JPH0460104B2 - - Google Patents

Info

Publication number
JPH0460104B2
JPH0460104B2 JP8837484A JP8837484A JPH0460104B2 JP H0460104 B2 JPH0460104 B2 JP H0460104B2 JP 8837484 A JP8837484 A JP 8837484A JP 8837484 A JP8837484 A JP 8837484A JP H0460104 B2 JPH0460104 B2 JP H0460104B2
Authority
JP
Japan
Prior art keywords
reaction
temperature
phosgene
phosgenation
triisocyanate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8837484A
Other languages
Japanese (ja)
Other versions
JPS60233044A (en
Inventor
Kaoru Kamyanagi
Kazuo Komatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8837484A priority Critical patent/JPS60233044A/en
Publication of JPS60233044A publication Critical patent/JPS60233044A/en
Publication of JPH0460104B2 publication Critical patent/JPH0460104B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】 〔産業䞊の利甚分野〕 本発明は盎接芳銙環に結合しおいないむ゜シア
ナト基を䞀分子内に個有するトリむ゜シアネヌ
ト化合物の補造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a triisocyanate compound having three isocyanate groups in one molecule that are not directly bonded to an aromatic ring.

〔埓来の技術〕[Conventional technology]

埓来、む゜シアナト基が芳銙環に盎接結合しお
いないポリむ゜シアネヌトは耐候性に優れた無黄
倉型ポリりレン暹脂補造甚原料ずしお䜿甚できる
事が知られおいる。これら無黄倉型のポリむ゜シ
アネヌトの代衚補品ずしおは、ヘキサメチレンゞ
む゜シアネヌト、−たたは
−トリメチルヘキサメチレンゞむ゜シアネヌト、
む゜ホロンゞむ゜シアネヌト、−ゞむ゜シ
アナトシクロヘキサン、ビスむンシアナトメチ
ルシクロヘキサン及びキシリレンゞむ゜シアネ
ヌト等が挙げられるが、これらは垞枩で刺激臭を
有し、人に察する毒性が問題ずなる為安党に取扱
いにくい欠点がある。たたゞむ゜シアネヌト類は
二官胜性である為、ポリりレタン暹脂の架橋剀ず
しお甚いた堎合架橋密床が䜎すぎる堎合も倚い。
埓぀お、これらゞむ゜シアネヌト類はトリメチロ
ヌルプロパンの劂きトリオヌル類、曎には氎、タ
ヌシダリ−ブタノヌル等、いわゆるアダクト化剀
ず反応させお高分子及び倚官胜化する事により誘
導されおアダクト䜓ずしお甚いられおいる。しか
し、これらは重合䜓混合物ずなる為、高い粘床を
有し取扱いには溶剀で垌釈する必芁が有するずず
もにそのむ゜シアネヌト基含有量も必然的に䜎䞋
しおしたう。
It has been known that polyisocyanates in which isocyanate groups are not directly bonded to aromatic rings can be used as raw materials for producing non-yellowing polyurethane resins with excellent weather resistance. Representative products of these non-yellowing polyisocyanates include hexamethylene diisocyanate, 2,2,4- or 2,2,4-
- trimethylhexamethylene diisocyanate,
Examples include isophorone diisocyanate, 1,4-diisocyanatocyclohexane, bis(incyanatomethyl)cyclohexane, and xylylene diisocyanate, but these have a pungent odor at room temperature and are toxic to humans, so they must be handled safely. There are some serious drawbacks. Further, since diisocyanates are difunctional, when used as a crosslinking agent for polyurethane resins, the crosslinking density is often too low.
Therefore, these diisocyanates are derived by reacting with so-called adducting agents such as triols such as trimethylolpropane, water, and tertiary-butanol, to make them polymeric and polyfunctional, and are used as adducts. There is. However, since these are polymer mixtures, they have a high viscosity and require dilution with a solvent for handling, and their isocyanate group content is inevitably reduced.

