JPS60232749A - Digital repeating transmission system - Google Patents

Digital repeating transmission system

Info

Publication number
JPS60232749A
JPS60232749A JP8812384A JP8812384A JPS60232749A JP S60232749 A JPS60232749 A JP S60232749A JP 8812384 A JP8812384 A JP 8812384A JP 8812384 A JP8812384 A JP 8812384A JP S60232749 A JPS60232749 A JP S60232749A
Authority
JP
Japan
Prior art keywords
signal
output
digital
regenerative
digital signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8812384A
Other languages
Japanese (ja)
Inventor
Masaki Amamiya
正樹 雨宮
Takeshi Ito
武 伊藤
Mamoru Yosogi
四十木 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8812384A priority Critical patent/JPS60232749A/en
Publication of JPS60232749A publication Critical patent/JPS60232749A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/205Arrangements for detecting or preventing errors in the information received using signal quality detector jitter monitoring

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Dc Digital Transmission (AREA)

Abstract

PURPOSE:To cancel jitters of the same pattern mutually which are generated in respective reproducing repeaters and to reduce the generation of jitters without adding a specific circuit to each reproducing repeater by connecting the inverted output of an identification decoder to the post stage. CONSTITUTION:Plural reproducing repeaters 4 connected through cables 3 are arranged between a transmitter 1 and a receiver 2 of a digital repeating transmission system. A signal from an input terminal 11 of each repeater 4 is branched into two signals through an identification equalizer 12 and respective branched signals are inputted to a decoder 13 and a timing signal extracting circuit 14. The output of the circuit 14 is amplified by an amplifier 15 and the amplified signal is inputted to the decoder 13 and a converter 16. The decoder 13 inverts all the output signals and applies its output Q to the converter 16, which converts a ''NON RETURN TO ZERO'' signal from the decoder 13 into a ''RETURN TO ZERO'' signal. The converted RZ signal is sent from a transmitting circuit 17 to an output terminal 18 to connect the output of each repeater 4 to the post stage. Thus, the jitters of the same pattern are mutually cancelled without adding a specific circuit.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ディジタル通信信号を伝送する中継伝送方式
に関する。本発明は、再生中継器が受信信号からタイミ
ング信号を抽出し、これに同期して出力ディジクル情報
を再生するディジタル中継伝送方式に適用される。有線
の光信号伝送方式および電気信号伝送方式、無線の伝送
方式のいずれにも通用することができる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a relay transmission system for transmitting digital communication signals. The present invention is applied to a digital relay transmission system in which a regenerator extracts a timing signal from a received signal and regenerates output digital information in synchronization with the timing signal. It can be applied to any wired optical signal transmission method, electrical signal transmission method, or wireless transmission method.

〔従来の技術〕[Conventional technology]

送信装置と受信装置との距離が大きいときに、送信装置
と受信装置とを結合する伝送媒体に中継装置を縦続的に
挿入して伝送信号を再生中継する方式は広く用いられて
いる。この方式では、各再生中継器でその受信信号から
タイミング信号を抽出すると、そのタイミング信号には
ジッタが発生する。このジッタは多数の再生中継器を経
由するときに、その発生がランダムであるものはよいが
、一般に各再生中継器の回路が同一であるので、その発
生の原因が等しくなり、同一のパターンジッタが各再生
中継器で発生し、これが再生中継を繰り返す度に1形に
相加されることになる。
When the distance between a transmitting device and a receiving device is large, a method is widely used in which relay devices are inserted in series in a transmission medium that couples the transmitting device and receiving device to regenerate and relay the transmitted signal. In this method, when each regenerative repeater extracts a timing signal from its received signal, jitter occurs in the timing signal. When this jitter passes through many regenerative repeaters, it is good if its occurrence is random, but since the circuit of each regenerative repeater is generally the same, the cause of its occurrence is the same, and the jitter has the same pattern. is generated in each regenerative repeater, and is added to one form each time regenerative repeating is repeated.

