JPS6023334A - Production and purification of 3,3,3-trifluoro-2- trifluoromethylpropene - Google Patents

Production and purification of 3,3,3-trifluoro-2- trifluoromethylpropene

Info

Publication number
JPS6023334A
JPS6023334A JP58127875A JP12787583A JPS6023334A JP S6023334 A JPS6023334 A JP S6023334A JP 58127875 A JP58127875 A JP 58127875A JP 12787583 A JP12787583 A JP 12787583A JP S6023334 A JPS6023334 A JP S6023334A
Authority
JP
Japan
Prior art keywords
washing
ketene
sulfuric acid
reaction
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58127875A
Other languages
Japanese (ja)
Other versions
JPS6324493B2 (en
Inventor
Katsumi Takeshita
竹下 勝美
Toshihiro Nakamichi
利弘 中道
Yutaka Katsuhara
豊 勝原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP58127875A priority Critical patent/JPS6023334A/en
Priority to GB08417178A priority patent/GB2143526B/en
Priority to IT21820/84A priority patent/IT1174602B/en
Priority to DE19843425907 priority patent/DE3425907A1/en
Priority to FR8411194A priority patent/FR2549039B1/en
Publication of JPS6023334A publication Critical patent/JPS6023334A/en
Publication of JPS6324493B2 publication Critical patent/JPS6324493B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton

Abstract

PURPOSE:To produce the titled compound in high yield, with a simple process, by heating an easily handleable 1,1,1,3,3,3-hexafluoropropane-2,2-diol.dihydrate and a ketene-producing compound in a reaction tube heated at a specific temperature. CONSTITUTION:The titled compound useful as an intermediate of polymer or various fluorine-containing compounds, economically, by heating 1,1,1,3,3,3- hexafluoropropnae-2,2-diol.dihydrate and a ketene-producing compound in a reaction tube maintained at 450-650 deg.C, and washing the resultant reaction product gas with concentrated sulfuric acid to remove the organic by-products. The washing of the reaction gas with concentrated sulfuric acid results in the remarkable improvement in the purity of the titled compound without causing the loss of the compound, and exhibits remarkable effect to remove the water entrained in the reaction gas by the water-washing and/or alkali-washing treatment carried out prior to the sulfuric acid washing.

Description

【発明の詳細な説明】 本発明は5.3.3−トリフルオロ−2−トリフルオロ
メチルプロペン(以下HFIBと略称する)の製造法お
よび精製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing and purifying 5.3.3-trifluoro-2-trifluoromethylpropene (hereinafter abbreviated as HFIB).

HFよりはポリマー原料としてまた種々の含フツ素化合
物の中間原料として有用であゃ、種々の方法によって製
造することができ1例えば■ヘキサフルオロアセトンと
ケテン発生化合物との反応(特開昭50−142504
号)、■オクタフルオロイソブチル低級アルキルエーテ
ルの加水分解。
If it is more useful than HF as a raw material for polymers or as an intermediate raw material for various fluorine-containing compounds, it can be produced by various methods. 142504
No.), ■Hydrolysis of octafluoroisobutyl lower alkyl ether.

還元、脱水による方法(特開昭56−90026号)な
どが提案式れているが、しかし■においては有毒ガスで
あるヘキサフルオロアセトンを取扱わなければならない
といった不利があり、■においては原料の入手が困難で
あり、月つ工程が長いといった不利があり、いずれも必
ずしも好ましい方法ではなかった。
Methods such as reduction and dehydration (Japanese Unexamined Patent Publication No. 56-90026) have been proposed, but method (2) has the disadvantage of having to handle hexafluoroacetone, which is a toxic gas, and method (2) requires the use of raw materials. However, these methods were not necessarily desirable, as they were difficult and required a long process.

本発明は取扱いの容易な1,1.lj、3.3−ヘキサ
フルオロプロパン−2,2−ジオール・2水和物(沸点
+06℃。
The present invention is easy to handle.1. lj, 3.3-hexafluoropropane-2,2-diol dihydrate (boiling point +06°C.