この様な背景のもずに近幎、単量䜓であるが故
に粘床が非垞に䜎く、か぀垞枩における蒞気圧が
極端に䜎い為刺激性・毒性の少い無黄倉型官胜
性む゜シアネヌト化合物の開発が行なわれおい
る。これらトリむ゜シアネヌト類は、䟋えば特開
昭55−327、特開昭55−167269、特開昭56−
61341、特開昭56−127341等に芋られる劂くすべ
お察応するトリアミノ化合物ずホスゲンずの反応
ホスゲン化反応により補造される。䞀般にア
ミンのホスゲン化反応ずしおは、アミンの塩酞塩
を䞍掻性溶媒䞭で60〜230℃でホスゲンず反応さ
せる事によりむ゜シアネヌトずする塩酞塩法、又
はアミンを40℃以䞋、奜たしくは℃以䞋でホス
ゲンず反応させお䞀䞔カルバミルクロラむドずア
ミン塩酞塩の混合物を埗、次いでホスゲンの吹蟌
例60〜230℃に加熱しおむ゜シアネヌトを埗る冷
熱段法の方法が有る。しかしながら前者塩酞
塩法は実隓宀的には比范的高収率でむ゜シアネヌ
トを埗られるずいう利点は有るものの、アミン塩
酞塩ずいう䞭間䜓を合成、粟補する必芁が有る
事、たたこのアミン塩酞塩は通垞固䜓でありその
取扱いが煩雑である事等、工業的プロセス䞊は䞍
利な点が倚い。埓぀おアミンのホスゲン化反応に
よるむ゜シアネヌト補造の堎合、工業的にはプロ
セス䞊、装眮䞊の利点を優先させお冷熱段法を
採甚するのが䞀般である。事実先に䟋瀺した劂き
ゞむ゜シアネヌト類は通垞冷熱段法にお䜕ら問
題なく工業的に補造䟛絊されおいる。
Against this background, in recent years, efforts have been made to develop non-yellowing trifunctional isocyanate compounds that have extremely low viscosity because they are monomers, and are less irritating and less toxic due to their extremely low vapor pressure at room temperature. is being carried out. These triisocyanates are, for example, JP-A-55-327, JP-A-55-167269, JP-A-56-
61341, JP-A No. 56-127341, etc., all are produced by the reaction of the corresponding triamino compound with phosgene (phosgenation reaction). Generally, the phosgenation reaction of amines is carried out by the hydrochloride method in which the hydrochloride of the amine is reacted with phosgene in an inert solvent at 60 to 230°C to form an isocyanate, or the amine is reacted at 40°C or lower, preferably 8°C or lower. There are two cold-thermal two-step methods in which a mixture of monocarbamyl chloride and amine hydrochloride is obtained by reacting with phosgene, and then heated to 60 to 230°C under phosgene blowing to obtain an isocyanate. However, although the former hydrochloride method has the advantage of being able to obtain isocyanate in a relatively high yield in the laboratory, it requires the synthesis and purification of an intermediate called amine hydrochloride, and this amine hydrochloride is usually It has many disadvantages in industrial processes, such as the fact that it is a solid and its handling is complicated. Therefore, in the case of isocyanate production by the phosgenation reaction of amines, industrially, it is common to give priority to the advantages in terms of process and equipment and adopt a two-step cold/hot process. In fact, diisocyanates such as those exemplified above are normally produced and supplied industrially by a two-step cold/hot process without any problems.

しかしながら、芳銙環に盎接結合しおいない第
䞀玚アミノ基を䞀分子内に個有するトリアミノ
化合物以䞋単にトリアミンずいうをホスゲン
ず反応させおトリむ゜シアネヌトに倉換するに際
し、䞊蚘冷熱段法を採甚しようずする堎合、60
℃以䞊の枩床で冷ホスゲン化反応により生成した
スラリヌ状固圢物が凝集をはじめ぀いには塊状化
しおしたうため反応が円滑に進行せず、そのたた
匷匕に反応を継続完了させおもいたずらにタヌル
状高分子物質や䞍溶性固圢物の生成量が増えるば
かりで肝心のトリむ゜シアネヌト収率が䞊らない
ずいう障害に遭遇する。たたこの様な反応により
生成したトリむ゜シアネヌト䞭には䞍玔物が倚い
事も欠点である。䞍玔物の䟋ずしおは䟋えば぀
のむ゜シアネヌトのうちの個が塩玠に眮換され
た様なものずか、たたいわゆる加氎分解性塩玠等
が含たれる。加氎分解性塩玠含有量の倚いトリむ
゜シアネヌトは、これを甚いお補造したポリりレ
タン暹脂の耐候性に欠点が生じた為、通垞
500ppm以䞋が奜たしい。
However, when converting a triamino compound (hereinafter simply referred to as triamine), which has three primary amino groups in one molecule that are not directly bonded to an aromatic ring, with phosgene to convert it into triisocyanate, the above-mentioned cold and hot two-step method is used. 60 if you are trying to hire
The slurry-like solid produced by the cold phosgenation reaction at a temperature above ℃ starts to aggregate and eventually becomes lumpy, so the reaction does not proceed smoothly, and even if the reaction is continued forcibly and completed, it will result in a tar-like high-temperature product. The problem encountered is that the yield of triisocyanate, which is important, cannot be increased because the amount of molecular substances and insoluble solids produced increases. Another drawback is that the triisocyanate produced by such a reaction contains many impurities. Examples of impurities include those in which one of the three isocyanates is replaced with chlorine, and so-called hydrolyzable chlorine. Triisocyanate, which has a high content of hydrolyzable chlorine, is usually used because polyurethane resin produced using it has drawbacks in weather resistance.
It is preferably 500 ppm or less.

この様なトリアミンのホスゲン化反応独特の困
難性は、塩玠塩法や特開昭52−122348号公報に蚘
された劂きいわゆるカルバミン酞塩法を甚いる事
によりある皋床は解決され埗る。
Such difficulties peculiar to the phosgenation reaction of triamines can be solved to some extent by using the chlorine salt method or the so-called carbamate method as described in JP-A-52-122348.

しかしながら、塩酞塩法は前述の劂き装眮及び
工皋䞊の問題点が倧きく、たたカルバミン酞塩法
に぀いおも炭酞ガスずいうホスゲン以倖のガス成
分を必芁ずする為装眮が耇雑化する事、熱−冷−
熱ず倚段の工皋を芁する事、曎に反応完結に比范
的長時間を芁する事等の欠点を有しおいる。
However, the hydrochloride method has major problems in terms of equipment and process as described above, and the carbamate method also requires a gas component other than phosgene called carbon dioxide, which complicates the equipment.
It has drawbacks such as requiring heat and multiple steps, and also requiring a relatively long time to complete the reaction.

