JPS60233044A - Production of polyisocyanate - Google Patents

Production of polyisocyanate

Info

Publication number
JPS60233044A
JPS60233044A JP8837484A JP8837484A JPS60233044A JP S60233044 A JPS60233044 A JP S60233044A JP 8837484 A JP8837484 A JP 8837484A JP 8837484 A JP8837484 A JP 8837484A JP S60233044 A JPS60233044 A JP S60233044A
Authority
JP
Japan
Prior art keywords
reaction
phosgene
compound
temperature
triamino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8837484A
Other languages
Japanese (ja)
Other versions
JPH0460104B2 (en
Inventor
Kaoru Kamiyanagi
薫 上柳
Kazuo Komatsu
小松 和郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8837484A priority Critical patent/JPS60233044A/en
Publication of JPS60233044A publication Critical patent/JPS60233044A/en
Publication of JPH0460104B2 publication Critical patent/JPH0460104B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To produce the titled compound useful as an isocyanate component without causing the coagulation and blocking, free from the restrictions in the material of the reactor nor the reaction temperature, in high yield and purity, by reacting a mixture of a specific triamino compound and hexamethylenediamine with phosgene. CONSTITUTION:A triamino compound having three primary amino groups which are not bonded directly to the aromatic ring is made to react with phosgene to obtain the corresponding triisocyanate compound. In the above process, a mixture of said triamino compound and hexamethylenediamine is reacted with phosgene. The reaction is carried out preferably using e.g. 1,8-diamino-4-aminomethyl- octane, etc. as the triamino compound, at a weight ratio of the triamino compound to hexamethylenediamine of 5:95-90:10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は直接芳香環に結合していないインシアナト基を
一分子内に6個有するトリインシアネート化合物の製造
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing a triincyanate compound having six incyanato groups in one molecule that are not directly bonded to an aromatic ring.

〔従来の技術〕[Conventional technology]

従来、インシアナト基が芳香B!Jに直接結合していな
いポリイソシアネートは耐候性に優れた無黄変型ポリウ
レタン樹脂製造用原料として使用できる事が知られてい
る。これら無黄変型のポリイソシアネートの代表製品と
しては、ヘキサメチレンジインシアネート、2,2.4
−または2,4.4− )リメチルへキサメチレンジイ
ソシアネート、イソホロンジイソシアネート、1.4−
ジイソシアナトシクロヘキサン、ビス(インシアナトメ
チ:2)シフ ゛νヘキサン及びキシリレンジインシア
ネート等が挙げられるが、これらは常温で刺激臭を有し
、人体に対する毒性が問題となる為安全に取扱いにくい
欠点が有る。またジインシアネート類は二官能性である
為、ポリウレタン樹脂の架橋剤として用いた場合架橋密
度が低すぎる場合も多い。従って、 ′これらシイシイ
アネート類はトリメチ四−ルプロパンの如きトリオール
類、更には水、ターシャリ−ブタノール等、いわゆるア
ダクト化剤と反応させて高分子化及び多官能化する事に
より誘導されるアダクト体として用いられている。しか
し、これらは重合体混合物となる為、高い粘度を有し取
扱いには溶剤で希釈する必要が有するとともにそのイン
シアネート基含有量も必然的に低下してしまう。
Conventionally, incyanato group is aromatic B! It is known that polyisocyanates that are not directly bonded to J can be used as raw materials for producing non-yellowing polyurethane resins with excellent weather resistance. Representative products of these non-yellowing polyisocyanates include hexamethylene diinocyanate, 2,2.4
- or 2,4.4-) Limethylhexamethylene diisocyanate, isophorone diisocyanate, 1.4-
Examples include diisocyanatocyclohexane, bis(incyanatomethyl:2)shiffhexane, and xylylene diincyanate, but these have a pungent odor at room temperature and are difficult to handle safely due to toxicity to the human body. Yes. Furthermore, since diincyanates are difunctional, when used as a crosslinking agent for polyurethane resins, the crosslinking density is often too low. Therefore, ``These cycyanates are used as adducts derived by polymerizing and polyfunctionalizing them by reacting with so-called adducting agents such as triols such as trimethy4-propane, water, and tert-butanol. It is being However, since these are polymer mixtures, they have a high viscosity and require dilution with a solvent for handling, and their incyanate group content is inevitably reduced.

この様な背景のもとに近年、単量体であるが故に粘度が
非常に低く、かつ常温における蒸気圧が極端に低い為刺
激性・毒性の少い無黄変型3官能性インシアネート化合
物の開発が行なわれている。
Against this background, in recent years, non-yellowing trifunctional incyanate compounds have been developed that have very low viscosity because they are monomers, and have extremely low vapor pressure at room temperature, so they are less irritating and less toxic. Development is underway.