以下HFWと略称する)とケテン発生化合物を450〜
650℃に保持された反応管内で加熱するという簡単な
工程により、HFよりを収率よく製造する方法を提供す
るものである。
(hereinafter abbreviated as HFW) and a ketene-generating compound from 450 to
The present invention provides a method for producing HF with high yield through a simple process of heating in a reaction tube maintained at 650°C.

ケテン発生化合物は酢酸、無水酢酸、アセトン、ジケテ
ンより選ばれた少くとも一種の化合物であり当該化合物
は450〜650℃に保持された反応管内で加熱するこ
とによりケテンを発生すると期待されるものである。ケ
テンは一般に水と速かに反応し、酢酸を生成することが
知られており1本発明においてはHF Wから水が持ち
込まれ、水が共存する反応系となるにもかかわらず、ケ
テンが常圧において効率よく反応に供されるという特異
な事実を見い出すことによってなされたものである。
The ketene-generating compound is at least one compound selected from acetic acid, acetic anhydride, acetone, and diketene, and this compound is expected to generate ketene by heating in a reaction tube maintained at 450 to 650°C. be. It is known that ketene generally reacts rapidly with water to produce acetic acid. In the present invention, water is brought in from the HFW, and although water coexists in the reaction system, ketene is constantly reacted with water. This was achieved by discovering the unique fact that the reaction can be carried out efficiently at high pressure.

反応機構の詳細については不明部分を残すが、次のよう
な機構と推定される(式1)。
Although details of the reaction mechanism remain unclear, the mechanism is presumed to be as follows (Formula 1).

!・0\。10F″・ 十CO□+3H20 H2 HFより (式I) 本発明においては反応管への原料の導入は必要であるな
ら気化器を経ておこなわれる。気化器はケテン発生化合
物を気化させるに十分な温度即ち50〜500℃に保た
れる。HFWとケテン発生化合物の混合には次の三方法
などをとりうるが、HFより生成については何ら相違は
なく、特にこれらに限定されるものではない。
!・0\. From 10 F''・10 CO□+3H20 H2 HF (Formula I) In the present invention, the raw materials are introduced into the reaction tube through a vaporizer, if necessary.The vaporizer is heated at a temperature sufficient to vaporize the ketene-generating compound. That is, the temperature is maintained at 50 to 500° C. The following three methods can be used to mix HFW and the ketene-generating compound, but there is no difference in production compared to HF, and the method is not particularly limited to these.

(方法l)予めHFWとケテン発生化合物を液状のまま
混合し、該混合物を気化器へ導き、ひき続き気化した混
合物を反応器へ導くことによりHFよりを得る。本方法
ではHFWとケテン発生化合物の量比を常に一定に保つ
ことが出来る利点がある。
(Method 1) HFW and a ketene-generating compound are mixed in advance in a liquid state, the mixture is introduced into a vaporizer, and the vaporized mixture is subsequently introduced into a reactor to obtain HF. This method has the advantage that the ratio of amounts of HFW and ketene generating compound can always be kept constant.

(方法2)HFWとケテン発生化合物を別の気化器で気
化した後、気化した固化合物を混合して反応器へ導くこ
とによ5 HFよりを得る方法。
(Method 2) A method for obtaining 5HF by vaporizing HFW and a ketene-generating compound in separate vaporizers, and then mixing the vaporized solid compounds and introducing them into a reactor.

(方法3)ケテン発生化合物をケテン発生に十分な温度
、即ち450〜650℃に保たれた反応管(lへ導入し
1反応管(り出口において、気化器で予め気化したHF
Wと混合し、混合ガスを反応管(2)へ導くことによ、
Q HFよりを得る方法。
(Method 3) A ketene-generating compound is introduced into a reaction tube (l) maintained at a temperature sufficient for ketene generation, that is, 450 to 650°C, and at the outlet of the reaction tube, HF, which has been vaporized in advance with a vaporizer, is
By mixing with W and guiding the mixed gas to the reaction tube (2),
Q How to get more than HF.

本発明において用いるケテン発生化合物のHFWに対す
るモル比は、ケテンとして1〜5倍モルの範囲、より好
ましくは2〜4倍モルを用いる。
The molar ratio of the ketene-generating compound to HFW used in the present invention is in the range of 1 to 5 times the mole of ketene, more preferably 2 to 4 times the mole.