たたこの様なトリアミンのホスゲン化反応にお
ける反応内容物の凝集塊状化回避策ずしお、少な
くずも䜎枩反応郚を撥氎性材質からなる反応噚で
行う事が提案されおいる。特開昭57−123158
しかしながらこの様な特殊な反応噚を甚いる事
は、装眮の耇雑化及び高䟡栌化ずいう面で問題点
も倚い。
In addition, as a measure to avoid agglomeration of the reaction contents in such a phosgenation reaction of triamine, it has been proposed to conduct the reaction in a reactor made of a water-repellent material at least in the low-temperature reaction section. (Unexamined Japanese Patent Publication No. 57-123158)
However, the use of such a special reactor has many problems in terms of complication and high cost of the equipment.

〔発明が解決しようずする問題点〕[Problem that the invention seeks to solve]

即ちトリアミンのホスゲン化反応によるトリむ
゜シアネヌトの補造に際し、工業的にも採甚しや
すい冷熱段法により、固圢物の塊状化を回避し
高収率・高玔床に、しかも特殊な反応噚材質に限
られる事なく、か぀高い生産性で補造し埗る技術
の開発は、圓業界にず぀お魅力あふれる課題であ
぀た。
In other words, when producing triisocyanate through the phosgenation reaction of triamine, a two-stage cold and hot process, which is easy to adopt industrially, avoids agglomeration of solids and achieves high yield and high purity, and is limited to special reactor materials. Developing a technology that can produce products with high productivity without causing damage has been an attractive challenge for this industry.

〔問題点を解決するための手段及び䜜甚〕[Means and actions for solving problems]

本発明者らは、トリアミンのホスゲン化反応に
おける䞊蚘の劂き課題を達成すべく鋭意研究を重
ねた結果、驚くべき事にヘキサメチレンンゞアミ
ンの共存䞋におトリアミンのホスゲン化反応を行
う事により、すべおの問題を解決し埗る事を芋出
し本発明を完成するに至぀た。
As a result of intensive research to achieve the above-mentioned problems in the phosgenation reaction of triamine, the present inventors surprisingly found that by carrying out the phosgenation reaction of triamine in the coexistence of hexamethylene diamine, They discovered that all the problems could be solved and completed the present invention.

即ち、本発明は芳銙環に盎接結合しおいない第
䞀玚アミノ基を䞀分子内に個有するトリアミノ
化合物ずホスゲンを反応させる事により察応する
トリむ゜シアネヌト化合物を補造するに際し、圓
該トリアミノ化合物ずヘキサメチレンゞアミンの
混合物をホスゲンず反応させる事を特城ずする補
造方法を提䟛するものである。
That is, in the present invention, when producing a corresponding triisocyanate compound by reacting a triamino compound having three primary amino groups in one molecule that are not directly bonded to an aromatic ring with phosgene, the triamino compound and hexane are reacted. The present invention provides a manufacturing method characterized by reacting a mixture of methylene diamine with phosgene.

本発明による方法によれば、トリアミンの冷熱
段ホスゲン化反応はいかなる材質の反応噚を甚
いおも、たたいかなる枩床領域においおも凝集塊
状化する事なく、反応系は均䞀癜色スラリヌにお
進行し、比范的短時間のうちに最終的には均䞀透
明溶液ぞず移行する。曎に最終生成物であるトリ
む゜シアネヌトの収率はヘキサメチレンゞアミン
が存圚しない堎合に比しお栌段に高く、しかも高
玔床の補品が埗られる。又同時に生成するヘキサ
メチレンゞむ゜シアネヌトの収率も充分高く、ト
リむ゜シアネヌトの工業的補法ずしお非垞に優れ
たプロセスずなる。
According to the method of the present invention, the cold-thermal two-step phosgenation reaction of triamine proceeds as a uniform white slurry without agglomeration in any reactor material or temperature range. , which eventually transforms into a homogeneous clear solution within a relatively short time. Furthermore, the yield of the final product, triisocyanate, is much higher than in the case where hexamethylene diamine is not present, and a highly purified product is obtained. Furthermore, the yield of hexamethylene diisocyanate produced at the same time is sufficiently high, making it an extremely excellent process as an industrial method for producing triisocyanate.

皮以䞊のアミン混合物のホスゲン化反応に関
する先行技術開昭48−48419が存圚するが、
該技術は装眮の重耇を避けるずいう経枈的利点を
目的ずしたものであり、トリアミノ化合物のホス
ゲン化反応に぀いおは䜕ら蚀及されおいない。
There is a prior art related to the phosgenation reaction of a mixture of two or more amines (Kaisei 48-48419), but
This technique is aimed at the economical advantage of avoiding duplication of equipment, and does not mention anything about the phosgenation reaction of triamino compounds.