送信装置と受信装置との間の再生中継器の数が小さいと
きには、この相加されるジッタもそれほど問題にならな
いが、再生中継器の数が多くなると、たとえば大洋横断
の海底中継方式などでは問題になりその補償方法が研究
された。従来の方法としては、所定の中継数毎に自動位
相制御ループを含むQの高いタイミング回路を挿入する
方法があるが、ジッタの低周波成分についてはその抑圧
効果は小さく、またこのための回路は複雑大形であり、
電力を必要とするなど経済的に構成することができない
When the number of regenerative repeaters between the transmitting device and the receiving device is small, this added jitter is not much of a problem, but when the number of regenerative repeaters increases, it becomes a problem, for example in transoceanic submarine relay systems. The compensation method was researched. A conventional method is to insert a high-Q timing circuit including an automatic phase control loop for each predetermined number of relays, but its suppression effect on low-frequency components of jitter is small, and the circuit for this purpose is It is complex and large,
It cannot be constructed economically as it requires electricity.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、多数の再生中継器を含むディジタル中継伝送
路で発生し、同一のパターンで相加するジッタを抑圧す
る効率的かつ経済的な方式を提供することを目的とする
SUMMARY OF THE INVENTION An object of the present invention is to provide an efficient and economical method for suppressing jitter that occurs in a digital relay transmission line including a large number of regenerative repeaters and that adds up in the same pattern.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、ディジタル信号を送信する送信装置と、この
送信装置の出力端子に一端が結合された伝送媒体と、こ
の伝送媒体の他端に入力端子が結合された受信装置と、
上記伝送媒体の途中に縦続的に挿入された複数の再生中
継器とを備え、上記再生中継器は、入力端子に受信され
るディジタル信号からタイミング信号を抽出する手段と
、上記入力端子に受信されるディジタル情報を上記手段
により抽出されたタイミング信号に同期して再生する手
段と、この手段により再生されたディジタル情報を出力
端子に送信する手段とを含むディジタル中継伝送方式に
おいて、上記複数の再生中継器の全部または一部は、そ
の入力端子に受信されるディジタル信号を反転した補符
号を出力端子に送信するように構成されたことを特徴と
する。
The present invention includes a transmitting device that transmits a digital signal, a transmission medium having one end coupled to an output terminal of the transmitting device, and a receiving device having an input terminal coupled to the other end of the transmission medium.
a plurality of regenerative repeaters inserted in series in the middle of the transmission medium; the regenerative repeater includes means for extracting a timing signal from a digital signal received at the input terminal; In the digital relay transmission system, the digital relay transmission system includes means for reproducing digital information in synchronization with the timing signal extracted by the above means, and means for transmitting the digital information reproduced by the means to an output terminal. All or part of the device is characterized in that it is configured to transmit to its output a complementary code which is an inversion of the digital signal received at its input.

補符号を送信する再生中継器の数が偶数であるときには
、送信装置の送信する信号と受信装置の受信する信号と
は同一になるが、奇数のときには送信装置または受信装
置で伝送信号を反転するとよい。もっとも、受信装置の
出力が送信装置の出力の補符号になっていても、情報は
同一であるからその後段の利用形態によっては、必ずし
も反転の必要がない。
When the number of regenerative repeaters that transmit complementary codes is even, the signal transmitted by the transmitting device and the signal received by the receiving device are the same, but when the number is odd, the signal transmitted by the transmitting device or the receiving device is inverted. good. However, even if the output of the receiving device is the complementary code of the output of the transmitting device, the information is the same, so inversion is not necessarily necessary depending on the form of use at the subsequent stage.

〔作用〕[Effect]

再生中継器毎にディジタル信号を反転させると、符号の
粗密が再生中継器毎に入れ換わり、符号の粗から蜜への
変化に伴い発生するタイミング信号の位相変動と、蜜か
ら粗への変化に伴い発生するタイミング信号の位相変動
との方向が入れ換わるから、これが相加されるとこの位
相変動を相互に打ち消し合うことになる。
When the digital signal is inverted for each regenerative repeater, the coarseness and fineness of the code will be swapped for each regenerative repeater, and the phase fluctuation of the timing signal that occurs as the code changes from coarse to fine and the change from fine to coarse will be affected. Since the directions of the accompanying phase fluctuations of the timing signal are reversed, when they are added, the phase fluctuations cancel each other out.

