JPS60233525A - Reflected light measuring method of optical fiber and its device - Google Patents

Reflected light measuring method of optical fiber and its device

Info

Publication number
JPS60233525A
JPS60233525A JP8859084A JP8859084A JPS60233525A JP S60233525 A JPS60233525 A JP S60233525A JP 8859084 A JP8859084 A JP 8859084A JP 8859084 A JP8859084 A JP 8859084A JP S60233525 A JPS60233525 A JP S60233525A
Authority
JP
Japan
Prior art keywords
optical fiber
measured
reflected light
light
total reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8859084A
Other languages
Japanese (ja)
Inventor
Yasuji Hattori
服部 保次
Masaru Saito
勝 斉藤
Minoru Ikeda
実 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP8859084A priority Critical patent/JPS60233525A/en
Publication of JPS60233525A publication Critical patent/JPS60233525A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • G01M11/3154Details of the opto-mechanical connection, e.g. connector or repeater

Abstract

PURPOSE:To reduce an attenuation factor of a light quantity, and to improve the detecting accuracy of an abnormal point of an optical fiber to be measured, or the end face by making an optical pulse of a laser oscillator incident on one end of the fiber without irradiating to a total reflecting mirror. CONSTITUTION:An optical pulse 3 of a laser oscillator 1 passes through a center part through-hole 15 of a total reflecting mirror 16 and is made incident on an optical fiber 6, therefore, a light quantity is not attenuated. Also, as for a reflected light 4 from the fiber 6, its 99% is reflected by the mirror 16. Accordingly, the attenuation of the light quantity can be eliminated, the light quantity of the reflected light of the fiber 6 received by a photodetector 8 becomes large, and the detecting accuracy can be improved.

Description

【発明の詳細な説明】 (イ)発明の属する技術分野 本発明は光ファイバの反射光測定方法および装置に関し
、より詳細にはレーザ光ノクルスを入射し光ファイバの
異常点または端面かもの反射光を測定する方法および装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical field to which the invention pertains The present invention relates to a method and apparatus for measuring reflected light of an optical fiber, and more specifically, the present invention relates to a method and apparatus for measuring reflected light of an optical fiber. The present invention relates to a method and apparatus for measuring.

(ロ)従来技術とその問題点 光ファイバの長手方向に断線、異常な曲げ、極部的なコ
ア径変動等を生じると光ファイバの透過量の減衰をまね
くため、光ファイバの製造、布設および保守等において
光ファイバの異常点を検出することが重要である。代表
的な異常点検出方法としてパルス反射法、後方散乱損失
測定法等が用いられている。これらの技術は半導体レー
ザ、ガスレーザ等の光パルスを光ファイバに入射し、光
フアイバ各点より反射された反射パルスを光ファイバの
入射端側で受光し、入射パルスを反射パルスの伝播時間
差から異常点までの距離を標定するものである。なお上
記測定法によれば光ファイバの端面からの反射光も検出
でき、光ファイバの長さ等を調べることも宅きる。
(b) Prior art and its problems When optical fibers are broken, abnormally bent, or have local core diameter variations in the longitudinal direction, the amount of transmission through the optical fibers is attenuated. It is important to detect abnormalities in optical fibers during maintenance and the like. Pulse reflection method, backscattering loss measurement method, etc. are used as typical abnormal point detection methods. These technologies inject light pulses from a semiconductor laser, gas laser, etc. into an optical fiber, receive the reflected pulses reflected from each point of the optical fiber at the input end of the optical fiber, and detect abnormalities from the propagation time difference between the reflected pulses. It determines the distance to a point. Note that according to the above measurement method, reflected light from the end face of the optical fiber can also be detected, and the length of the optical fiber can also be checked.

このような反射光検出系の代表的な構成を第1図に示す
。第1図においてレーザ発振器1よりの光パルス3は分
岐器であるノ・−フミラー2を透過しさらに集光レンズ
5を経て被測定光ファイバ6へ導かれる。レーザ発振器
からの光パルスは一種の偏光板であるポラライザを経て
導かれる場合もある。被測定光ファイバ6からの反射光
4は集光レンズ5を通り分岐器であるハーフミラ−2で
反射され光検出器8へ導かれる。
A typical configuration of such a reflected light detection system is shown in FIG. In FIG. 1, a light pulse 3 from a laser oscillator 1 is transmitted through a nof mirror 2, which is a splitter, and then guided to an optical fiber 6 to be measured via a condenser lens 5. Light pulses from a laser oscillator may be guided through a polarizer, which is a type of polarizing plate. The reflected light 4 from the optical fiber 6 to be measured passes through a condenser lens 5, is reflected by a half mirror 2 serving as a splitter, and is guided to a photodetector 8.