本発明の原料ずしお甚いられる芳銙環に盎接結
合しおいない第䞀玚アミノ基を䞀分子内に個有
するトリアミノ化合物ずは、䟋えば−ゞア
ミノ−−アミノメチルオクタン、11−
トリアミノりンデカン、−トリアミノ
プロパン、−トリスアミノメチル
ベンれン、−トリスアミノメチル
シクロヘキサン、−アミノメチル−−−
アミノプロピル−−アミノメチル−ビシクロ
−〔〕−ヘプタン、−アミノメチル−
−−アミノプロピル−−アミノメチル−
ビシクロ−〔〕−ヘプタン、−
たたは−ビスアミノメチル−−
−アミノプロピル−シクロヘキサン、
−たたは−ビス−アミノメチル−
−−アミノプロピル−シクロヘキサン、−
アミノメチル−−−アミノプロピル−
たたは−−アミノ゚チル−シクロヘキサ
ン等が挙げられる。
Triamino compounds having three primary amino groups in one molecule that are not directly bonded to an aromatic ring and used as raw materials of the present invention include, for example, 1,8-diamino-4-aminomethyloctane, 1,6, 11−
Triaminoundecane, 1,2,3-triaminopropane, 1,3,5-tris(aminomethyl)
Benzene, 1,3,5-tris(aminomethyl)
Cyclohexane, 2-aminomethyl-3-(3-
(aminopropyl)-5-aminomethyl-bicyclo-[2,2,1]-heptane, 2-aminomethyl-
3-(3-aminopropyl)-6-aminomethyl-
Bicyclo-[2,2,1]-heptane, 1,4-
(or 1,3-)bis(aminomethyl)-2-
(3-aminopropyl)-cyclohexane, 1,4
-(or 1,3-)bis-(aminomethyl)-1
-(3-aminopropyl)-cyclohexane, 1-
Aminomethyl-2-(3-aminopropyl)-4
(or 5)-(2-aminoethyl)-cyclohexane and the like.

これらトリアミンはヘキサメチレンゞアミンず
混合しおホスゲン化反応に䟛されるが、この混合
比はトリアミンヘキサメチレンゞアミン
重量比で95〜9010が奜たしい。トリアミン
の量が少なすぎる堎合は反応埌のトリむ゜シアネ
ヌト化合物の分離が困難になり、ヘキサメチレン
ゞアミンの量が少なすぎる堎合は反応内容物の凝
集塊状化の抑制が䞍充分になりいづれも奜たしく
ない。
These triamines are mixed with hexamethylene diamine and subjected to the phosgenation reaction, but the mixing ratio is (triamine): (hexamethylene diamine)
The weight ratio is preferably 5:95 to 90:10. If the amount of triamine is too small, it will be difficult to separate the triisocyanate compound after the reaction, and if the amount of hexamethylenediamine is too small, the agglomeration of the reaction contents will be insufficiently suppressed, both of which are undesirable.

以䞋、本発明の方法に぀いお工皋順に説明を加
える。
Hereinafter, the method of the present invention will be explained in order of steps.

本発明の方法の第䞀工皋である䜎枩ホスゲン化
工皋においおはトリアミンずヘキサメチレンゞア
ミンの混合物を通垞䞍掻性溶剀の存圚䞋にお比范
的䜎枩条件通垞60℃以䞋、奜たしくは−10〜10
℃にお反応させる。ホスゲンの䜿甚量はアミノ
基に察し等モル以䞊、通垞倍モル以䞊ずする。
䞍掻性溶媒ずしおはホスゲンやむ゜シアネヌト基
に察し䞍掻性であり、か぀比范的沞点の高いもの
ずいう芳点からテトラリン、デカリン、クロルベ
ンれン、−ゞクロルベンれン、トリクロルベン
れン等が慣甚される。䜎枩ホスゲン化工皋はその
反応を完了させる為その反応枩床に応じお通垞
時間〜時間を必芁ずする。
In the low-temperature phosgenation step, which is the first step of the method of the present invention, a mixture of triamine and hexamethylene diamine is usually prepared in the presence of an inert solvent at a relatively low temperature (usually below 60°C, preferably -10 to 10°C).
℃). The amount of phosgene used is at least equimolar, usually at least twice the mole relative to the amino group.
As the inert solvent, tetralin, decalin, chlorobenzene, 0-dichlorobenzene, trichlorobenzene, etc. are commonly used because they are inert to phosgene and isocyanate groups and have a relatively high boiling point. The low-temperature phosgenation step usually requires 1 to complete the reaction, depending on the reaction temperature.
It takes between 6 hours and 6 hours.

次いでこの䜎枩ホスゲン化反応物を高枩ホスゲ
ン化反応ぞ移行せしめる為に昇枩する。通垞のト
リアミンの冷熱二段法によるホスゲン化反応では
この昇枩の段階で内容物の凝集が起こり、系の撹
拌が䞍胜ずなるが、本発明の方法によればこの様
な凝集塊状化は党く認められず、系は均䞀なスラ
リヌ状態を維持する。
Next, the temperature of this low-temperature phosgenation reaction product is raised in order to transfer it to a high-temperature phosgenation reaction. In the conventional phosgenation reaction of triamine using a cold two-step method, the contents agglomerate at this stage of temperature rise, making it impossible to stir the system, but according to the method of the present invention, such agglomeration does not occur at all. No, the system remains a homogeneous slurry.