〔実施例〕〔Example〕

第1図は本発明実施例ディジタル中継伝送方式の構成図
である。送信装置Iと受信装置2との間には伝送媒体と
してケーブル3が施設され、そのケーブル3には多数の
再生中継器4が縦続的に挿入されている。この中継伝送
路には2値ディジタル信号が伝送される。
FIG. 1 is a block diagram of a digital relay transmission system according to an embodiment of the present invention. A cable 3 is installed as a transmission medium between the transmitter I and the receiver 2, and a large number of regenerative repeaters 4 are inserted in series in the cable 3. A binary digital signal is transmitted through this relay transmission path.

ここで本発明の特徴とするところは、各再生中継器4は
その受信信号からタイミング信号を抽出し、このタイミ
ング信号を用いて送信信号を再生する方式であって、そ
の送信信号は受信信号とそっくり反転された補符号にな
っているところにある。すなわち送信装置1から送信さ
れたディジタル信号を例えば 01100110 とすると、これは一つの再生中継器4で中継されると反
転されて 10011001 となる。これを第1図ではQおよびdで示す。
Here, the feature of the present invention is that each regenerator 4 extracts a timing signal from the received signal and uses this timing signal to regenerate the transmitted signal, and the transmitted signal is the same as the received signal. It is exactly where the complementary sign is inverted. That is, if the digital signal transmitted from the transmitter 1 is, for example, 01100110, when it is relayed by one regenerative repeater 4, it is inverted and becomes 10011001. This is indicated in FIG. 1 by Q and d.

このようにすると、符号の粗密が再生中継器毎に入れ換
わり、符号の粗から蜜への変化に伴い発生するタイミン
グ信号の位相変動すなわちジッタと、蜜から粗への変化
に伴い発生するタイミング信号の位相変動すなわちジッ
タとの方向が入れ換わるから、このジッタが相加される
とこの位相変動を相互に打ち消し合い、2値符号でその
デユーティ比が50%であるならば、シックは実質的に
消滅することになる。
In this way, the sparseness and density of the codes are exchanged for each regenerative repeater, and the timing signal phase fluctuation, that is, jitter, that occurs as the code changes from coarse to fine, and the timing signal that occurs as the code changes from fine to coarse. Since the direction of the phase fluctuation, that is, the jitter, is switched, when this jitter is added, this phase fluctuation cancels each other out.If the duty ratio is 50% in a binary code, the sick is essentially It will disappear.

第2図に本発明実施例方式に使用される再生中継器の構
成図を示す。入力端子11の信号は等化器12を介して
復号器13に人する。また等化器12の出力は分岐され
てタイミング信号抽出回路14に入力し、その出力は増
幅器15で増幅されて識別復号器13に与えられる。識
別復号器13の出力は、NRZ(non rturn 
to zero)信号ををRZ (return t。
FIG. 2 shows a configuration diagram of a regenerative repeater used in an embodiment of the present invention. The signal at input terminal 11 is sent to decoder 13 via equalizer 12. Further, the output of the equalizer 12 is branched and inputted to the timing signal extraction circuit 14, and the output thereof is amplified by the amplifier 15 and given to the identification decoder 13. The output of the identification decoder 13 is NRZ (non turn
RZ (return to zero) signal.

zere)に変換する変換回路16を介して、送信回路
17から出力端子18に送信される。
The signal is transmitted from the transmitting circuit 17 to the output terminal 18 via the converting circuit 16 that converts the signal into

ここで本発明の特徴とするところは、識別復号器13の
出力信号がその入力信号とそっくり反転して送出される
ところにある。すなわち第2図で識別復号器13の出力
信号はQではなくdが後段に接続されるように表示され
ている。
The feature of the present invention is that the output signal of the identification decoder 13 is sent out after being completely inverted from its input signal. That is, in FIG. 2, the output signal of the identification decoder 13 is shown so that d, not Q, is connected to the subsequent stage.