この受光信号はCRT9で時間をパラメータとして観察
される。分岐器として一般的に使用されているハーフミ
ラ−2は平行ガラス板の両面に誘電体薄膜を蒸着したも
ので透過光と反射光を1対1の比率に分岐するものであ
る。
This light reception signal is observed by the CRT 9 using time as a parameter. A half mirror 2, which is generally used as a splitter, is made by depositing a dielectric thin film on both sides of a parallel glass plate, and splits transmitted light and reflected light at a ratio of 1:1.

しかしながらこのようなハーフミラ−を分岐器に使用し
た場合、レーザ発振器1からの光パルス3および光ファ
イバ6からの反射光4とも分岐器をそれぞれ1回経由す
るため光量がその都度%に減衰することになる。実際に
はハーフミラ一部における吸収損失もあるため減衰量は
それ以上になる。このような光量の低下は受信giを維
持するため高い信号対雑音比(S/N比)が要求される
後方数゛乱光測定において不利であ六へ銭fコ了赫π幼
払T霊ル傅田1ナー萼フ、スバにおいてはGeドープ石
英をコア材に、純粋石英をクラツド材に用いた光ファイ
バに比較し後方散乱光レベルが一桁程度低(なるため極
めて不利であった。
However, when such a half mirror is used as a splitter, the optical pulse 3 from the laser oscillator 1 and the reflected light 4 from the optical fiber 6 each pass through the splitter once, so the light intensity is attenuated by % each time. become. In reality, there is absorption loss in a portion of the half-mirror, so the amount of attenuation is greater than that. Such a decrease in the amount of light is disadvantageous in measuring backward several degrees of scattered light, which requires a high signal-to-noise ratio (S/N ratio) to maintain the reception value. In Rufuden 1 Nerf and Suba, the backscattered light level was about an order of magnitude lower than that of an optical fiber using Ge-doped quartz as the core material and pure quartz as the cladding material, which was extremely disadvantageous.

別の方法として、ハーフミラ−2の代りに分岐器として
偏光ビームスプリッタを用いる方法がある。これは第2
図に示すように偏光ビームスプリッタ14に入射した円
偏光成分11を2つの直交する成分すなわちP波12と
S波13に分けるものである。この場合入射レーザ光パ
ルスがP波のみである場合入射光が偏光ビームスプリン
タを通過することによる光の減衰はない。しかし光フア
イバ内部からの反射光は異常、一点の反射面への入射角
がゼロとなることは希なため散乱光となりP波とS波が
混在して円偏波に近い状態となっているため、反射光が
分岐器を通過する際はぼ50チの光量低下を生ずること
は避けられない。さらに偏光ビームスプリッタを用いる
場合レーザ光が直線偏波であることが条件となり、かつ
レーザの偏波方向と偏光ピ−ムスプリツタとの間に一定
の配置が要求されることになる。すなわち光学系の設定
に追加の制約を受けることになる。
Another method is to use a polarizing beam splitter as a splitter instead of the half mirror 2. This is the second
As shown in the figure, the circularly polarized light component 11 incident on the polarizing beam splitter 14 is divided into two orthogonal components, namely, a P wave 12 and an S wave 13. In this case, if the incident laser light pulse is only a P wave, there is no light attenuation due to the incident light passing through the polarization beam splinter. However, the reflected light from inside the optical fiber is abnormal, and since the angle of incidence on a single point of reflection surface is rarely zero, it becomes scattered light, with a mixture of P waves and S waves, resulting in a state close to circularly polarized light. Therefore, when the reflected light passes through the splitter, it is inevitable that the amount of light will decrease by about 50 degrees. Furthermore, when using a polarizing beam splitter, the laser beam must be linearly polarized, and a certain arrangement is required between the polarization direction of the laser and the polarizing beam splitter. In other words, there are additional restrictions on the settings of the optical system.