高枩ホスゲン化反応は通垞100〜230℃の枩床で
ホスゲンを系内ぞ䟛絊しながら行なわれ、この間
に䜎枩ホスゲン化工皋で生成したカルバミルクロ
ラむドは熱分解されおむ゜シアネヌトに転化され
る。反応完結時には系は均䞀透明液䜓ずなるがこ
の反応完結に芁する高枩ホスゲン化工皋の時間
は、本発明の方法によれば、その加熱枩床にもよ
るが通垞〜15時間で充分である。
The high-temperature phosgenation reaction is usually carried out at a temperature of 100 to 230°C while supplying phosgene into the system, during which the carbamyl chloride produced in the low-temperature phosgenation step is thermally decomposed and converted into isocyanate. When the reaction is completed, the system becomes a homogeneous transparent liquid, and according to the method of the present invention, the time required for the high-temperature phosgenation step to complete the reaction is usually 1 to 15 hours, depending on the heating temperature.

䞊蚘反応工皋はバツキ方匏にも連続反応方法に
も適甚可胜である。
The above reaction process is applicable to both a batch method and a continuous reaction method.

反応終結埌は系内に残存するホスゲンを窒玠等
の䞍掻性ガスでパヌゞし、溶媒を回収した埌適圓
な方法により生成物であるトリむ゜シアネヌトず
ヘキサメチレンゞむ゜シアネヌトを分離する。分
離方法ずしおはトリむ゜シアネヌトずヘキサメチ
レンゞむ゜シアネヌトの沞点差を利甚した枛圧蒞
留が奜たしい。
After the reaction is completed, the remaining phosgene in the system is purged with an inert gas such as nitrogen, the solvent is recovered, and the products triisocyanate and hexamethylene diisocyanate are separated by an appropriate method. As a separation method, vacuum distillation using the difference in boiling point between triisocyanate and hexamethylene diisocyanate is preferred.

このようにしお埗られたトリむ゜シアネヌト及
びヘキサメチレンゞむ゜シアネヌトはそれぞれ䟋
えばポリりレタン暹脂等の原料ずなるべきむ゜シ
アネヌト成分ずしお有効に利甚される。
The triisocyanate and hexamethylene diisocyanate thus obtained are each effectively used as an isocyanate component to be a raw material for, for example, polyurethane resin.

以䞋、実斜䟋により本発明の内容をより具䜓的
に説明を加える。
Hereinafter, the content of the present invention will be explained more specifically using Examples.

実斜䟋  撹拌装眮、枩床蚈、コンデンサヌ及びガス吹蟌
管を備えたガラス補反応噚にオルトゞクロルベン
れン400を仕蟌み℃に冷华した埌ホスゲン515
を導入し溶解した。このものの䞭ぞオルトゞク
ロルベンれン600䞭に溶解した−ゞアミ
ノ−−アミノメチルオクタン50及びヘキサメ
チレンゞアミン50を反応噚内枩を℃以䞋に保
ちながら時間かけお撹拌䞋滎䞋し、滎䞋終了埌
曎に時間撹拌を぀づけた。系は流動性の高い癜
色スラリヌずな぀た。この埌ホスゲンを吹蟌みな
がら玄時間かけお140℃たで昇枩し、140℃を維
持しお時間ホスゲンの䟛絊を続けた。この間反
応系は流動性の高いスラリヌ状態を維持し、最終
的に黄色透明液䜓ずなり固圢物の残留は認められ
なか぀た。反応液に窒玠ガスを吹蟌み残留ホスゲ
ンを陀去した埌、枛圧䞋溶媒のオルトゞクロルベ
ンれンを留去し、曎に薄膜蒞発猶にお少量
のタヌル分を陀去した。
Example 1 400 g of orthodichlorobenzene was charged into a glass reactor equipped with a stirrer, a thermometer, a condenser, and a gas blowing tube, and after cooling to 0°C, phosgene 515 was added.
g was introduced and dissolved. 50 g of 1,8-diamino-4-aminomethyloctane and 50 g of hexamethylene diamine dissolved in 600 g of orthodichlorobenzene were added dropwise into this mixture under stirring over 2 hours while maintaining the reactor internal temperature below 5°C. After the dropwise addition was completed, stirring was continued for an additional hour. The system became a highly fluid white slurry. Thereafter, the temperature was raised to 140°C over about 1 hour while blowing phosgene, and the temperature was maintained at 140°C, and phosgene was continued to be supplied for 5 hours. During this time, the reaction system maintained a highly fluid slurry state, and finally became a yellow transparent liquid with no residual solid matter observed. After blowing nitrogen gas into the reaction solution to remove residual phosgene, the solvent ortho-dichlorobenzene was distilled off under reduced pressure, and a small amount (90%
g) The tar content was removed.