第3図はこの識別復号器13の出力回路の要部構成図で
ある。すなわち典型的な出力回路は第3図のように二つ
の作動型の対トランジスタにより構成されているので、
そのコレクタ出力の一方は反転出力となり、これを利用
することにより、特に本発明を実施するために回路を新
しく設計する必要がない。
FIG. 3 is a diagram showing the main part of the output circuit of this identification decoder 13. In other words, since a typical output circuit is composed of two active pair transistors as shown in Figure 3,
One of the collector outputs becomes an inverted output, and by utilizing this, there is no need to particularly design a new circuit to implement the present invention.

つぎに、このように多数の縦続接続された再生中継器で
、出力信号を反転する補符号を送出することにより、シ
フタが相殺される理由を詳しく説明する。
Next, we will explain in detail why the shifters are canceled by sending out complementary codes that invert the output signals in such a large number of cascaded regenerative repeaters.

第4図はN個の再生中継器4が縦続接続された伝送路の
モデルを示す図である。各再生中継器4のタイミング信
号の伝達関数(具体的には上記実施例で示したタイミン
グ信号抽出回路14を構成する同調回路の伝達関数)を
 H(ω)とし、各再生中継器4に相加されるジッタの
電カスベクトルが、各再生中継器について同一であると
してこれを Φ(ω)とすると、N個の再生中継器4を
経由した信号のタイミングについて、そのジッタの電カ
スベクトルΦN(ω)は、 ・・・・・・・・・(1) となる。ωは角周波数である。特にタイミング信号抽出
回路14が単一同調回路で構成されているとすれば、 であるから、(1)式は、 ・・・・・・・・・(3) となる。ここでBは同調回路の有効帯域幅である。
FIG. 4 is a diagram showing a model of a transmission path in which N regenerative repeaters 4 are connected in cascade. Let H(ω) be the transfer function of the timing signal of each regenerative repeater 4 (specifically, the transfer function of the tuned circuit that constitutes the timing signal extraction circuit 14 shown in the above embodiment), and Assuming that the electric waste vector of the added jitter is the same for each regenerative repeater and is denoted by Φ(ω), the electric waste vector of the jitter with respect to the timing of the signal passing through the N regenerative repeaters 4 is ΦN (ω) becomes ・・・・・・・・・(1). ω is the angular frequency. In particular, if the timing signal extraction circuit 14 is composed of a single tuning circuit, then the equation (1) becomes: (3). Here B is the effective bandwidth of the tuned circuit.

この(3)式からシフタが再生中継器の数Nにしたがい
一方することがわかる。
From this equation (3), it can be seen that the shifter operates according to the number N of regenerative repeaters.

ここで本発明は再生中継器でその出力信号は入力信号の
補符号となるので、その伝送路のジ・ツタ相加のモデル
は第5図のように、偶数番目の再生中継器については、
相加されるジ・ツタの周波数スペクトル θ(ω)は負
符号となる。したがって、N個の再生中継器4を経由し
た信号のタイミングについて、そのジッタの周波数スペ
クトルは、・・・・・・・・・(4) となる。ここでタイミング信号抽出回路が単一同調回路
であるとすると、(2)式から(4)式はとなり、した
がってN中継後のジッタの電カスベクトルφN(ω)は
、 ΦN(ω)=1#N(jω)1z ・・・・・・・・・(5) となる。
Here, the present invention is a regenerative repeater whose output signal is the complementary code of the input signal, so the model of jitter addition of the transmission line is as shown in Fig. 5, and for even numbered regenerative repeaters,
The frequency spectrum θ(ω) of the added jitter has a negative sign. Therefore, regarding the timing of the signal passing through the N regenerative repeaters 4, the frequency spectrum of the jitter is as follows (4). Assuming that the timing signal extraction circuit is a single-tuned circuit, equations (2) to (4) become as follows, and therefore, the jitter electric current vector φN(ω) after N relays is ΦN(ω)=1 #N(jω)1z (5)

このように本発明ではジッタの相加が小さくなり、とく
に、低周波成分のジッタの相加が小さくなる。例えば(
3)式で、ω=0とすると、偶数個を中継されたタイミ
ング信号のジッタは零になる。
As described above, in the present invention, the addition of jitter is reduced, and in particular, the addition of jitter of low frequency components is reduced. for example(
In equation 3), if ω=0, the jitter of the even number of relayed timing signals becomes zero.