上記光量の減衰の対策としてレーザ光源を高輝度化する
ことが考えられる。しがしレーザ光源の高輝度化は光学
系の構成部品、たとえばポラライザの受光強度の制約や
安全上の問題もあって困難な場合が多い。
As a countermeasure to the above-mentioned attenuation of the amount of light, it is possible to increase the brightness of the laser light source. Increasing the brightness of a laser light source is often difficult due to restrictions on the light receiving intensity of optical system components, such as polarizers, and safety issues.

eつ発明の目的 本発明は上記従来の事情に鑑みなされたものであって、
レーザ発振器からの光パルスの光量を増加させることな
く光検出器での受光量低下を防ぎ、測定精度を向上させ
ることのできる光フアイバ内の異常点または端面がらの
反射光を測定する方法および装置を提供することを目的
とする。
Object of the Invention The present invention has been made in view of the above-mentioned conventional circumstances, and
A method and device for measuring abnormal points in an optical fiber or reflected light from the end face, which can prevent a decrease in the amount of light received by a photodetector without increasing the amount of light pulses from a laser oscillator and improve measurement accuracy. The purpose is to provide

に)発明の構成 本発明はレーザ発振器からの光パルスを被測定光ファイ
バの一端へ入射し、上記被測定光ファイバの異常点また
は端面がらの反射光を上記被測定光ファイバの一端の概
ね同軸延長上にかつ上記レーザ発振器と上記被測定光フ
ァイバとの間に配置されたミラーで反射させて光検出器
で受けるよう構成された光ファイバの反射光測定方法お
よび装置において、上記ミラーが全反射ミラーであり、
かつ上記レーザ発振器からの光パルスを上記全反射ミラ
ーにあてることな(上記被測定光ファイバの一端に入射
させたことを特命とする。
B) Structure of the Invention The present invention injects a light pulse from a laser oscillator into one end of an optical fiber to be measured, and directs the reflected light from an abnormal point or end face of the optical fiber to be approximately coaxial with one end of the optical fiber to be measured. In the method and apparatus for measuring reflected light of an optical fiber, the reflected light is reflected by a mirror placed on the extension between the laser oscillator and the optical fiber to be measured and is received by a photodetector. mirror,
In addition, the optical pulse from the laser oscillator should not be applied to the total reflection mirror (it is special that the optical pulse should be made incident on one end of the optical fiber to be measured).

これによりレーザ発振器からの光パルスの光量を増加さ
せることなく光検出器での受光量低下を防ぎ、測定精度
を向上させることのできる光ファイバの異常点または端
面からの反射光を測定する方法および装置が提供される
A method for measuring reflected light from an abnormal point or end face of an optical fiber, which prevents a decrease in the amount of light received by a photodetector without increasing the amount of light pulses from a laser oscillator and improves measurement accuracy. Equipment is provided.

(ホ)発明の実施例 以下図面を参照して本発明の好ましい実施例について説
明する。
(E) Embodiments of the Invention Preferred embodiments of the invention will now be described with reference to the drawings.

第3図は本発明による光ファイバの反射光測定装置の第
1実施例を示す。第1図に示した従来の光ファイバの反
射光測定装置と近似の構成を有しているが、分岐器とし
てのハーフミラ−2にかえ中央部に貫通孔15を有する
全反射ミラー16が使用されている点が異なる。
FIG. 3 shows a first embodiment of an optical fiber reflected light measuring device according to the present invention. It has a configuration similar to the conventional optical fiber reflected light measurement device shown in FIG. 1, but instead of the half mirror 2 serving as a splitter, a total reflection mirror 16 having a through hole 15 in the center is used. The difference is that

通常レーザ光はその集光性が良く、たとえばYAGレー
ザにおける平行ビーム径は約2關である。全反射ミラー
16の中央部貫通孔15はレーザビームをけられや回折
を生ずることなく通過させるための孔で、径をたとえば
3mmとすることができる。貫通孔15はレーザ光軸に
平行に、すなわちレーザ光軸に対し傾斜した全反射ミラ
ー面に対し傾斜して設けられている。レーザ発振器1か
らの光パルスは全反射ミラーの貫通孔15を通過し、レ
ンズ5を経て光ファイバ6へ同軸に入射する。光ファイ
バ6に沿って進行した後光ファイバ内の異常点10で反
射された光パルスは散乱光として光ファイバに沿って逆
方向へ進行し、光ファイバの入射端から開口数相当角度
で出射し、レンズ5により平行光束とされ全反射ミラー
16に入射する。光量の減衰を最小とするために反射光
束は全反射ミラー上でできる限り大きいこと、すなわち
集光レンズ5の焦点距離を大きくとることが望ましい。
Normally, laser light has good convergence; for example, the diameter of a parallel beam in a YAG laser is about 2 degrees. The central through hole 15 of the total reflection mirror 16 is a hole for allowing the laser beam to pass through without being eclipsed or diffracted, and may have a diameter of, for example, 3 mm. The through hole 15 is provided parallel to the laser optical axis, that is, inclined with respect to the total reflection mirror surface that is inclined with respect to the laser optical axis. A light pulse from the laser oscillator 1 passes through the through hole 15 of the total reflection mirror, passes through the lens 5, and coaxially enters the optical fiber 6. After traveling along the optical fiber 6, the optical pulse reflected at the abnormal point 10 in the optical fiber travels in the opposite direction along the optical fiber as scattered light, and exits from the input end of the optical fiber at an angle equivalent to the numerical aperture. , the light beam is made into a parallel beam by the lens 5 and is incident on the total reflection mirror 16 . In order to minimize the attenuation of the amount of light, it is desirable that the reflected light beam be as large as possible on the total reflection mirror, that is, the focal length of the condenser lens 5 should be large.