埗られたむ゜シアネヌト混合物を枛圧䞋で粟留
し、沞点126℃10mmHgの留分ずしおヘキサメチ
レンゞむ゜シアネヌト70収率96及び沞点
193℃mmHgの留分ずしお−ゞむ゜シア
ナト−−む゜シアナトメチルオクタン62収
率85を埗た。埗られたヘキサメチレンゞむ゜
シアネヌトのガスクロマトグラフ分析による玔床
以䞋GC玔床ずいうは99以䞊、加氎分解性塩
玠含有量は150ppm、−ゞむ゜シアナト−
−む゜シアナむメチルオクタンのGC玔床は98
䜎沞䞍玔物、加氎分解性塩玠含有量は
380ppmであ぀た。
The obtained isocyanate mixture was rectified under reduced pressure to obtain 70 g (yield 96%) of hexamethylene diisocyanate as a fraction with a boiling point of 126°C/10 mmHg and a boiling point of 126°C/10 mmHg.
62 g (yield: 85%) of 1,8-diisocyanato-4-isocyanatomethyloctane was obtained as a fraction at 193°C/3 mmHg. The purity of the obtained hexamethylene diisocyanate as determined by gas chromatography analysis (hereinafter referred to as GC purity) was 99% or higher, the hydrolyzable chlorine content was 150 ppm, and 1,8-diisocyanate.
The GC purity of 4-isocyanimethyloctane is 98
% (low-boiling impurities 2%), hydrolyzable chlorine content is
It was 380ppm.

実斜䟋  −ゞアミノ−−アミノメチルオクタン
を75、ヘキサメチレンゞアミンを25ずする以
倖は実斜䟋ず同様に反応を行぀た。反応系は実
斜䟋ず同様すべおの枩床範囲にわた぀お流動性
の高いスラリヌ状態を維持し、最終的には黄色透
明䜓ずな぀た。実斜䟋ず同様に粟補を行い、35
のヘキサメチレンゞむ゜シアネヌト収率96
ず90の−ゞむ゜シアナト−−む゜
シアナトメチルオクタン収率83を埗た。ヘ
キサメチレンゞむ゜シアネヌトのGC玔床は99
以䞊、加氎分解性塩玠含有量は140ppm、
−ゞむ゜シアナト−−む゜シアナトメチルオク
タンのGC玔床は97、加氎分解性塩玠含有量は
450ppmであ぀た。
Example 2 The reaction was carried out in the same manner as in Example 1 except that 1,8-diamino-4-aminomethyloctane was used as 75 g and hexamethylene diamine was used as 25 g. As in Example 1, the reaction system maintained a highly fluid slurry state over the entire temperature range, and finally became a transparent yellow body. Purification was carried out in the same manner as in Example 1, and 35
g of hexamethylene diisocyanate (yield 96
%) and 90 g of 1,8-diisocyanato-4-isocyanatomethyloctane (yield 83%). GC purity of hexamethylene diisocyanate is 99%
Above, the hydrolyzable chlorine content is 140ppm, 1.8
-Diisocyanato-4-isocyanatomethyloctane has a GC purity of 97% and a hydrolyzable chlorine content of
It was 450ppm.

実斜䟋  −ゞアミノ−−アミノメチルオクタン
を25、ヘキサメチレンゞアミンを75ずする以
倖は実斜䟋ず同様に反応を行぀た。反応系は実
斜䟋ず同様すべおの枩床範囲にわた぀お流動性
の高いスラリヌ状態で掚移し、140℃で時間30
分経過した時点で固圢物は消滅し淡黄色透明液䜓
ずな぀た。実斜䟋ず同様に粟補を行い105の
ヘキサメチレンゞむ゜シアネヌト収率97ず
なる。32.5の−ゞむ゜シアナト−−む
゜シアナトメチルオクタン収率90を埗た。
埗られたヘキサメチレンゞむ゜シアネヌトのGC
玔床は99以䞊、加氎分解性塩玠含有量は
180ppm、−ゞむ゜シアナト−−む゜シ
アナトメチルオクタンのGC玔床は98.5、加氎
分解性塩玠含有量は290ppmであ぀た。
Example 3 The reaction was carried out in the same manner as in Example 1, except that 25 g of 1,8-diamino-4-aminomethyloctane and 75 g of hexamethylene diamine were used. As in Example 1, the reaction system remained in a highly fluid slurry state over the entire temperature range, and was maintained at 140°C for 3 hours.
After a few minutes had elapsed, the solid matter disappeared and a pale yellow transparent liquid was formed. Purification was carried out in the same manner as in Example 1 to obtain 105 g of hexamethylene diisocyanate (yield 97%). 32.5 g of 1,8-diisocyanato-4-isocyanatomethyloctane (yield 90%) was obtained.
GC of the obtained hexamethylene diisocyanate
Purity is over 99%, hydrolyzable chlorine content is
The GC purity of 180 ppm, 1,8-diisocyanato-4-isocyanatomethyloctane was 98.5%, and the hydrolyzable chlorine content was 290 ppm.