反応管を出た反応ガス(含HFIBガス)社空冷トラッ
プ、水洗浄、アルカリ洗浄を経て冷却トラップ(−78
℃)へ導かれる。尚該反応ガス中に含まれる水および酢
酸といった高沸点物は空冷トラップおよび水洗浄にて、
炭酸ガスはアルカリ洗浄にて除去される。冷却トラップ
には粗HFIBが凝縮、滞留するが、木組HF″IBは
数種ないし士数種の低沸点、副生不純物(例えば3,3
.:5−トリフルオロプロペン )を含有している。こ
れらの低沸点不純物は原理的には低温蒸留もしくは加5
− 圧蒸留によシHFよりより分離可能なものであることが
見い出された。しかしさまざまの沸点を持つ多種の不純
物の分離を蒸留のみでおこなうことは、蒸留精製工程に
おけるHF IBの損失を伴ない、また不純物の量の増
大は可及的にこの蒸留精製工程におけるHFIBの損失
の増大を招く。このため蒸留精製工程前にHFよりの純
度をHFよりの損失を伴なうことなく可能なかぎシ高め
る方法が強く望まれる。本発明者らは、かかる低沸点不
純物をHFIBから分離除去する方法を種々検討した結
果、粗HFよりガスを濃硫酸で洗浄することによp H
Fよりのなんらの損失を伴うことな(HFIBの純度の
大幅な向上がもたらされることを見い出した。さらに好
都合なことには、濃硫酸による反応ガスの洗浄は、水洗
浄および/′!l+たけアルカリ洗浄によp反応ガス中
に同伴される水分の除去にも大きな効果を示す。濃硫酸
による反応ガスの洗浄は、通常のガス洗浄方法例えば充
填塔型式や気泡塔型などを用いることにより簡単におこ
なえる。また硫酸の温度は特に指定さ6− れないが、常温でおこ々うことが簡便である。
The reaction gas (containing HFIB gas) that exited the reaction tube was passed through an air-cooled trap, water washing, and alkali washing before being transferred to a cooling trap (-78
℃). High-boiling substances such as water and acetic acid contained in the reaction gas are removed by air-cooled trap and water washing.
Carbon dioxide gas is removed by alkaline cleaning. Crude HFIB condenses and accumulates in the cooling trap, but Kigumi HF''IB contains several to several types of low boiling point, by-product impurities (e.g. 3,3
.. :5-trifluoropropene). In principle, these low-boiling impurities can be removed by low-temperature distillation or addition.
- It has been found that it is more separable than HF by pressure distillation. However, separating various impurities with various boiling points by distillation alone involves a loss of HFIB in the distillation purification process, and an increase in the amount of impurities may result in a loss of HFIB in the distillation purification process. leading to an increase in Therefore, there is a strong demand for a method that can significantly increase the purity compared to HF without causing any loss in purity before the distillation purification process. The present inventors investigated various methods for separating and removing such low-boiling point impurities from HFIB, and found that by washing the gas from crude HF with concentrated sulfuric acid, the pH was reduced.
It has been found that a significant increase in the purity of HFIB (HFIB) results without any loss from F. Even more advantageously, washing of the reactant gas with concentrated sulfuric acid can be replaced with water washing and /'!l+ Alkaline cleaning is also very effective in removing moisture entrained in p-reactant gases.Cleaning of reaction gases with concentrated sulfuric acid can be easily done by using normal gas cleaning methods such as packed column type or bubble column type. The temperature of the sulfuric acid is not particularly specified, but it is convenient to use it at room temperature.

濃硫酸の濃度は不純物および同伴水分の吸収により当初
濃度(工業用a硫酸98重旙チ)から除々に低下するが
、70重量パーセントに低下した時点で、不純物除去能
力が若干低下してくることが見い出された。
The concentration of concentrated sulfuric acid gradually decreases from the initial concentration (industrial grade 98% by weight of sulfuric acid) due to the absorption of impurities and entrained water, but when it decreases to 70% by weight, the impurity removal ability begins to decrease slightly. was discovered.