これらトリイソシアネート類は、例えば特開昭55−3
27、特開昭55−167269、特開昭56−615
41、特開昭56−127341等に見られる如くすべ
て対応するトリアミノ化合物とホスゲンとの反応(ホス
ゲン化反応)により製造される。一般にアミンのホスゲ
ン化反応としては、アミンの塩酸塩を不活性溶媒中で6
0〜260℃でホスゲンと反応させる事によりインシア
ネートとする塩酸塩法、又はアミンを40℃以下、好ま
しくは8℃以下でホスゲンと反応させて一且カルバミル
クpライドとアミン塩酸塩の混合物を得、次いでホスゲ
ンの吹込下60〜260℃に加熱してインシアネートを
得る冷熱2段法の2方法が有る。しかしながら前者塩酸
塩法は実験室的には比較的高収率でインシアネートを得
られるという利点は有るものの、アミン塩酸塩という中
間体を合成、精製する必要が有る事、またこのアミン塩
酸塩は通常固体でありその取扱いが煩雑である事等、工
業的プロセス上は不利な点が多い。
These triisocyanates are, for example, JP-A-55-3
27, JP-A-55-167269, JP-A-56-615
41, JP-A No. 56-127341, etc., all of them are produced by the reaction of the corresponding triamino compound with phosgene (phosgenation reaction). Generally, in the phosgenation reaction of amines, amine hydrochloride is prepared in an inert solvent with 6
Hydrochloride method to form incyanate by reacting with phosgene at 0 to 260°C, or reaction of amine with phosgene at below 40°C, preferably below 8°C to form a mixture of carbamyl plide and amine hydrochloride. There are two methods: cold and hot two-step process to obtain incyanate, which is then heated to 60 to 260° C. under phosgene blowing. However, although the former hydrochloride method has the advantage of being able to obtain incyanate in a relatively high yield in the laboratory, it requires the synthesis and purification of an intermediate called amine hydrochloride; It has many disadvantages in industrial processes, such as the fact that it is usually solid and its handling is complicated.

従ってアミンのホスゲン化反応によるインシアネート製
造の場合、工業的にはプロセス上、装置上 、の利点を
優先させて冷熱2段法を採用するのが一般である。事実
光に例示した如きジインシアネート類は通常冷熱2段法
にて何ら問題なく工業的に製造供給されている。
Therefore, in the case of producing incyanate by the phosgenation reaction of amines, industrially, it is common to prioritize the advantages in terms of process and equipment, and to adopt a two-step cold/hot process. In fact, diincyanates such as those exemplified in Hikari are usually manufactured and supplied industrially by a two-step cold and hot process without any problems.

しかしながら、芳香環に直接結合していない第一級アミ
7基を一分子内に3個有するトリアミノ化合物(以下単
にトリアミンという)をホスゲンと反応させてトリイン
シアネートに変換するに際し、上記冷熱2段法を採用し
ようとする場合、60℃以上の温度で冷ホスデン化反応
により生成したスラリー状固形物が凝集をはじめついに
は塊状化してしまうため反応が円滑に進行せず、そのま
ま強引に反応を継続完了させてもいたずらにタール状高
分子物質や不溶性固形物の生成量が増えるばかりで肝心
のトリイソシアネート収率が上らないという障害に遭遇
する。またこの様な反応により生成したトリイソシアネ
ート中には不純物が多い事も欠点である。不純物の例と
しては例えば3つのインシアネートのうちの1個が塩素
に置換された様なものとか、またいわゆる加水分解性塩
素等が含まれる。加水分解性塩素含有量の多いトリイン
シアネートは、これを用いて製造したポリウレタン樹脂
の耐候性に欠点が生じた為、通常500 ppm以下が
好ましい。
However, when converting a triamino compound (hereinafter simply referred to as triamine), which has three primary amine 7 groups in one molecule that are not directly bonded to an aromatic ring, to triincyanate by reacting with phosgene, the above-mentioned cold and heat two-step When trying to adopt this method, the slurry-like solid produced by the cold phosdenization reaction at a temperature of 60°C or higher starts to aggregate and eventually becomes lumpy, so the reaction does not proceed smoothly and the reaction is forced to continue. Even if the process is completed, the amount of tar-like polymeric substances and insoluble solids generated increases unnecessarily, and the critical triisocyanate yield cannot be increased. Another drawback is that the triisocyanate produced by such a reaction contains many impurities. Examples of impurities include those in which one of the three incyanates is replaced with chlorine, and so-called hydrolyzable chlorine. Triincyanate having a high hydrolyzable chlorine content is usually preferably 500 ppm or less, since polyurethane resin produced using it has a drawback in weather resistance.

この様なトリアミンのホスゲン化反応独特の困難性は、
塩酸塩法や特開昭52−122348号公報に記された
如きいわゆるカルバミン酸塩法を用いる事によりある程
度は解決され得る。
The unique difficulty of this triamine phosgenation reaction is that
This problem can be solved to some extent by using the hydrochloride method or the so-called carbamate method as described in JP-A-52-122348.

しかしながら、塩酸塩法は前述の如き装置及び工程上の
問題点が大きく、またカルバミン酸塩法についても炭酸
ガスというホスゲン以外のガス成分を必要とする為装置
が複雑化する事、熱−冷一熱と多段の工程を要する事、
更に反応完結に比較的長時間を要する事等の欠点を有し
ている。
However, the hydrochloride method has major problems in terms of equipment and process as described above, and the carbamate method also requires a gas component other than phosgene called carbon dioxide, which complicates the equipment and increases the heat-cooling ratio. Requires heat and multiple steps,
Furthermore, it has the disadvantage that it takes a relatively long time to complete the reaction.