また、同調回路の有効帯域内の周波数ωについて、例え
ば ω/B=1/100 とすると、(2)式と(3)式とを較べることにより、
本発明ではジッタは、2.5 Xl0−’倍に減少した
ことがわかる。
Also, regarding the frequency ω within the effective band of the tuning circuit, for example, if ω/B = 1/100, then by comparing equations (2) and (3),
It can be seen that in the present invention, the jitter is reduced by a factor of 2.5 Xl0-'.

つぎに、本発明実施例方式の試験結果を説明すると、こ
の試験は多中継伝送路を使用しなければ実際の試験を行
うことはできないが、1個の中継を用いてケーブルをル
ープ接続し、周回実験をおこなった。第6図はこの試験
装置の構成図である。
Next, to explain the test results of the method according to the embodiment of the present invention, this test cannot be performed without using a multi-relay transmission line, but by connecting the cable in a loop using one relay, We conducted a round experiment. FIG. 6 is a block diagram of this test device.

この試験は1個の再生中継器の出力端子18と入力端子
Uとの間に全長15kmの光フアイバケーブル21を接
続し、出力端子18の信号が入力端子11に戻るように
する。変換回路16と送信回路17との間の接続を切り
開き、ここにスイッチ22を接続して、送信回路17の
入力には変換回路16の出力と外部から与えるPN信号
とを選択的に入力うするように構成する。また変換回路
16の入力には、識別復号回路13の二つの出力Qおよ
びこのいずれかを選択するように構成する。このとき、
タイミング信号をモニタ端子24で監視する。
In this test, an optical fiber cable 21 with a total length of 15 km is connected between the output terminal 18 and the input terminal U of one regenerative repeater, so that the signal from the output terminal 18 is returned to the input terminal 11. The connection between the conversion circuit 16 and the transmission circuit 17 is cut, a switch 22 is connected here, and the output of the conversion circuit 16 and the PN signal given from the outside are selectively input to the input of the transmission circuit 17. Configure it as follows. Further, the input of the conversion circuit 16 is configured to select one of the two outputs Q of the identification/decoding circuit 13. At this time,
The timing signal is monitored at the monitor terminal 24.

この試験装置で、はじめスイッチ22を図の下側スイッ
チPN信号の側に接続しておき、15に+nの伝送遅延
時間より短いPN信号を入力する6ついでスイッチ22
を図の上側すなわち変換回路16の出力に接続して、こ
のPN信号をこのループに循環させる。はじめに、スイ
ッチ23を図の上側すなわち本発明を実施しない状態に
しておき、そのときのジッタを観測すると第7図Aのよ
うになった。ついで、スイッチ23を図の下側すなわち
本発明の状態に接続すると、そのときのジッタは第7図
Bのようにな9た。第7図は横軸に信号の周回数をとり
縦軸にジッタを電圧で表示したものである。すなわち、
本発明を実施しない状態では信号が周回する毎にジッタ
が相加するが、本発明を実施すると信号が周回してもジ
ッタの相加がほとんどないことがわかる。
In this test equipment, switch 22 is first connected to the PN signal side of the lower switch in the diagram, and a PN signal shorter than the transmission delay time of +n is input to 15.
is connected to the top of the diagram, ie, to the output of the conversion circuit 16, to circulate this PN signal into this loop. First, the switch 23 was set to the upper side of the diagram, that is, the state in which the present invention was not implemented, and the jitter observed at that time was as shown in FIG. 7A. Next, when the switch 23 was connected to the lower side of the diagram, that is, the state of the present invention, the jitter at that time was as shown in FIG. 7B. In FIG. 7, the horizontal axis represents the number of signal cycles, and the vertical axis represents jitter in terms of voltage. That is,
It can be seen that when the present invention is not implemented, jitter is added each time the signal circulates, but when the present invention is implemented, there is almost no addition of jitter even when the signal circulates.