本発明により製造および精製したHFIBは、低温蒸留
もしくは加圧蒸留により簡単に分留され、さらに高度に
精製されたHFIBを提供する。
HFIB produced and purified according to the present invention can be easily fractionated by low temperature distillation or pressure distillation to provide highly purified HFIB.

反応管は450〜650℃において十分な強度を保持す
ることが要求されるが、良好な結果をもたらす材料とし
ては、ガラス、アルミナ、磁製。
The reaction tube is required to maintain sufficient strength at 450 to 650°C, and materials that yield good results include glass, alumina, and porcelain.

銅、黄銅などである。鉄、ステンレス鋼、ニッケルでは
HFWの分解およびケテン発生化合物の好ましくない分
解反応が促進されることが認められ、HFIBの収率、
純度ともに可及的に低下する。
Copper, brass, etc. It has been observed that iron, stainless steel, and nickel accelerate the decomposition of HFW and the undesirable decomposition reactions of ketene-generating compounds, resulting in a decrease in the yield of HFIB,
Both purity is reduced as much as possible.

以下本発明を実施例を挙げて更に詳細に説明する。EXAMPLES The present invention will be described in more detail below with reference to Examples.

実施例亘 1.1.1.5j、3−へキサフルオロプロパン−2,
2−ジオール・2水和物(HFW) 22Of (1モ
ル)と無水酢酸224F(2モル)の混合物を定量ポン
プにより毎時135Eの速度で内径31fi長さ450
關の銅製反応管に導入した( SV −180Hr’ 
)。反応管の前部!15は気化器部として200〜25
0℃に保持され、後部2/3は反応器部として550〜
570℃に保持された。反応管内には7目の磁製ラヒツ
シリングを充填した(空隙率70チ)。反応器より出た
反応ガスは空冷トラップ、水洗浄、アルカリ洗浄、硫酸
洗浄を経て冷却トラップ(−78℃)に導ひかれた。2
2時間の反応により原料混合物285ff送入し、生成
物2BOf (回収率98.9 % ) f得た。この
うち、冷却トラップに有機物(粗HFより:純度98.
5%)95.zyが凝縮した(収率27.8チ:送入H
FW i基準とする)。このものの蒸留により75pの
IFより(純度99.998チ)が得られた。
Example 1.1.1.5j, 3-hexafluoropropane-2,
A mixture of 2-diol dihydrate (HFW) 22Of (1 mol) and acetic anhydride 224F (2 mol) was pumped using a metering pump at a rate of 135E per hour with an inner diameter of 31fi and a length of 450 mm.
It was introduced into a copper reaction tube (SV-180Hr').
). Front part of the reaction tube! 15 is 200 to 25 as the carburetor part
The temperature is maintained at 0℃, and the rear 2/3 is heated to 550℃ as a reactor section.
The temperature was maintained at 570°C. The inside of the reaction tube was filled with a 7-mesh porcelain Rahitsuri ring (porosity: 70 cm). The reaction gas discharged from the reactor was passed through an air-cooled trap, water washing, alkali washing, and sulfuric acid washing, and then led to a cooling trap (-78°C). 2
Through the reaction for 2 hours, 285 ff of the raw material mixture was fed, and a product 2BOf (recovery rate 98.9%) was obtained. Of these, organic matter (from crude HF: purity 98.
5%)95. zy was condensed (yield 27.8cm: feed H
FW i standard). Distillation of this yielded 75p IF (purity 99.998p).

実施例2 1.1.1,5,5.5−ヘキサフルオロプロパン−2
,2−ジオール・2水和物(HFW )とジケテンを各
々定量ポンプにより170℃に保持されたそれぞれのガ
ラス製気化器に導ひいた[: HFW目、sy4.ジケ
テン7.5に侍、ジケテン/H’FW(モル比)−五、
3〕。気化器を出たHFW 、ジケテン両ガスは550
〜570℃に保持されたガラス製反応器(内径21.5
m。
Example 2 1.1.1,5,5.5-hexafluoropropane-2
, 2-diol dihydrate (HFW) and diketene were each introduced into respective glass vaporizers maintained at 170°C by metering pumps [: HFW, sy4. Samurai to diketene 7.5, diketene/H'FW (molar ratio) -5,
3]. Both HFW and diketene gases coming out of the vaporizer are 550
A glass reactor (inner diameter 21.5
m.