−例として、集光レンズ5として焦点距離50+ut、
口径50m1Xのものを使用し、光ファイバの開口数0
.3とすると反射光4の光束の径は約30mmとなる。
- As an example, the focal length of the condensing lens 5 is 50+ut,
Use an optical fiber with a diameter of 50m1X, and the numerical aperture of the optical fiber is 0.
.. 3, the diameter of the luminous flux of the reflected light 4 will be approximately 30 mm.

中心部の貫通孔150部分は光を反射しないため面積的
にみた反射率は 1−(3/3o)2=0.99 (99%)となる。
Since the central through-hole 150 portion does not reflect light, the reflectance in terms of area is 1-(3/3o)2=0.99 (99%).

貫通孔15と全反射ミラー16の垂直軸とのなす角度な
ψとすれば反射光4は2ψの屈折をうけるため入射光と
反射光の光軸を分離するためψは0°以外にする必要が
ある。光学系の配置の関係からはψ=4デが一般的に用
いられる。
If ψ is the angle between the through hole 15 and the vertical axis of the total reflection mirror 16, the reflected light 4 will be refracted by 2ψ, so ψ must be set to a value other than 0° in order to separate the optical axes of the incident light and reflected light. There is. Considering the arrangement of the optical system, ψ=4de is generally used.

全反射ミラーとしては光源にYAGレーザ、Arレーザ
等を用いる場合、レーザ共振器に用いられるフラットサ
ーフェスミラー等と同等品を用いれば良い。
As the total reflection mirror, when using a YAG laser, Ar laser, etc. as a light source, a product equivalent to a flat surface mirror used in a laser resonator may be used.

上記実施例によれば、レーザ共振器1かもの光パルス3
は全反射ミラー16の中央部貫通孔15を通過して光フ
ァイバ6に入射するためこの間の光量の減衰はない。ま
た光ファイバ6からの反射光4も全反射ミラーで99%
反射される。したがって従来の装置にてハーフミラ−を
経由するごとにHに減衰していた光量の減衰をほとんど
なくすことができる。かくして光検出器8の受ける光フ
ァイバからの反射光の光量はレーザ光量が同じなら従来
の装置による場合に比べ約4倍となり、その分だけ検出
精度が向上される。
According to the above embodiment, the laser resonator 1 and the optical pulse 3
Since the light passes through the central through hole 15 of the total reflection mirror 16 and enters the optical fiber 6, there is no attenuation in the amount of light during this time. Also, 99% of the reflected light 4 from the optical fiber 6 is reflected by a total reflection mirror.
reflected. Therefore, it is possible to almost eliminate the attenuation of the amount of light that was attenuated to H each time it passes through a half mirror in the conventional device. In this way, the amount of reflected light from the optical fiber received by the photodetector 8 is about four times that of the conventional device if the amount of laser light is the same, and the detection accuracy is improved accordingly.