またこの様なトリアミンのホスゲン化反応における反応
内容物の凝集塊状化回避策として、少なくとも低温反応
部を撥水性材質からなる反応器で行う事が提案されてい
る。(特開昭57−123158)Lかしながらこの様
な特殊な反応器を用いる事は、装置の複雑化及び高価格
化とい ・う面で問題点も多い。
In addition, as a measure to avoid agglomeration of the reaction contents in such a phosgenation reaction of triamine, it has been proposed to conduct the reaction in a reactor made of a water-repellent material at least in the low-temperature reaction section. (Unexamined Japanese Patent Publication No. 57-123158) However, the use of such a special reactor has many problems in terms of complication and high cost of the equipment.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

即ちトリアミンのホスゲン化反応によるトリインシアネ
ートの製造に際し、工業的に最も採用しやすい冷熱2段
法により、固形物の塊状化を回避し高収率・高純度に、
しかも特殊な反応器材質に限られる事なく、かつ高い生
産性で製造し得る技術の開発は、当業界にとって魅力あ
ふれる課題であった。
In other words, when producing triincyanate through the phosgenation reaction of triamine, a two-stage cold and hot process, which is the easiest to adopt industrially, avoids agglomeration of solids and achieves high yield and high purity.
Furthermore, the development of a technology capable of manufacturing with high productivity without being limited to special reactor materials has been an attractive challenge for the industry.

〔問題点を解決するための手段及び作用〕本発明者らは
、トリアミンのホスゲン化反応における上記の如き課題
を達成すべく鋭意研究を重ねた結果、驚くへき事にヘキ
サメチレンジアミンの共存下にてトリアミンのホスゲン
化反応を行う事により、すべての問題を解決し得る事を
見出し本発明を完成する忙至った。
[Means and effects for solving the problems] As a result of intensive research to achieve the above-mentioned problems in the phosgenation reaction of triamine, the present inventors surprisingly found that in the coexistence of hexamethylene diamine, He discovered that all of the problems could be solved by carrying out the phosgenation reaction of triamine, and was busy completing the present invention.

即ち、本発明は芳香環に直接結合していない第一級アミ
ノ基を一分子内に3個有するトリアミノ化合物とホスゲ
ンを反応させる事により対応するトリインシアネート化
合物を製造するに際し、当該トリアミノ化合物とへキサ
メチレンジアミンの混合物をホスゲンと反応させる事を
特徴とする製造方法を提供するものである。
That is, in the present invention, when producing a corresponding triincyanate compound by reacting a triamino compound having three primary amino groups in one molecule that are not directly bonded to an aromatic ring with phosgene, the triamino compound and The present invention provides a manufacturing method characterized by reacting a mixture of hexamethylene diamine with phosgene.

本発明による方法によれば、トリアミンの冷熱2段ホス
デン化反応はいかなる材質の反応器を用いても、またい
かなる温度領域においても凝集塊状化する事なく、反応
系は均一白色スラリーにて進行し、比較的短時間のうち
に最終的には均一透明溶液へと移行する。更に最終生成
物であるトリインシアネートの収率はへキサメチレンジ
アミンが存在しない場合に比して格段に高く、しかも高
純度の製品が得られる。又同時に生成するヘキサメチレ
ンジインシアネートの収率も充分高く、トリイソシアネ
ートの工業的製法として非常に優れたプロセスとなる。
According to the method of the present invention, the cold-thermal two-step phosdenization reaction of triamine proceeds as a uniform white slurry without agglomeration in any reactor material or temperature range. , which eventually transforms into a homogeneous clear solution within a relatively short time. Furthermore, the yield of the final product, triincyanate, is much higher than in the case where hexamethylene diamine is not present, and a highly purified product is obtained. Furthermore, the yield of hexamethylene diinocyanate produced at the same time is sufficiently high, making it an extremely excellent process as an industrial method for producing triisocyanate.

2種以上のアミン混合物のホスゲン化反ratSに関す
る先行技術(特開昭48−48419)が存在するが、
該技術は装量の重複を避けるという経済的利点を目的と
したものであり、トリアミノ化合物のホスゲン化反応に
ついては何ら言及されていない。
Although there is a prior art related to phosgenation of a mixture of two or more amines (Japanese Patent Application Laid-Open No. 48-48419),
This technique is aimed at the economical advantage of avoiding duplication of dosage, and does not mention anything about the phosgenation reaction of triamino compounds.