長さ500+u+)に直ちに導ひかれ(SV−500時
″X反応器から出た反応ガスは空トラップ、水洗浄、ア
ルカリ洗浄を経て冷却トラップ(−78℃)に導ひかれ
た。15時間の反応によりHFW 220 y(1モル
)、ジケテン目2 f (1,33モル)を送入し、生
成物322 f (回収率97%)?得た。
(length 500+u+) (at SV-500") The reaction gas coming out of the X reactor was passed through an empty trap, water washing, alkali washing, and then led to a cold trap (-78°C). After 15 hours of reaction, HFW 220y (1 mol) and diketene 2f (1.33 mol) were introduced to obtain the product 322f (97% recovery).

このうち冷却トラップに有機物(粗HFIB :純度8
0チ)172yが凝縮した(収率84チ)。
Of these, organic matter (crude HFIB: purity 8
172y was condensed (yield: 84y).

この粗HFIBを蒸留をおこなう前に硫酸により精製管
おこなった。すなわち、粗H’F I Bをガス状(2
0℃)で、濃硫酸5005E’i入れたガス洗浄びん全
通したところ、15Tfの有機物が回収9− された。回収された有機物中のHFより純度は98.5
%まで向上し、またこの硫酸によるガス洗浄操作におい
てHF’IBの損失は事実上なかった。
This crude HFIB was purified with sulfuric acid before distillation. That is, crude H'F I B is converted into gaseous state (2
When the mixture was passed through a gas washing bottle containing 5005E'i of concentrated sulfuric acid at 0°C), 15Tf of organic matter was recovered. The purity is 98.5 from HF in the recovered organic matter.
%, and there was virtually no loss of HF'IB in this sulfuric acid gas scrubbing operation.

この粗HFIBを2ν/cm Gで加圧蒸留(塔頂温度
17℃、メチル温1180℃)することにより115F
の精製されたHFより(純度99,9998チ)が得ら
れた。
This crude HFIB was distilled under pressure at 2ν/cm G (column top temperature 17°C, methyl temperature 1180°C) to 115F
(purity 99,9998%) was obtained from purified HF.

実施例3 ケテン発生化合物として無水酢酸の代りに氷酢酸’i 
HFWに対して4倍モル使用し、 EIV=100Hr
″とする以外は実施例1と全く同様の反応条件で6.6
時間反応をおこない、36.99の原料混合物全送入し
た時点で55.2yの生成物が得られた(回収率95.
5 % )。このうち冷却トラップ(−78℃)に8.
7yの有機物が凝縮し、このものはHFIBN度98.
7%の組成を持つものであった(収率65.6チ)。
Example 3 Glacial acetic acid'i instead of acetic anhydride as a ketene-generating compound
Use 4 times the molar amount for HFW, EIV=100Hr
6.6 under exactly the same reaction conditions as in Example 1 except for
The reaction was carried out for several hours, and when all 36.99 y of the raw material mixture was fed, 55.2 y of product was obtained (recovery rate 95.
5%). Of these, 8.
7y organic matter is condensed, and this material has an HFIBN degree of 98.
It had a composition of 7% (yield: 65.6%).

実施例4 ケテン発生化合物として無水酢酸の代りにア七トン’1
HFWに対して4倍モル使用し、eV−18010− Hr″とし友他は実施例2と全く同様の反応条件で5,
3時間反応し、25.1yの原料混合物全送入した。生
成物は17.57 (回収率69.8%)得られ、冷却
トラップ(−78℃)に凝縮しない著しい量のガスが系
外へ排出した。冷却トラップには9.6Fの有機物が凝
縮し、このものけHPより純度71.9チの組成のもの
であった(収率76%)。
Example 4 A7Tone'1 instead of acetic anhydride as a ketene-generating compound
Using 4 times the mole of HFW, eV-18010-Hr'' and Tomo et al.
The reaction was carried out for 3 hours, and all 25.1y of the raw material mixture was fed. 17.57% of product was obtained (69.8% recovery), and a significant amount of gas that did not condense in the cold trap (-78°C) was discharged from the system. Organic matter at 9.6F was condensed in the cold trap, and had a composition with a purity of 71.9F compared to Kononoke HP (yield 76%).