具体的な例として第1図に示した従来の測定系でレーザ
発振器1として連続波出力4wのArレーザ・を用い、
波長λ−=0.5124μmの発振光をモードロッカ、
キャピテイダンパを通すことにより半値巾500psの
パルス光に変換し、そのパルス光を分岐器としてのハー
フミラ−2を透過させ、焦点距離50m、口径40m1
+の集光レンズ5を介してコア径50μm、外径125
μm、長さ100 畳の純粋石英コア弗素ドープ石英ク
ラッドファイバに励振した。その後方散乱光を光検出器
8としてフォトマルを用いて測定したところ検出が不可
能であった。一方、第3図に示した本発明による測定系
で測定したところ第4図に示すような反射信号レベル曲
線が得られ、測定が可能であった。この時全反射ミラー
には直径50W+で中央部に直径3簡の45°傾斜貫通
孔を有するものを用いた。第4図はCRT9のアウトプ
ットをレコーダを用いて記録したもので、17は光フア
イバ内部よりの後方散乱光、16および18はそれぞれ
光フアイバ入射端および出射端での反射光である。また
19はノイズを示す。
As a specific example, in the conventional measurement system shown in FIG. 1, an Ar laser with a continuous wave output of 4 W is used as the laser oscillator 1,
The oscillation light with a wavelength λ-=0.5124 μm is used as a mode locker,
It is converted into pulsed light with a half-width of 500 ps by passing through a capity damper, and the pulsed light is transmitted through a half mirror 2 as a splitter, with a focal length of 50 m and an aperture of 40 m1.
Through the positive condenser lens 5, the core diameter is 50 μm, the outer diameter is 125
A pure quartz core fluorine-doped quartz clad fiber with a length of 100 μm and a length of 100 tatami was excited. When the backscattered light was measured using Photomaru as the photodetector 8, it was impossible to detect it. On the other hand, when the measurement was performed using the measurement system according to the present invention shown in FIG. 3, a reflected signal level curve as shown in FIG. 4 was obtained, and the measurement was possible. At this time, a total reflection mirror having a diameter of 50 W+ and having a 45° inclined through hole with a diameter of 3 in the center was used. FIG. 4 shows the output of the CRT 9 recorded using a recorder, where 17 is the backscattered light from inside the optical fiber, and 16 and 18 are the reflected lights at the input end and output end of the optical fiber, respectively. Further, 19 indicates noise.

第5図は本発明の第2実施例を示す。レーザ発振器1か
らの光パルス3′は光ファイバ6の一端に入射されるが
、このとき光パルス3′は光ファイバ6の概ね同軸延長
上に配置された全反射ミラー22の側方を通過し、かつ
光ファイバ6に対し開口数相当角度以内の入射角θ1を
もって入射される。角度θ1は開口数相当角度以下であ
るため光パルス3′は光ファイバ6に完全に入射する。
FIG. 5 shows a second embodiment of the invention. The optical pulse 3' from the laser oscillator 1 is incident on one end of the optical fiber 6, but at this time, the optical pulse 3' passes through the side of the total reflection mirror 22 arranged on the generally coaxial extension of the optical fiber 6. , and is incident on the optical fiber 6 at an incident angle θ1 within an angle equivalent to the numerical aperture. Since the angle θ1 is less than the numerical aperture equivalent angle, the optical pulse 3' is completely incident on the optical fiber 6.

入射された光パルスは光ファイバに沿って進行し、光フ
アイバ内の異常点10で反射される。反射光は前述した
ように散乱光として光ファイバに沿って逆方向に進行し
、光ファイバの入射端から開口数に相当する角度θ2に
て出射される。出射された反射光は全反射ミラー22へ
達する。全反射ミラー22は概ね光ファイバ6の同軸延
長上に、しかし光ファイバ6の軸に対しθ1の角度で入
射する入射光パルスと干渉しないよう配置されているた
め、光ファイバ6の軸に対しθ2の角度(θ2≧θl)
で出射する反射光の全てを受けて反射させることはでき
ないが、それでも反射光の大部分を受けて反射するよう
構成することができる。全反射ミラー22で反射された
光はレンズ7を経て光検出器8へ導かれる。測定結果は
CRT9で伝播時6間をパラ、メータとした受光信号レ
ベルとして観察することができる。
The incident light pulse travels along the optical fiber and is reflected at an abnormal point 10 within the optical fiber. As described above, the reflected light travels in the opposite direction along the optical fiber as scattered light, and is emitted from the input end of the optical fiber at an angle θ2 corresponding to the numerical aperture. The emitted reflected light reaches the total reflection mirror 22. The total reflection mirror 22 is arranged generally on the coaxial extension of the optical fiber 6, but so as not to interfere with the incident light pulse that is incident at an angle of θ1 with respect to the axis of the optical fiber 6. angle (θ2≧θl)
Although it is not possible to receive and reflect all of the reflected light emitted by the sensor, it can still be configured to receive and reflect most of the reflected light. The light reflected by the total reflection mirror 22 is guided to the photodetector 8 via the lens 7. The measurement result can be observed on the CRT 9 as a received light signal level with the propagation time 6 as a parameter.