本発明の原料として用いられる芳香環に直接結合してい
ない第一級アミノ基を一分子内に3個有するトリアミノ
化合物とは、例えば1,8−ジアミノ−4−アミノメチ
ルオクタン、1.6.11−)リアミノウンデカン、1
,2.3−)リアミノゾロパス1.3.5−)リス(ア
ミノメチル)ベンゼン、1.3.5−)リス(アミノメ
チル)シクロヘキサン、2−アミノメチル−3−(3−
アミノゾロビル)−5−7ミノメチルービシクロー[2
,2゜1]−へブタン、2−アミノメチル−3−(3−
アミノゾロピル)−6−アミツメチル−ビシクロ−[2
,2,1] −へブタン、1.4−(または1.3−)
ビス(アミノメチル)−2−(3−アミノゾロビル)−
シクロヘキサン、1.4−(または1.3−)ビス−(
アミノメチル)−1−(6−アミノゾロビル)−シクロ
ヘキサン、1−アミノメチル−2−(3−アミノゾロビ
ル)−4(または5)−(2−アミノエチル)−シクロ
ヘキサン等が挙げられる。
The triamino compound having three primary amino groups in one molecule that is not directly bonded to an aromatic ring and used as a raw material in the present invention is, for example, 1,8-diamino-4-aminomethyloctane, 1.6. 11-) riaminoundecane, 1
, 2.3-) Liaminozolopas 1.3.5-) Lis(aminomethyl)benzene, 1.3.5-) Lis(aminomethyl)cyclohexane, 2-Aminomethyl-3-(3-
Aminozolovir)-5-7minomethyl-bicyclo[2
,2゜1]-hebutane, 2-aminomethyl-3-(3-
aminozolopyl)-6-amitsumethyl-bicyclo-[2
,2,1] -hebutane, 1.4- (or 1.3-)
Bis(aminomethyl)-2-(3-aminozolovir)-
Cyclohexane, 1.4-(or 1.3-)bis-(
Examples include aminomethyl)-1-(6-aminozorobyl)-cyclohexane, 1-aminomethyl-2-(3-aminozorobyl)-4(or 5)-(2-aminoethyl)-cyclohexane, and the like.

これらトリアミンはへキサメチレンジアミンと混合して
ホスゲン化反応に供されるが、この混合比は(トリアミ
ン)=(ヘキサメチレンジアミン)重量比で5=95〜
90:10か好ましい。トリアミンの量か少なすぎる場
合は反応後のトリインシアネート化合物の分離が困難に
なり、ヘキサメチレンジアミンの量が少なすぎる場合は
反応内容物の凝集塊状化の抑制が不充分になりいづれも
好ましく請求い。
These triamines are mixed with hexamethylene diamine and subjected to the phosgenation reaction, but the mixing ratio (triamine) = (hexamethylene diamine) weight ratio is 5 = 95 ~
90:10 is preferred. If the amount of triamine is too small, it will be difficult to separate the triincyanate compound after the reaction, and if the amount of hexamethylene diamine is too small, the agglomeration of the reaction contents will be insufficiently suppressed. stomach.

以下、本発明の方法について工程順に説明を加える。Hereinafter, the method of the present invention will be explained in order of steps.

本発明の方法の第一工程である低温ホスゲン化反応にお
いてはトリアミンとへキサメチレンジアミンの混合物を
通常不活性溶剤の存在下にて比較的低温条件(通常60
℃以下、好ましくは一10〜10°0)にて反応させる
。ホスゲンの使用量はアミノ基に対し等モル以上、通常
2倍モル以上とする。不活性溶媒としてはホスダンやイ
ンシアネート基に対し不活性であり、かつ比較的沸点の
高いものという観点からテトラリン、デカリン、クロル
ベンゼン、0−ジクロルベンゼン、トリクロルベンゼン
等が慣用される。低温ホスダ化工上程はその反応を完了
させる為その反応温度に応じて通常1時間〜6時間を必
要とする。
In the low-temperature phosgenation reaction, which is the first step of the method of the present invention, a mixture of triamine and hexamethylene diamine is usually prepared in the presence of an inert solvent under relatively low-temperature conditions (usually 60%
The reaction is carried out at a temperature of 0.degree. C. or below, preferably -10 to 10.degree. The amount of phosgene used is at least equimolar, usually at least twice the mole relative to the amino group. As the inert solvent, tetralin, decalin, chlorobenzene, 0-dichlorobenzene, trichlorobenzene and the like are commonly used from the viewpoint of being inert to phosdanes and incyanate groups and having a relatively high boiling point. The low temperature phosphatization process usually requires 1 to 6 hours depending on the reaction temperature to complete the reaction.

次いでこの低温ホスゲン化反応物を高温ホスゲン化反応
へ移行せしめる為に昇温する。通常のトリアミンの冷熱
二段法によるホスゲン化反応ではこの昇温の段階で内容
物の凝集が起こり、系の攪拌が不能となるが、本発明の
方法によればこの様な凝集塊状化は全く認められず、系
は均一なスラリー状態を維持する。
Next, the temperature of this low-temperature phosgenation reaction product is raised in order to transfer it to a high-temperature phosgenation reaction. In the conventional phosgenation reaction of triamine using a cold two-step method, the contents agglomerate at this stage of temperature rise, making it impossible to stir the system, but according to the method of the present invention, such agglomeration is completely avoided. No, the system remains a homogeneous slurry.

高温ホスゲン化反応は通常100〜260℃の温度でホ
スゲンを系内へ供給しながら行なわれ、この句に低温ホ
スデン化工程で生成したカルバミルクロライドは熱分解
されてインシアネートに転化される。反応完結時には系
は均一透明液体となるがこの反応完結に要する高温ホス
デン化工程の時間は、本発明の方法によれば、その加熱
温度にもよるが通常1〜15時間で充分である。
The high-temperature phosgenation reaction is usually carried out at a temperature of 100 to 260° C. while supplying phosgene into the system, and the carbamyl chloride produced in the low-temperature phosgenation step is thermally decomposed and converted into incyanate. When the reaction is completed, the system becomes a homogeneous transparent liquid, and according to the method of the present invention, the time required for the high-temperature phosdenization step to complete the reaction is usually 1 to 15 hours, depending on the heating temperature.