特許出願人 セントラル硝子株式会社 11−Patent applicant: Central Glass Co., Ltd. 11-

Claims (1)

【特許請求の範囲】 持された反応管内で加熱することを特徴とする 3.3
.3−)リフルオロ−2−トリフルオロメチルプロペン
の製造法。 (2) 1.1.L3.13−へキサフルオロプロパン
−2,2−ジオール・2水和物とケテン発生化合物を4
50〜650℃に保持された反応管内で加熱して得られ
る反応生成ガスを濃硫酸で洗浄することにより、有機副
生物を除去することを特徴とする3、3.5−トリフル
オロ−2−トリフルオロメチルプロペンの製造にかかわ
る精製法。
[Claims] 3.3 The method is characterized in that heating is performed in a supported reaction tube.
.. 3-) Method for producing refluoro-2-trifluoromethylpropene. (2) 1.1. L3.13-hexafluoropropane-2,2-diol dihydrate and ketene-generating compound 4
3,3,5-trifluoro-2-, which is characterized in that organic by-products are removed by washing the reaction product gas obtained by heating in a reaction tube maintained at 50 to 650°C with concentrated sulfuric acid. A purification method involved in the production of trifluoromethylpropene.
JP58127875A 1983-07-15 1983-07-15 Production and purification of 3,3,3-trifluoro-2- trifluoromethylpropene Granted JPS6023334A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58127875A JPS6023334A (en) 1983-07-15 1983-07-15 Production and purification of 3,3,3-trifluoro-2- trifluoromethylpropene
GB08417178A GB2143526B (en) 1983-07-15 1984-07-05 Preparing 3,3,3-trifluoro-2-trifluoromet
IT21820/84A IT1174602B (en) 1983-07-15 1984-07-10 PREPARATION OF 3.3.3-TRIFLUORO-2-TRIFLUOROMETILPROPENE
DE19843425907 DE3425907A1 (en) 1983-07-15 1984-07-13 METHOD FOR PRODUCING 3,3,3-TRIFLUOR-2-TRIFLUORMETHYL PROPEN
FR8411194A FR2549039B1 (en) 1983-07-15 1984-07-13 PROCESS FOR THE PREPARATION OF 3,3,3-TRIFLUORO-2-TRIFLUORO-MEHYLPROPENE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58127875A JPS6023334A (en) 1983-07-15 1983-07-15 Production and purification of 3,3,3-trifluoro-2- trifluoromethylpropene

Publications (2)

Publication Number Publication Date
JPS6023334A true JPS6023334A (en) 1985-02-05
JPS6324493B2 JPS6324493B2 (en) 1988-05-20

Family

ID=14970798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58127875A Granted JPS6023334A (en) 1983-07-15 1983-07-15 Production and purification of 3,3,3-trifluoro-2- trifluoromethylpropene

Country Status (5)

Country Link
JP (1) JPS6023334A (en)
DE (1) DE3425907A1 (en)
FR (1) FR2549039B1 (en)
GB (1) GB2143526B (en)
IT (1) IT1174602B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729459A (en) * 1984-10-01 1988-03-08 Nippon Soken, Inc. Adjustable damping force type shock absorber
US5105918A (en) * 1989-10-23 1992-04-21 Nippondenso Co., Ltd. Detection of damping force for shock absorber control
JP2008506905A (en) * 2004-07-14 2008-03-06 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Shock absorber with integrated displacement sensor
JP2009002513A (en) * 2007-06-20 2009-01-08 Stabilus Gmbh Position adjustment element
JP2018525355A (en) * 2015-07-17 2018-09-06 メキシケム フロー エセ・ア・デ・セ・ヴェ Process for drying hydro (chloro) fluoroolefins