上記実施例によればレーザ発振器1からの光パルス3′
は全反射ミラー22の側方を通過して光ファイバ6に開
口数相当角度以下の角度で入射するためこの間の光量の
減衰はない。また光ファイバ6からの反射光4′も、前
述のように反射光が100チ全反射ミラー22に受けら
れて反射することはできないが、第4図の測定系の構成
例によれば全反射ミラー220反射光4′に対する受光
面積からみて明らかに50−以上の反射率を得ることが
できる。したがって従来の測定系にて入射、反射の都度
ノ・−フミラーを経由することによりそれぞれ%に減衰
していた光量の減衰率を低減することができる。かくし
て第1実施例の場合と同様に光ファイバの異常点または
端面の検出精度を向上させることができる。
According to the above embodiment, the optical pulse 3' from the laser oscillator 1
The light passes through the side of the total reflection mirror 22 and enters the optical fiber 6 at an angle less than the angle equivalent to the numerical aperture, so there is no attenuation of the amount of light during this time. Furthermore, the reflected light 4' from the optical fiber 6 cannot be reflected as it is received by the 100-chip total reflection mirror 22 as described above, but according to the configuration example of the measurement system shown in FIG. In view of the light receiving area for the reflected light 4' of the mirror 220, it is clear that a reflectance of 50- or more can be obtained. Therefore, it is possible to reduce the attenuation rate of the amount of light, which in the conventional measurement system was attenuated by 10% by passing through a nof mirror each time it is incident or reflected. In this way, as in the case of the first embodiment, it is possible to improve the accuracy of detecting an abnormal point or end face of an optical fiber.

(へ)発明の効果 以上のように本発明はレーザ発振器からの光パルスを被
測定光ファイバの一端へ入射し、上記被測定光ファイバ
の異常点または端面からの反射光を上記被測定光ファイ
バの一端の概ね同軸延長上にかつ上記レーザ発振器と上
記被測定光ファイバとの間に配置されたミラーで反射さ
せて光検出器で受けるよう構成された光ファイバの反射
光測定方法および装置において、上記ミラーが全反射ミ
ラーであり、かつ上記レーザ発振器からの光パルスを上
記全反射ミラーにあてることなく上記被測定光ファイバ
の一端に入射させたことを特徴とする。
(F) Effects of the Invention As described above, the present invention injects a light pulse from a laser oscillator into one end of an optical fiber to be measured, and transmits reflected light from an abnormal point or end face of the optical fiber to be measured. A method and apparatus for measuring reflected light of an optical fiber configured to be reflected by a mirror disposed on a substantially coaxial extension of one end and between the laser oscillator and the optical fiber to be measured and received by a photodetector, The present invention is characterized in that the mirror is a total reflection mirror, and the optical pulse from the laser oscillator is made incident on one end of the optical fiber to be measured without hitting the total reflection mirror.

これによりレーザ発振器から光ファイバへの光入射時お
よび光ファイバから光検出器への反射光出射時の光量の
減衰率が低減されるため光検出器による光ファイバの異
常点または端面の検出精度が向上される。また上記光量
減衰率の低減達成により従来よりも出力の小さなレーザ
発振器を使うことによっても光ファイバの異常点または
端面の検出精度を維持もしくは向上させることが可能と
なる。さらに入射光および反射光の大きな光量減衰がな
くなるため光ファイバの反射光測定装置全体の光強度土
の破損許容レベjル範囲を部品ごとに大きく異なったレ
ベルで設定する必要がなくなり装置を構成しやすくでき
るとともに弱い光を受けるべき部品が異常強度光の進入
により破損され、結果として装置が破損するという恐れ
も少なくなる。
This reduces the attenuation rate of the amount of light when the light enters the optical fiber from the laser oscillator and when the reflected light is emitted from the optical fiber to the photodetector, thereby increasing the accuracy of detecting abnormal points or end faces of the optical fiber by the photodetector. Improved. In addition, by achieving the above-mentioned reduction in the light intensity attenuation rate, it is possible to maintain or improve the detection accuracy of an abnormal point or end face of an optical fiber even by using a laser oscillator with a smaller output than the conventional one. Furthermore, since there is no large attenuation of the incident light and reflected light, there is no need to set the light intensity damage tolerance level range of the entire optical fiber reflected light measuring device at widely different levels for each component, making it easier to configure the device. In addition to being easy to use, there is also less risk that components that should receive weak light will be damaged by the entry of abnormally strong light, resulting in damage to the device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の光ファイバの反射光測定装置の構成を示
す概要図、 第2図は偏光ビームスプリッタの作用を示す概念図、 第3図は本発明による光ファイバの反射光測定装置の一
実施例の構成を示す概要図、 第4図は光ファイバの反射光信号レベル曲線の一例を示
す図、 第5図は本発明による光ファイイくの反射光測定装置の
他の実施例の構成を示す概要図。 1・・・レーザ発振器 2・・・ハーフミラ−6・・・
光ファイバ 8・・・光検出器10・・・光フアイバ内
の異常点 16 、22・・・全反射ミラー 第4図 第5図
Fig. 1 is a schematic diagram showing the configuration of a conventional optical fiber reflected light measuring device, Fig. 2 is a conceptual diagram showing the action of a polarizing beam splitter, and Fig. 3 is an example of an optical fiber reflected light measuring device according to the present invention. FIG. 4 is a diagram showing an example of the reflected light signal level curve of an optical fiber; FIG. 5 is a diagram showing the configuration of another embodiment of the optical fiber reflected light measuring device according to the present invention. Schematic diagram shown. 1... Laser oscillator 2... Half mirror 6...
Optical fiber 8... Photodetector 10... Abnormal points in the optical fiber 16, 22... Total reflection mirror Fig. 4 Fig. 5