上記反応工程はバッチ方式にも連続反応方法にも適用可
能である。
The above reaction process is applicable to both batch and continuous reaction methods.

反応終結後は系内に残存するホスゲンを窒素等の不活性
ガスでパージし、溶媒を回収した後適当な方法により生
成物であるトリイソシアネートとへキサメチレンジイソ
シアネートを分離する。分離方法としてはトリイソシア
ネートとへキサメチレンジイソシアネートの沸点差を利
用した減圧蒸留が好ましい。
After the reaction is completed, the phosgene remaining in the system is purged with an inert gas such as nitrogen, the solvent is recovered, and the products triisocyanate and hexamethylene diisocyanate are separated by an appropriate method. As a separation method, vacuum distillation using the difference in boiling point between triisocyanate and hexamethylene diisocyanate is preferred.

このようにして得られたトリインシアネート及びヘキサ
メチレンジイソシアネートはそれぞれ例えばポリウレタ
ン樹脂等の原料となるべきインシアネート成分として有
効に利用される。
The triincyanate and hexamethylene diisocyanate thus obtained are each effectively used as an incyanate component to be a raw material for polyurethane resins and the like.

以下、実施例により本発明の内容をより具体的に説明を
加える。
Hereinafter, the content of the present invention will be explained more specifically using Examples.

実施例1 攪拌装置、温度記、コンデンサー及びガス吹込管を備え
たガラス製反応器にオルトジクロルベンゼン400Iを
仕込み0℃に冷却した後ホスダン515Iを導入し溶解
した。このものの中へオルトジク四ルベンゼン600g
中に溶解した1、8−ジアミノ−4−アミノメチルオク
タン50.9及びヘキサメチレンジアミン5011を反
応器内温を5℃以下に保ちながら2時間かけて攪拌下部
下し、滴下終了後見に1時間攪拌をつづけた。系は流動
性の高い白色スラリーとなった。この後ホスダンを吹込
みながら約1時間かけて140℃まで昇温し、140℃
を維持して5時間ホスrンの供給を続けた。この間反応
系は流動性の高いスラリー状態な維持し、最終的に黄色
透明液体となり固形物の残留は認められなかった。反応
液に窒素ガスを吹込み残留ホスゲンを除去した後、減圧
下溶媒のオルトジクロルベンゼンを留去し、更に薄膜蒸
発缶にて少量(91りのタール分を除去した。
Example 1 Orthodichlorobenzene 400I was charged into a glass reactor equipped with a stirrer, thermometer, condenser and gas blowing tube, and after cooling to 0°C, Phosdan 515I was introduced and dissolved. Into this thing 600g of orthodic tetrabenzene
50.9 of 1,8-diamino-4-aminomethyloctane and 5011 of hexamethylene diamine dissolved in the solution were added to the bottom of the reactor with stirring over 2 hours while keeping the internal temperature of the reactor below 5°C, and the addition was completed for 1 hour. Stirring continued. The system became a highly fluid white slurry. After that, the temperature was raised to 140℃ over about 1 hour while blowing phosdan, and the temperature was increased to 140℃.
The supply of phosphor was continued for 5 hours while maintaining the temperature. During this time, the reaction system remained in a highly fluid slurry state, and finally turned into a yellow transparent liquid with no solids remaining. After blowing nitrogen gas into the reaction solution to remove residual phosgene, orthodichlorobenzene as a solvent was distilled off under reduced pressure, and a small amount (91%) of tar was removed using a thin film evaporator.

得られたインシアネート混合物を減圧下で精留し、沸点
126℃/10■Hgの留分としてヘキサメチレンジイ
ソシアネート70.!i+(収率96%)及び沸点19
3℃/ 3 m Hgの留分として1.8−ジインシア
ナト−4−インシアナトメチルオクタン62.9(収率
85%)を得た。得られたヘキサメチレンジイソシアネ
ートのガスクロマトゲ′ラフ分析による純度(以下Go
線純度いう)は99%以上、加水分解性塩素含有量は1
50ppm。
The obtained incyanate mixture was rectified under reduced pressure to obtain hexamethylene diisocyanate as a fraction with a boiling point of 126° C./10 μHg. ! i+ (yield 96%) and boiling point 19
62.9 (yield: 85%) of 1,8-diynecyanato-4-ynecyanatomethyloctane was obtained as a fraction at 3°C/3 mHg. The purity of the obtained hexamethylene diisocyanate as determined by gas chromatography rough analysis (hereinafter referred to as Go
linear purity) is 99% or more, hydrolyzable chlorine content is 1
50ppm.

1.8−ジイソシアナト−4−インシアナトメチルオク
タンのGO純度は98%(低沸不純物2%X加水分解性
塩素含有量は380 ppmであった。
The GO purity of 1,8-diisocyanato-4-incyanatomethyloctane was 98% (2% low boiling impurities x hydrolyzable chlorine content 380 ppm).