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4243526C2 (en) * 1992-12-22 1994-11-10 Bayer Ag Methylene perfluorocycloalkanes, process for their preparation and their use in the production of thermoplastic fluororesins

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3894097A (en) * 1974-05-10 1975-07-08 Allied Chem Process for the preparation of hexafluoroisobutylene
US4244891A (en) * 1979-12-21 1981-01-13 Allied Chemical Corporation Preparation of hexafluoroisobutylene

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4729459A (en) * 1984-10-01 1988-03-08 Nippon Soken, Inc. Adjustable damping force type shock absorber
US5105918A (en) * 1989-10-23 1992-04-21 Nippondenso Co., Ltd. Detection of damping force for shock absorber control
JP2008506905A (en) * 2004-07-14 2008-03-06 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Shock absorber with integrated displacement sensor
JP4713584B2 (en) * 2004-07-14 2011-06-29 テネコ オートモティブ オペレーティング カンパニー インコーポレイテッド Shock absorber with integrated displacement sensor
JP2009002513A (en) * 2007-06-20 2009-01-08 Stabilus Gmbh Position adjustment element
JP2018525355A (en) * 2015-07-17 2018-09-06 メキシケム フロー エセ・ア・デ・セ・ヴェ Process for drying hydro (chloro) fluoroolefins

Also Published As

Publication number Publication date
IT8421820A0 (en) 1984-07-10
DE3425907A1 (en) 1985-01-31
GB2143526B (en) 1987-01-21
GB8417178D0 (en) 1984-08-08
GB2143526A (en) 1985-02-13
FR2549039A1 (en) 1985-01-18
IT8421820A1 (en) 1986-01-10
JPS6324493B2 (en) 1988-05-20
DE3425907C2 (en) 1987-06-11
IT1174602B (en) 1987-07-01
FR2549039B1 (en) 1986-12-26

Similar Documents

Publication Publication Date Title
JP4875626B2 (en) Method for the preparation of sevoflurane
EP2231574A2 (en) Process for the purification of fluromethyl 1,1,1,3,3,3,-hexafluoroisopropyl ether (sevoflurane)
KR101284659B1 (en) Process for production of 1,2,2,2-tetrafluoro ethyl difluoro methyl ether
JPS6023334A (en) Production and purification of 3,3,3-trifluoro-2- trifluoromethylpropene
US5278342A (en) Vapor phase chlorination of difluoromethyl methyl ether
US3433838A (en) Purification of perhaloacetones
JP2007056025A (en) Preparation of high-purity fluoroperoxide
JPWO2011052559A1 (en) Method for purifying fluorine-containing compounds
JP4102188B2 (en) Method for producing fluoromethylhexafluoroisopropyl ether
RU2109725C1 (en) Method of purifying fluoromethyl-1,1,1,3,3,3- hexafluoroisopropyl ether
US5543055A (en) Purifications of flourinated dimethyl ethers
KR100285073B1 (en) Vapor Chlorination of Difluoromethyl Methyl Ether
JP6361786B2 (en) Purification method of organic compounds
MXPA97009463A (en) Purification of eteres dimetilicos fluora
EP0010013B1 (en) Process for the preparation of ethylene chlorohydrine
US11584702B2 (en) Process for producing trifluoroiodomethane (CF3I) from trifluoroacetic anhydride (TFAA)
JP3123698B2 (en) Manufacturing method of fluorinated silane
FR2549041A1 (en) PROCESS FOR PURIFYING 4-FLUOROPHENOL
JPS5879948A (en) Manufacture of methacrylic acid from isobutyl aldehyde
JP3332207B2 (en) Method for distilling 3,3-dichloro-1,1,1-trifluoroacetone
JPH05201909A (en) Production of isoflurane
JP2756373B2 (en) Method for producing 1,1,1-trifluoro-3-nitro-2-propene
JPH0649199A (en) Method of purifying and stabilizing perfluoropolyether
CN1188468A (en) Purification of fluorinated dimethyl ethers
JPS6137748A (en) Manufacture of pure hydrate of furol and hexafuroloacetone from hemiacetal