上記例は、デユーティ比が50%の2(!符号を伝送す
る方式について説明したが、デユーティ比が50%より
ずれている場合でも、その応分の効果がある。また、多
値ディジタル信号については、再生中継器でタイミング
信号を抽出する場合には同様に実施することができる。
In the above example, the method of transmitting the 2 (! code) with a duty ratio of 50% was explained, but even if the duty ratio deviates from 50%, the corresponding effect is achieved.Also, for multilevel digital signals, , when extracting a timing signal with a regenerative repeater, similar implementations can be made.

しかし、補符号を作るための論理は2値のように1対1
に対応せず、所定の論理を設定しておいてそれにしたが
って、補符号が各僅について均一になるようにすること
が必要である。
However, the logic for creating complementary codes is one-to-one like binary
, it is necessary to set a predetermined logic according to which the complementary codes are uniform for each fraction.

〔発明の効果〕 、 以上説明したように本発明によれば、各再生中継器で同
一のパターンで発生するジッタは、相加されるときに相
互に打ち消されて、実質的に相加尼4 口 ;v)5 し も612 洒7112
[Effects of the Invention] As explained above, according to the present invention, the jitters generated in the same pattern in each regenerative repeater cancel each other out when they are added, and the jitter is substantially reduced to 4. Mouth; v) 5 Shimo 612 Shimo 7112

Claims (5)

【特許請求の範囲】[Claims] (1) ディジタル信号を送信する送信装置と、この送
信装置の出力端子に一端が結合された伝送媒体と、 この伝送媒体の他端に入力端子が結合された受信装置と
、 上記伝送媒体の途中に縦続的に挿入された複数の再生中
継器と を備え、 上記再生中継器は、 入力端子に受信されるディジタル信号からタイミング信
号を抽出する手段と、上記入力端子に受信されるディジ
タル情報を上記手段により抽出されたタイミング信号に
同期して再生する手段と、この手段により再生されたデ
ィジタル情報を出力端子に送信する手段とを含む ディジタル中継伝送方式において、 上記複数の再生中継器の全部または一部は、その入力端
子に受信されるディジタル信号の補符号を出力端子に送
信するように構成されたことを特徴とするディジタル中
継伝送方式。
(1) A transmitting device that transmits a digital signal, a transmission medium whose one end is connected to the output terminal of this transmitting device, a receiving device whose input terminal is connected to the other end of this transmission medium, and a part of the above transmission medium. a plurality of regenerative repeaters inserted in cascade into the regenerative repeater, the regenerative repeater comprising: a means for extracting a timing signal from a digital signal received at an input terminal; and a means for extracting a timing signal from a digital signal received at an input terminal; In a digital relay transmission system including means for reproducing in synchronization with a timing signal extracted by the means and means for transmitting the digital information reproduced by the means to an output terminal, all or one of the plurality of regenerative repeaters A digital relay transmission system, characterized in that the unit is configured to transmit a complementary code of the digital signal received at its input terminal to its output terminal.
(2)再生中継器の全部がその入力端子に受信されるデ
ィジタル信号の補符号を出力端子に送信するように構成
され、その再生中継器の数が偶数である特許請求の範囲
第fl)項に記載のディジタル中継伝送方式。
(2) All of the regenerative repeaters are configured to transmit to their output terminals the complementary code of the digital signal received at their input terminals, and the number of regenerative repeaters is an even number. Digital relay transmission method described in .
(3) 再生中継器の全部がその入力端子に受信される
ディジタル信号の補符号を出力端子に送信するように構
成され、その再生中継器の数が奇数であり、送信装置ま
たは受信装置のいずれか一方は伝送されるディジタル信
号を補符号に変換する手段を含む特許請求の範囲第(1
1項に記載のディジタル中継伝送方式。
(3) All of the regenerative repeaters are configured to transmit to their output terminals the complement of the digital signal received at their input terminals, the number of regenerative repeaters is an odd number, and either the transmitting device or the receiving device One of them includes means for converting a transmitted digital signal into a complementary code.
The digital relay transmission method described in item 1.
(4)再生中継器の一部がその入力端子に受信されるデ
ィジタル信号の補符号を出力端子に送信するように構成
され、その再生中継器の一部の数が偶数である特許請求
の範囲第fi1項に記載のディジタル中継伝送方式。
(4) A claim in which a portion of the regenerative repeater is configured to transmit to an output terminal the complementary code of a digital signal received at its input terminal, and the number of the portion of the regenerative repeater is an even number. The digital relay transmission method according to item fi1.
(5) 再生中継器の一部がその入力端子に受信される
ディジタル信号の補符号を出力端子に送信するよ−うに
構成され、その再生中継器の数が奇数であり、送信装置
または受信装置のいずれか一方は伝送されるディジタル
信号を補符号に変換する手段を含む特許請求の範囲第(
1)項に記載のディジタル中継伝送方式。
(5) Some of the regenerative repeaters are configured to transmit the complementary code of the digital signal received at the input terminal to the output terminal, and the number of the regenerative repeaters is an odd number, and the transmitting device or the receiving device Any one of the above includes means for converting the transmitted digital signal into a complementary code.
The digital relay transmission method described in item 1).
JP8812384A 1984-05-01 1984-05-01 Digital repeating transmission system Pending JPS60232749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8812384A JPS60232749A (en) 1984-05-01 1984-05-01 Digital repeating transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8812384A JPS60232749A (en) 1984-05-01 1984-05-01 Digital repeating transmission system