Claims (6)

【特許請求の範囲】[Claims] (1)レーザ発振器からの光パルスを被測定光ファイバ
の一端へ入射し、該被測定光ファイバの異常点または端
面からの反射光を該被測定光ファイバの一端の概ね同軸
延長上にかつ該レーザ発振器と該被測定光ファイバとの
間に配置されたミラーで反射させて光検出器で受けるよ
う構成された光ファイバの反射光測定方法において、該
ミラーが全反射ミラーであり、かつ該レーザ発振器から
の光パ次スを該全反射ミラーにあてることな(該被測定
光ファイバの一端に入射させたことを特徴とする光ファ
イバの反射光測定方法。
(1) A light pulse from a laser oscillator is incident on one end of the optical fiber to be measured, and the reflected light from the abnormal point or end face of the optical fiber to be measured is directed on a generally coaxial extension of one end of the optical fiber to be measured and In a method for measuring reflected light of an optical fiber configured to be reflected by a mirror disposed between a laser oscillator and the optical fiber to be measured and received by a photodetector, the mirror is a total reflection mirror, and the laser A method for measuring reflected light of an optical fiber, characterized in that the optical path from an oscillator is not applied to the total reflection mirror (it is made incident on one end of the optical fiber to be measured).
(2)該レーザ発振器からの光パルスを該全反射ミラー
の中央部に設けられた貫通孔を通過させて該被測定光フ
ァイバに対し同軸に入射させることを特徴とする特許請
求の範囲第1項に記載の光ファイバの反射光測定方法。
(2) A light pulse from the laser oscillator is made to pass through a through hole provided in the center of the total reflection mirror and coaxially enter the optical fiber to be measured. Method for measuring reflected light of an optical fiber as described in .
(3)該レーザ発振器からの光パルスを該全反射ミラー
の外部側方を通過させ、かつ該被測定光ファイバに対し
開口数相当角度以下の入射角で入射させることを特徴と
する特許請求の範囲第1項に記載の光ファイバの反射光
測定方法。
(3) The light pulse from the laser oscillator is passed through the external side of the total reflection mirror and is made incident on the optical fiber to be measured at an angle of incidence equal to or less than an angle equivalent to the numerical aperture. A method for measuring reflected light of an optical fiber according to scope 1.
(4)光パルスを被測定光ファイバの一端へ入射させる
ためのレーザ発振器と、該被測定光ファイバの異常点ま
たは端面からの反射光を反射させるべく該被測定光ファ
イバの一端の概ね同軸延長上にかつ該レーザ発振器と該
被測定光ファイバとの間に配置されたミラーと、該ミラ
ーで反射された該反射光を受ける光検出器とを含む光フ
ァイバの反射光測定装置において、該ミラーが全反射ミ
ラーであり、かつ該レーザ発振器からの光パルスが該全
反射ミラーにあたることなく該被測定光ファイバの一端
に達するよう該レーザ発振器と該全反射ミラーとが該被
測定光ファイバに関し互いに配置されたことを特徴とす
る光ファイバーの反射光測定装置。
(4) A laser oscillator for injecting a light pulse into one end of the optical fiber to be measured, and a generally coaxial extension of one end of the optical fiber to be measured to reflect the reflected light from an abnormal point or end face of the optical fiber to be measured. An apparatus for measuring reflected light of an optical fiber, including a mirror disposed above the laser oscillator and the optical fiber to be measured, and a photodetector that receives the reflected light reflected by the mirror. is a total reflection mirror, and the laser oscillator and the total reflection mirror are aligned with each other with respect to the optical fiber to be measured so that the optical pulse from the laser oscillator reaches one end of the optical fiber to be measured without hitting the total reflection mirror. An optical fiber reflected light measuring device characterized in that:
(5)該全反射ミラーが中央部に貫通孔を有し、該レー
ザ発振器からの光パルスが該全反射ミラーの該貫通孔を
通過して該被測定光ファイノ(に対し同軸に入射するよ
う該レーザ発振器と該全反射ミラーとが該被測定光ファ
イノ(に関し互いに配置されたことを特徴とする特許請
求の範囲第4項に記載の光ファイバの反射光測定装置。
(5) The total reflection mirror has a through hole in the center, and the optical pulse from the laser oscillator passes through the through hole of the total reflection mirror and is coaxially incident on the optical fiber to be measured. 5. The apparatus for measuring reflected light of an optical fiber according to claim 4, wherein the laser oscillator and the total reflection mirror are mutually arranged with respect to the optical fiber to be measured.
(6)該レーザ発振器からの光ノ(ルスが該全反射ミラ
ーの外部側方を通過しかつ該被測定光ファイバに対し開
口数相当角度以下の入射角で入射するよう該レーザ発振
器と該全反射ミラーとが該被測定光ファイバに関し互い
に配置されたことを特徴とする特許請求の範囲第4項に
記載の光ファイバの反射光測定装置。
(6) Connect the laser oscillator and the total reflection mirror so that the light beam from the laser oscillator passes through the external side of the total reflection mirror and enters the optical fiber under test at an angle of incidence equal to or less than the angle equivalent to the numerical aperture. 5. The apparatus for measuring reflected light of an optical fiber according to claim 4, wherein the reflecting mirrors are disposed relative to each other with respect to the optical fiber to be measured.
JP8859084A 1984-05-02 1984-05-02 Reflected light measuring method of optical fiber and its device Pending JPS60233525A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8859084A JPS60233525A (en) 1984-05-02 1984-05-02 Reflected light measuring method of optical fiber and its device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8859084A JPS60233525A (en) 1984-05-02 1984-05-02 Reflected light measuring method of optical fiber and its device