実施例2 1.8−ジアミ/−4−アミノメチルオクタンを75.
9.ヘキサメチレンジアミンを25yとする以外は実施
例1と同様に反応を行った。反応系は実施例1と同様す
べての温度範囲にわたって流動性の高いスラリー状態を
維持し、最終的には黄色透明液体となった。実施例1と
同様に精製を行い、35Iのへキサメチレンジイソシア
ネート ・ □(収率96%)と901の1,8−ジイ
ンシアナト−4−インシアナトメチルオクタン(収率8
3%)を得た。ヘキサメチレンジイソシアネートの □
GO純度は99%以上、加水分解性塩素含有量は140
ppms 1 s 8−ジイソシアナト−4−インシア
ナトメチルオクタンのGo純度は97%、加水分解性塩
素含有量は450 ppmであった。
Example 2 1.8-diami/-4-aminomethyloctane at 75%.
9. The reaction was carried out in the same manner as in Example 1 except that hexamethylene diamine was changed to 25y. The reaction system maintained a highly fluid slurry state over the entire temperature range as in Example 1, and finally became a yellow transparent liquid. Purification was carried out in the same manner as in Example 1, and 35I hexamethylene diisocyanate □ (yield 96%) and 901 1,8-diynecyanato-4-ynecyanatomethyloctane (yield 8%) were purified.
3%). Hexamethylene diisocyanate □
GO purity is over 99%, hydrolyzable chlorine content is 140%
The Go purity of ppms 1 s 8-diisocyanato-4-incyanatomethyloctane was 97%, and the hydrolyzable chlorine content was 450 ppm.

実施例3 1.8−ジアミノ−4−アミノメチルオクタンを251
.ヘキサメチレンジアミンを75gとする以外は実施例
1と同様に反応を行った。反応系i実施例1と同様すべ
ての温度範囲にわたって流動性の高いスラリー状態で推
移し、140℃で3時間30分経過した時点で固形物は
消滅し淡黄色透萌液体となった。実施例1と同様に精製
を行い105.9のへキサメチレンジインシアネー)(
JIX率97%)となる。5I!の1,8−ジインシア
ナト−4−インシアナトメチルオクタン(収率9゜%)
を得た。得られたヘキサメチレンジインシアネートのG
O線純度99%以上、加水分解性塩素含有量は180p
pms 1 、8−ジインシアナト−4−インシアナト
メチルオクタンのGo線純度98.5%、加水分解性塩
素含有量は290 ppmであった。
Example 3 1.8-diamino-4-aminomethyloctane at 251
.. The reaction was carried out in the same manner as in Example 1 except that hexamethylene diamine was changed to 75 g. Reaction System I As in Example 1, the reaction system remained in a highly fluid slurry state over the entire temperature range, and after 3 hours and 30 minutes at 140°C, the solid matter disappeared and a pale yellow transparent liquid was formed. Purification was carried out in the same manner as in Example 1 to obtain 105.9 hexamethylene diine cyanide) (
JIX ratio 97%). 5I! 1,8-diynecyanato-4-ynecyanatomethyloctane (yield 9%)
I got it. G of the obtained hexamethylene diincyanate
O-line purity 99% or more, hydrolyzable chlorine content 180p
The Go line purity of pms 1 , 8-diincyanato-4-incyanatomethyloctane was 98.5%, and the hydrolyzable chlorine content was 290 ppm.

比較例1 実施例1と同様の反応器にオルトジクロルペンf’ :
/ 400.1/を仕込み0℃に冷却した後ホスゲン2
60Iを導入溶解した。このものの中ヘオルトジクソル
ベンゼン600g中に溶解した1、8−ジアミノ−4−
アミノメチルオクタン50gを反応器内温5℃以下に保
ちながら2時間かけて攪拌下部下し、滴下終了後頁に1
時間攪拌を続けた。
Comparative Example 1 Orthodichloropene f' was added to the same reactor as in Example 1:
/ 400.1/ was prepared and cooled to 0°C, then phosgene 2
60I was introduced and dissolved. 1,8-diamino-4- dissolved in 600 g of heorthodixolbenzene
50g of aminomethyloctane was added to the bottom of the reactor while stirring for 2 hours while keeping the internal temperature below 5℃, and after the dropwise addition, 1
Stirring was continued for an hour.

系は粘性の高いスラリー状態であった。この後ホスゲン
を吹込みながら昇温したところ反応液が約70℃に達し
た時点でスラリー状固形物の凝集が起こりはじめ、もち
状の[j物が攪拌装置にからみつき、ついには塊状物と
なって攪拌不能となった。攪拌を停止したまま昇温を続
け、反応液温か約160℃に達した付近で塊状物がはぐ
れゆじめたため、攪拌を再開しせん断力で固形物を引き
ちぎりながら145℃にて8時間ホスゲンの供給を続け
た。得られた液は黒褐色であり若干の固形浮遊物か残存
していた。
The system was in a highly viscous slurry state. After that, the temperature was raised while blowing phosgene, and when the reaction solution reached about 70°C, agglomeration of the slurry-like solids began to occur, and the glutinous solids got entangled in the stirring device and eventually turned into lumps. It became impossible to stir. The temperature continued to rise while stirring was stopped, and when the temperature of the reaction solution reached approximately 160°C, the lumps began to separate, so stirring was restarted and the solids were broken off by shearing force while phosgene was heated at 145°C for 8 hours. continued to supply. The resulting liquid was dark brown and some solid suspended matter remained.