Publications (1)

Publication Number Publication Date
JPS60232749A true JPS60232749A (en) 1985-11-19

Family

ID=13934126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8812384A Pending JPS60232749A (en) 1984-05-01 1984-05-01 Digital repeating transmission system

Country Status (1)

Country Link
JP (1) JPS60232749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196953A (en) * 1986-02-24 1987-08-31 Nippon Telegr & Teleph Corp <Ntt> Digital relay transmission system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129055A (en) * 1980-11-28 1982-08-10 Ibm Digital siganl distributor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129055A (en) * 1980-11-28 1982-08-10 Ibm Digital siganl distributor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196953A (en) * 1986-02-24 1987-08-31 Nippon Telegr & Teleph Corp <Ntt> Digital relay transmission system

Similar Documents

Publication Publication Date Title
US4897854A (en) Alternate pulse inversion encoding scheme for serial data transmission
JPH0527289B2 (en)
US3737585A (en) Regenerative pcm line repeater
US5097353A (en) Optical repeater having phase inversion circuit
JPS60232749A (en) Digital repeating transmission system
US1719484A (en) Carrier transmission system
US4317219A (en) Mobile radio system
US2294735A (en) Carrier current amplifier apparatus
US2379211A (en) Distortion correction in wave transmission
SE444248B (en) PROCEDURE FOR SERIAL TRANSFER OF BINERA SIGNALS BETWEEN DEVICES IN AN ALARM CONSTRUCTION OF A PROMOTING WIRING NETWORK, EXV ELECTRIC NETWORK, AND MODEM FOR IMPLEMENTATION OF THE PROCEDURE
JPH11127120A (en) Coding in optical network and optical switch control system
US4620187A (en) Transformer coupled, solid state communications line switch
US1858037A (en) Zero correcting circuit
US1521685A (en) Carrier telegraph circuits
JP3068125B2 (en) Bus type optical transmission line communication station
US1523127A (en) Multiplex-signaling system
RU2214052C2 (en) Method for transmitting and receiving signals using three-phase power line
JPS63149940A (en) Branch constitution system for line concentrator
RU2212760C2 (en) Signal transmitting and receiving system using three-phase power mains
GB1021418A (en) Improvements in or relating to carrier current communication systems incorporating repeaters
US2259637A (en) Telegraph repeater
US1609805A (en) Radio receiving system
SU1398015A1 (en) Arrangement for directional protection with high-frequency interlocking of two combined power transmission lines joined at route substation by repair jumper shunting the section switch
US2160017A (en) Signaling system
RU1800630C (en) Fiber-optics communications system