比范䟋  実斜䟋ず同様の反応噚にオルトゞクロルベン
れン400を仕蟌み℃に冷华した埌ホスゲン260
を導入溶解した。このものの䞭ぞオルトゞクロ
ルベンれン600䞭に溶解した−ゞアミノ
−−アミノメチルオクタン50を反応噚内枩
℃以䞋に保ちながら時間かけお撹拌䞋滎䞋し、
滎䞋終了埌曎に時間撹拌を続けた。系は粘性の
高いスラリヌ状態であ぀た。この埌ホスゲンを吹
蟌みながら昇枩したずころ反応液が玄70℃に達し
た時点でスラリヌ状固圢物の凝集が起こりはじ
め、もち状の固圢物が撹拌装眮にからみ぀き、぀
いには塊状物ずな぀お撹拌䞍胜ずな぀た。撹拌を
停止したたた昇枩を続け、反応液枩が玄130℃に
達した付近で塊状物がほぐれはじめたため、撹拌
を再開しせん断力で固圢物を匕きちぎりながら
145℃にお時間ホスゲンの䟛絊を続けた。埗ら
れた液は黒耐色であり若干の固圢浮遊物が残存し
おいた。
Comparative Example 1 400 g of orthodichlorobenzene was charged into the same reactor as in Example 1, cooled to 0°C, and then 260 g of phosgene was added.
g was introduced and dissolved. Into this, 50 g of 1,8-diamino-4-aminomethyloctane dissolved in 600 g of orthodichlorobenzene was added to the reactor at a temperature of 5.
Dropwise while stirring for 2 hours while keeping the temperature below ℃.
After the dropwise addition was completed, stirring was continued for an additional hour. The system was in a highly viscous slurry state. After that, the temperature was raised while blowing phosgene, and when the reaction solution reached about 70°C, the slurry-like solids began to coagulate, and the sticky solids got entangled in the stirring device, and finally turned into lumps. Stirring became impossible. The temperature continued to rise while stirring was stopped, and when the reaction liquid temperature reached approximately 130°C, the lumps began to loosen, so stirring was restarted and the solids were broken off with shear force.
The supply of phosgene was continued for 8 hours at 145°C. The resulting liquid was blackish brown and some solid suspended matter remained.

窒玠により残存ホスゲンを陀去埌枛圧䞋オルト
ゞクロロベンれンを陀去した。埗られた濃瞮液を
薄膜蒞発猶にお凊理し31の黒色タヌル分ず淡黄
色の留出む゜シアネヌト分に分離した。留出分を
枛圧䞋粟留し38収率52の−ゞむ゜
シアナト−−む゜シアナトメチルオクタンを埗
た。このもののGC玔床は93䜎沞䞍玔物
、加氎分解性塩玠含有量は2000ppmであ぀た。
After removing residual phosgene with nitrogen, orthodichlorobenzene was removed under reduced pressure. The obtained concentrate was treated in a thin film evaporator and separated into 31 g of black tar and pale yellow distilled isocyanate. The distillate was rectified under reduced pressure to obtain 38 g (yield 52%) of 1,8-diisocyanato-4-isocyanatomethyloctane. The GC purity of this product is 93% (low boiling impurity 7
%), and the hydrolyzable chlorine content was 2000 ppm.

実斜䟋  実斜䟋ず同様の反応噚にモノクロルベンれン
400を仕蟌み℃に冷华した埌ホスゲン480を
導入し溶解した。このものの䞭ぞモノクロルベン
れン600䞭に溶解した。11−トリアミ
ノりンデカン50及びヘキサメチレンゞアミン50
が反応噚内枩を℃以䞋に保ちながら時間か
けお撹拌䞋滎䞋し、滎䞋終る埌曎に時間撹拌を
続けた。系は流動性の有る埮黄色スラリヌであ぀
た。この埌ホスゲンを吹き蟌みながら溶媒還流枩
床にたで玄時間かけお昇枩し、そのたた溶媒還
流条件䞋で7.5時間反応を続けた。この間反応系
は流動性の高いスラリヌ状態を維持し、最終的に
淡耐色透明液䜓ずな぀た。実斜䟋ず同様の粟補
操䜜を加え69のヘキサメチレンゞむ゜シアネヌ
ト収率95及び沞点208℃mmHgの留分ず
しお11−トリむ゜シアナトりンデカン58
収率84を埗た。
Example 4 Monochlorobenzene was added to a reactor similar to Example 1.
After charging 400 g and cooling to 0°C, 480 g of phosgene was introduced and dissolved. Into this was dissolved 600 g of monochlorobenzene. 1,6,11-triaminoundecane 50g and hexamethylene diamine 50g
g was added dropwise over 2 hours with stirring while keeping the internal temperature of the reactor below 5°C, and after the addition was completed, stirring was continued for an additional hour. The system was a slightly yellow slurry with fluidity. Thereafter, the temperature was raised to the solvent reflux temperature over about 1 hour while blowing phosgene, and the reaction was continued for 7.5 hours under the solvent reflux condition. During this time, the reaction system maintained a highly fluid slurry state and finally became a light brown transparent liquid. The same purification procedure as in Example 1 was performed to obtain 69 g of hexamethylene diisocyanate (yield 95%) and 58 g of 1,6,11-triisocyanatoundecane as a fraction with a boiling point of 208°C/2 mmHg.
g (yield 84%) was obtained.

埗られたヘキサメチレンゞむ゜シアネヌトの
GC玔床は99以䞊、加氎分解性塩玠含有量は
150ppmであり、11−トリむ゜シアナト
りンデカンのGC玔床は97、加氎分解性塩玠含
有量は440ppmであ぀た。
of the obtained hexamethylene diisocyanate
GC purity is over 99%, hydrolyzable chlorine content is
The GC purity of 1,6,11-triisocyanatoundecane was 97%, and the hydrolyzable chlorine content was 440 ppm.

