth of the magnetic flux of the head. As described above in detail, according to the method of the present invention, even short wavelength signals can be recorded and reproduced with sufficient reproduction output, and therefore signals can be recorded with high density.

しかも大きい直流磁場を印加する必要がないから装置的
に有利である。さらに回転磁化モードが完全に破壊され
ることがないから、直流磁場の印加による再調整中や回
転磁化モードとしての信号の再保存が可能である。
Furthermore, it is advantageous in terms of equipment since there is no need to apply a large DC magnetic field. Furthermore, since the rotating magnetization mode is not completely destroyed, it is possible to re-save the signal as the rotating magnetization mode during readjustment by applying a DC magnetic field.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に使用される磁気記録体の一例を
示す断面図、第2図は磁性材料の抗磁力の温度変化を示
すグラフ、第3A〜3C図は本発明の方法の各段階にお
ける磁化の状態を示すための図である。 11……第1の磁性層、12……第2の磁性層、31・
・…・ループ状閉磁路、32…・・・直流磁化、33・
・・・・・一方向性磁化。 第1図 第2図 第3A図 第38図 第3C図
FIG. 1 is a cross-sectional view showing an example of a magnetic recording medium used in the method of the present invention, FIG. 2 is a graph showing changes in coercive force of magnetic materials with temperature, and FIGS. 3A to 3C are each of the methods of the present invention. It is a figure for showing the state of magnetization in a stage. DESCRIPTION OF SYMBOLS 11...First magnetic layer, 12...Second magnetic layer, 31.
・...Loop-shaped closed magnetic path, 32...DC magnetization, 33.
...unidirectional magnetization. Figure 1 Figure 2 Figure 3A Figure 38 Figure 3C

Claims (1)

【特許請求の範囲】 1 常温下より低温下で抗磁力が低い第1磁性層と、こ
の上に積層されたこの第1磁性層よりも抗磁力が常温下
で低く低温下で高い第2磁性層とからなる磁性層を有す
る磁気記録体に、常温下で信号磁場を印加することによ
り前記第2磁性層のみを磁化して信号を記録し、次にこ
の磁気記録体に低温下でその厚さ方向に直流磁場を印加
することにより前記第1磁性層のみを磁化し、その後常
温下で前記信号の再生を行なうことを特徴とする磁気記
録再生方法。 2 前記第1磁性層がMn−Bi合金を主体とする磁性
粉末を含むことを特徴とする特許請求の範囲第1項記載
の磁気記録再生方法。 3 前記直流磁場の印加をほぼ−200℃の低温下で行
なうことを特徴とする特許請求の範囲第2項記載の磁気
記録再生方法。 4 前記第2磁性層が酸化鉄磁性粉末、Co含有酸化鉄
粉末、CrO_2磁性粉末、合金磁性粉末のうちの少な
くとも1種の磁性粉末を含むことを特徴とする特許請求
の範囲第1項または第2項記載の方法。
[Claims] 1. A first magnetic layer having a coercive force lower at low temperatures than at room temperature, and a second magnetic layer laminated thereon, whose coercive force is lower at room temperature and higher at low temperatures than the first magnetic layer. By applying a signal magnetic field at room temperature to a magnetic recording body having a magnetic layer consisting of a magnetic layer, only the second magnetic layer is magnetized and a signal is recorded. A magnetic recording and reproducing method, characterized in that only the first magnetic layer is magnetized by applying a DC magnetic field in the horizontal direction, and then the signal is reproduced at room temperature. 2. The magnetic recording and reproducing method according to claim 1, wherein the first magnetic layer contains magnetic powder mainly composed of Mn-Bi alloy. 3. The magnetic recording and reproducing method according to claim 2, wherein the DC magnetic field is applied at a low temperature of approximately -200°C. 4. Claim 1 or 4, wherein the second magnetic layer contains at least one kind of magnetic powder selected from iron oxide magnetic powder, Co-containing iron oxide powder, CrO_2 magnetic powder, and alloy magnetic powder. The method described in Section 2.
JP51127936A 1976-10-25 1976-10-25 Magnetic recording and reproducing method Expired JPS6023401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51127936A JPS6023401B2 (en) 1976-10-25 1976-10-25 Magnetic recording and reproducing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51127936A JPS6023401B2 (en) 1976-10-25 1976-10-25 Magnetic recording and reproducing method

Publications (2)

Publication Number Publication Date
JPS5352407A JPS5352407A (en) 1978-05-12
JPS6023401B2 true JPS6023401B2 (en) 1985-06-07

Family

ID=14972288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51127936A Expired JPS6023401B2 (en) 1976-10-25 1976-10-25 Magnetic recording and reproducing method

Country Status (1)

Country Link
JP (1) JPS6023401B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623301U (en) * 1985-06-24 1987-01-10
JPH0376246B2 (en) * 1986-05-21 1991-12-04 Masaaki Fujiwara

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS623301U (en) * 1985-06-24 1987-01-10
JPH0376246B2 (en) * 1986-05-21 1991-12-04 Masaaki Fujiwara

Also Published As

Publication number Publication date
JPS5352407A (en) 1978-05-12

Similar Documents

Publication Publication Date Title
JPS5963005A (en) Magnetic recording system
US4277806A (en) Magnetic recording using recording media having temperature dependent coercivity
US5347408A (en) Magnetic recording and reproducing method and apparatus with vertical magnetization component reduction
JPS6023401B2 (en) Magnetic recording and reproducing method
KR100897873B1 (en) Information recording medium and information storing device
JPH04356713A (en) Narrow track width magnetic recording head and magnetic storage device using the same
JPH0785401A (en) Magnetic recording method
Morrison et al. The magnetic transfer process
JP2810457B2 (en) Perpendicular magnetic recording medium and its recording device
JPS61258322A (en) Magneto-resistance effect head
JPS6025027A (en) Magnetic disk
JPH03181016A (en) Perpendicular magnetic recording medium and perpendicular magnetic recording device
JPS5963007A (en) Vertical magnetic recording method
JPS5827881B2 (en) magnetic recording and reproducing device
JPH05101310A (en) Magnetic recording method
JPH03173901A (en) Magnetic recording and reproducing method
JPS595427A (en) Magnetic recording medium
JPS61187102A (en) Magnetic recording and reproducing device
JPS6166219A (en) Magnetic recording medium
JPH01220119A (en) Magnetic recording medium
JPH0319101A (en) Magnetic disk device
JPH0466042B2 (en)
JPS6289214A (en) Vertical magnetic recording medium
JPH04251406A (en) Magnetic recording system
JPH01155502A (en) Magnetic recording and reproducing device