窒素により残存ホスゲンを除宍後減圧下オルトジクロル
ベンゼンを除去した。得られた濃縮液を薄膜蒸発缶にて
処理し31.fの黒色タール分と淡黄色の留出インシア
ネート分に分離した。留出分を減圧下精留し38g(収
率52%)の1,8−ジイソシアナト−4−インシアナ
トメチルオクタンを得た。このもののGO線純度96%
(低沸不純物7%)、加水分解性塩素含有量は2000
ppmであった。
After removing residual phosgene with nitrogen, orthodichlorobenzene was removed under reduced pressure. The obtained concentrate was processed in a thin film evaporator.31. It was separated into a black tar component of f and a pale yellow distilled incyanate component. The distillate was rectified under reduced pressure to obtain 38 g (yield 52%) of 1,8-diisocyanato-4-incyanatomethyloctane. The GO line purity of this product is 96%.
(low-boiling impurities 7%), hydrolyzable chlorine content is 2000
It was ppm.

実施例4 実施例1と同様の反応器にモノクロルベンゼン400I
lを仕込み0℃に冷却した後ホスゲン480gを導入し
溶解した。このものの中へモノクロルベンゼン600I
!中に溶解した1、6.11−)リアミノウンデカン5
0I及びヘキサメチレンジアミン50.9を反応器内温
を5℃以下に保ちながら2時間かけて攪拌下部下し、滴
下終る後見に1時間攪拌を続けた。系は流動性の有る微
黄色スラリーであった。この後ホスゲンを吹き込みなが
ら溶媒還流温度Kまで約1時間かけて昇温し、そのまま
溶媒還流条件下で7.5時間反応を続けた。この間反応
系は流動性の高いスラリー状態を維持し最終的に淡褐色
透明液体となった。実施例1と同様の精製操作を加え6
9.9のへキサメチレンジインシアネート(収率95%
)及び沸点208℃/2wn Hgの留分として1,6
.11−)リインシアナトウンデカン58g(収率84
%)を得た。
Example 4 Monochlorobenzene 400I was placed in the same reactor as Example 1.
After cooling to 0° C., 480 g of phosgene was introduced and dissolved. Monochlorobenzene 600I into this thing
! 1,6.11-)riaminoundecane dissolved in 5
0I and 50.9 g of hexamethylene diamine were added to the reactor under stirring over a period of 2 hours while keeping the internal temperature below 5° C., and stirring was continued for 1 hour after the dropwise addition was completed. The system was a slightly yellow slurry with fluidity. Thereafter, the temperature was raised to the solvent reflux temperature K over about 1 hour while blowing phosgene, and the reaction was continued for 7.5 hours under the solvent reflux condition. During this time, the reaction system maintained a highly fluid slurry state and finally became a light brown transparent liquid. The same purification procedure as in Example 1 was added to 6
9.9 hexamethylene diincyanate (95% yield)
) and 1,6 as a fraction with a boiling point of 208°C/2wn Hg
.. 11-) Riin cyanatoundecane 58g (yield 84
%) was obtained.

得られたヘキサメチレンジインシアネートのaa線純度
99%以上、加水分解性塩素含有量は150 ppmで
あり、1.6.11−トリイソシアナトウンデカンのG
o線純度97%、加水分解性塩素含有量は440 pp
mであった。
The obtained hexamethylene diinocyanate had an aa line purity of 99% or more, a hydrolyzable chlorine content of 150 ppm, and a G of 1.6.11-triisocyanatoundecane.
O-line purity 97%, hydrolyzable chlorine content 440 pp
It was m.

比較例2 ホスゲンの量を220yとし、アミン成分としてのへキ
サメチレンジアミンを加えない事以外は実施例4と全く
同様に反応を行ったところ、昇温時70℃に達した付近
から内容物中の固形分が凝集しはじめ塊状化した。攪拌
を停止し溶媒の還流温度まで昇温した後攪拌を再開した
が、塊状物は多少はぐれるものの分散には致らなかった
。そのまま溶媒還流下ホスゲンを吹込みながら10時間
反応を継続したが、大量の塊状固形物が残留した。
Comparative Example 2 A reaction was carried out in exactly the same manner as in Example 4 except that the amount of phosgene was 220y and hexamethylene diamine as an amine component was not added. The solid content began to aggregate and form lumps. After stopping stirring and raising the temperature to the reflux temperature of the solvent, stirring was restarted, but although some lumps separated, they were not dispersed. The reaction was continued for 10 hours while the solvent was refluxed and phosgene was blown into the solution, but a large amount of solid matter remained.

実施例4と同様の精製操作により得られた1、6゜11
−トリイソシアナトウンデカンの収率は22%にすぎな
かった。
1,6°11 obtained by the same purification procedure as in Example 4
- The yield of triisocyanatoundecane was only 22%.