比范䟋  ホスゲンの量を220ずし、アミン成分ずしお
のヘキサメチレンゞアミンを加えない事以倖は実
斜䟋ず党く同様に反応を行぀たずころ、昇枩時
70℃に達した付近から内容物䞭の固圢分が凝集し
はじめ塊状化した。撹拌を停止し溶媒の還流枩床
たで昇枩した埌撹拌を再開したが、塊状物は倚少
ほぐれるものの分散には臎らなか぀た。そのたた
溶媒還流䞋ホスゲンを吹蟌みながら10時間反応を
継続したが、倧量の塊状固圢物が残留した。実斜
䟋ず同様の粟補操䜜により埗られた11
−トリむ゜シアナトりンデカンの収率は22にす
ぎなか぀た。
Comparative Example 2 A reaction was carried out in exactly the same manner as in Example 4 except that the amount of phosgene was 220 g and hexamethylene diamine as an amine component was not added.
When the temperature reached 70°C, the solid content in the contents began to aggregate and form lumps. After stopping stirring and raising the temperature to the reflux temperature of the solvent, stirring was restarted, but although the lumps were loosened to some extent, they were not dispersed. The reaction was continued for 10 hours while the solvent was refluxed and phosgene was blown in, but a large amount of solid matter remained. 1, 6, 11 obtained by the same purification procedure as in Example 4
- The yield of triisocyanatoundecane was only 22%.

Claims (1)

【特蚱請求の範囲】  芳銙環に盎接結合しおいない第䞀玚アミノ基
を䞀分子内に個有するトリアミノ化合物ずホス
ゲンを反応させる事により察応するトリむ゜シア
ネヌト化合物を補造するに際し、圓該トリアミノ
化合物ずヘキサメチレンゞアミンの混合物をホス
ゲンず反応させる事を特城ずする補造方法。  トリアミノ化合物が−ゞアミノ−−
アミノメチルオクタンである特蚱請求の範囲第
項蚘茉の方法。  トリアミノ化合物に察するヘキサメチレンゞ
アミンの重量比が、95〜9010である特蚱請
求の範囲第項蚘茉の方法。
[Scope of Claims] 1. When producing a corresponding triisocyanate compound by reacting a triamino compound having three primary amino groups in one molecule that are not directly bonded to an aromatic ring with phosgene, the triamino compound A manufacturing method characterized by reacting a mixture of and hexamethylene diamine with phosgene. 2 The triamino compound is 1,8-diamino-4-
Claim 1 which is aminomethyloctane
The method described in section. 3. The method according to claim 1, wherein the weight ratio of hexamethylene diamine to triamino compound is 5:95 to 90:10.
JP8837484A 1984-05-04 1984-05-04 Production of polyisocyanate Granted JPS60233044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8837484A JPS60233044A (en) 1984-05-04 1984-05-04 Production of polyisocyanate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8837484A JPS60233044A (en) 1984-05-04 1984-05-04 Production of polyisocyanate

Publications (2)

Publication Number Publication Date
JPS60233044A JPS60233044A (en) 1985-11-19
JPH0460104B2 true JPH0460104B2 (en) 1992-09-25

Family

ID=13941013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8837484A Granted JPS60233044A (en) 1984-05-04 1984-05-04 Production of polyisocyanate

Country Status (1)

Country Link
JP (1) JPS60233044A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523385A1 (en) * 1995-06-23 1997-01-09 Bayer Ag Process for the preparation of triisocyanates

Also Published As

Publication number Publication date
JPS60233044A (en) 1985-11-19

Similar Documents

Publication Publication Date Title
KR101383411B1 (en) A Process for the Production of Isocyanates
PL180229B1 (en) Method of obtaining isocyanates
HUE027861T2 (en) Preparation of light-colored isocyanates
JP2005041874A (en) Production of mixture of diphenylmethane-based diisocyanante and polyisocyanate having high content of 4,4'-methylemediphenyl diisocyanate and 2,4'-methylemediphenyl diisocyanate
JP2004529115A (en) Preparation of MDI, especially 2,4'-MDI
JP4308776B2 (en) Isocyanate production
US4597909A (en) Process for the production of polyisocyanates
JP2008508269A (en) Production method of polyisocyanate
CN112996768B (en) Method for removing monoisocyanates from organic solutions
US5136087A (en) Preparation of polymethylene polyphenyl polyisocyanate
JPH0460104B2 (en)
US20020045723A1 (en) Process for the production of ether isocyanates background of the invention
US5349082A (en) Toluene diisocyanate residue
JPS60233043A (en) Production of polyisocyanate
US3282975A (en) Process for producing stable, undistilled tolylene diisocyanate compositions
CA1217198A (en) Cycloaliphatic diisocyanates optionally in the form of isomer mixtures and a process for their production
JP2915784B2 (en) Purification method of aliphatic isocyanate
US3184494A (en) Process for producing organic isocyanates
JP2004099748A (en) Method for decreasing discoloration of polymethylene-polyphenylene polyisocyanate
KR100381878B1 (en) Method for producing isocyanate
US4657940A (en) 4,4'-diisocyanto-phenylbenzylether, a process for the preparation thereof and use in the production of polyurethane plastics
US3484472A (en) Method of manufacturing toluene diisocyanate
US3222386A (en) Preparation of organic isocyanates
JPH0372453A (en) Diisocyanate, polyisocyanato-isocyanurate and its production
JPH06116227A (en) Production of isocyanate compound

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term