Publications (1)

Publication Number Publication Date
JPS60233525A true JPS60233525A (en) 1985-11-20

Family

ID=13947046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8859084A Pending JPS60233525A (en) 1984-05-02 1984-05-02 Reflected light measuring method of optical fiber and its device

Country Status (1)

Country Link
JP (1) JPS60233525A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199367A1 (en) * 2016-05-18 2017-11-23 株式会社島津製作所 Optical fiber laser module, lighting device, and treatment device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017199367A1 (en) * 2016-05-18 2017-11-23 株式会社島津製作所 Optical fiber laser module, lighting device, and treatment device

Similar Documents

Publication Publication Date Title
US4755027A (en) Method and device for polarizing light radiation
US8760653B2 (en) Assembly for monitoring power of randomly polarized light
JPH01161127A (en) Heterodyne light and time area reflectiometer
US5661737A (en) Multi-wavelength laser beam detector with refractive element
JPH05267775A (en) Semiconductor laser device
US6049412A (en) Reflective Faraday-based optical devices including an optical monitoring tap
CN107247271B (en) Common-aperture laser range finder
CN110554464B (en) Miniaturized single polarization fiber resonant cavity
US5237442A (en) Device for optical heterodyne detection and mirror system suitable for use in such a device
US4899345A (en) Atomic resonance in crossed linear polarization
JPS60233525A (en) Reflected light measuring method of optical fiber and its device
US5002371A (en) Low coupling beam splitter and laser power or position monitor using same
CN112803994B (en) Optical echo tolerance testing device for optical module
US4746184A (en) Light coupler for optical reflectometry
JP3189378B2 (en) Device for detecting bubbles in optical fiber resin coating and method for detecting bubbles in optical fiber resin coating
US3995957A (en) Internally referenced, laser intracavity technique for measuring small gains or losses
JPS6071936A (en) Method and device for measuring circular double refraction
CN106646427A (en) Optical telescope with low scattering noises
JP2836298B2 (en) Gas detector
US3807867A (en) Method and apparatus for inspecting surface treated ophthalmic lenses
US6859298B2 (en) Optical module of optical isolator structure
JPH0481753B2 (en)
KR100232635B1 (en) Optical fiber failure detection device for laser transmission
CN115902913A (en) Laser transceiver module and laser radar system
JPH0326776B2 (en)