特許出願人 旭化成工業株式会社 手続補正書ζ白斃) 昭和59年 6月−2に日 特許庁長官 志 賀 学 殿 ■、事件の表示 昭和59年特許願第88374号 2、発明の名称 ポリイソシアネートの製造方法 3、補正をする者 事件との関係 特許出願人 大阪府大阪市北区堂島浜1丁目2番6号4、補正の対象 明細書の「発明の詳細な説明」の欄 5、補正の内容Patent applicant: Asahi Kasei Industries, Ltd. Procedural amendment ζ Hakusei) June 2nd, 1980 Mr. Manabu Shiga, Commissioner of the Patent Office ■Display of incident 1983 Patent Application No. 88374 2. Name of the invention Method for producing polyisocyanate 3. Person who makes corrections Relationship to the incident: Patent applicant 1-2-6-4 Dojimahama, Kita-ku, Osaka-shi, Osaka Prefecture, subject to amendment “Detailed description of the invention” column in the specification 5. Contents of correction

Claims (3)

【特許請求の範囲】[Claims] (1)芳香環に直接結合していない第一級アミノ基を一
分子内に6個有するトリアミノ化合物とホスゲンを反応
させる事により対応するトリイソシアネート化合物を製
造するに際し、当該トリアミノ化合物とへキサメチレン
シアしンの混合物をホスr>こ反応させる事を特徴とす
る製造方法。
(1) When producing a corresponding triisocyanate compound by reacting a triamino compound having six primary amino groups in one molecule that are not directly bonded to an aromatic ring with phosgene, the triamino compound and hexamethylene A production method characterized by subjecting a mixture of siacines to a phosphor reaction.
(2)トリアミノ化合物が1,8−ジアミノ−4−アミ
ノメチルオクタンである特許請求の範囲第1項記載の方
法。
(2) The method according to claim 1, wherein the triamino compound is 1,8-diamino-4-aminomethyloctane.
(3)トリアミノ化合物に対するヘキサメチレンジアミ
ンの重鰍比が、5:95〜90:10である特許請求の
範囲第1項記載の方法。
(3) The method according to claim 1, wherein the ratio of hexamethylene diamine to triamino compound is from 5:95 to 90:10.
JP8837484A 1984-05-04 1984-05-04 Production of polyisocyanate Granted JPS60233044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8837484A JPS60233044A (en) 1984-05-04 1984-05-04 Production of polyisocyanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8837484A JPS60233044A (en) 1984-05-04 1984-05-04 Production of polyisocyanate

Publications (2)

Publication Number Publication Date
JPS60233044A true JPS60233044A (en) 1985-11-19
JPH0460104B2 JPH0460104B2 (en) 1992-09-25

Family

ID=13941013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8837484A Granted JPS60233044A (en) 1984-05-04 1984-05-04 Production of polyisocyanate

Country Status (1)

Country Link
JP (1) JPS60233044A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633396A (en) * 1995-06-23 1997-05-27 Bayer Aktiengesellschaft Process for preparing triisocyanates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5633396A (en) * 1995-06-23 1997-05-27 Bayer Aktiengesellschaft Process for preparing triisocyanates

Also Published As

Publication number Publication date
JPH0460104B2 (en) 1992-09-25

Similar Documents

Publication Publication Date Title
KR101383411B1 (en) A Process for the Production of Isocyanates
Twitchett Chemistry of the production of organic isocyanates
JP4722352B2 (en) Light-colored isocyanates, their manufacture and use
CN101440046B (en) Preparation of tint isocyanate
EP3683205B1 (en) Method for preparing aliphatic isocyanate
PL180229B1 (en) Method of obtaining isocyanates
KR20080021621A (en) Process for the preparation of polyisocyanates of the diphenylmethane series
EP0283757B1 (en) Am improved process for polymeric mda, recycle of finished polymeric mda
KR20120050444A (en) Process for the preparation of light-colored isocyanates of the diphenylmethane diisocyanate series
US3188337A (en) Preparation of organic isocyanates
US4549991A (en) Process for continuous hot phosgenation of amines
US4597909A (en) Process for the production of polyisocyanates
JPS60233044A (en) Production of polyisocyanate
CA2067867C (en) Preparation of polymethylene polyphenyl polyisocyanate
US20020045723A1 (en) Process for the production of ether isocyanates background of the invention
JP7285924B2 (en) A method for preparing isocyanates in the gas phase
JPS60233043A (en) Production of polyisocyanate
US5349082A (en) Toluene diisocyanate residue
JP2915784B2 (en) Purification method of aliphatic isocyanate
US3484472A (en) Method of manufacturing toluene diisocyanate
US3184494A (en) Process for producing organic isocyanates
JP2004099748A (en) Method for decreasing discoloration of polymethylene-polyphenylene polyisocyanate
US3916006A (en) Process for the continuous production of -isocyanato-3-(isocyanatomethyl)-3,5,5-trimethylcyclohexane
US4657940A (en) 4,4'-diisocyanto-phenylbenzylether, a process for the preparation thereof and use in the production of polyurethane plastics
KR820000506B1 (en) Process for the preparation of organic isocyanates

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term