JPS60232490A - Condensating system - Google Patents

Condensating system

Info

Publication number
JPS60232490A
JPS60232490A JP8830384A JP8830384A JPS60232490A JP S60232490 A JPS60232490 A JP S60232490A JP 8830384 A JP8830384 A JP 8830384A JP 8830384 A JP8830384 A JP 8830384A JP S60232490 A JPS60232490 A JP S60232490A
Authority
JP
Japan
Prior art keywords
condensate
pump
water
condenser
steam condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8830384A
Other languages
Japanese (ja)
Other versions
JPH0633958B2 (en
Inventor
Kiyozumi Ito
伊藤 清純
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59088303A priority Critical patent/JPH0633958B2/en
Publication of JPS60232490A publication Critical patent/JPS60232490A/en
Publication of JPH0633958B2 publication Critical patent/JPH0633958B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To contrive reduction of the maximum utility pressure of a condensating system by reducing a full lift of a condensate pump, by providing an air extractor and a water feeding system for a gland steam condenser by branching from a condensating system. CONSTITUTION:Condensate discharged from a condensate pump 4 performs water feeding to an air ejector and a gland steam condenser 9 by providing a small diameter branch condensate pipe 15 which is once ramified from a main flow of condensate piping 15 and providing further a small capacity pump 16 after impurities of the condensate have been removed by a filter 5 of the condensate and a desalting device 6 of the condensate. To make a quantity of feeding water constant a flow meter 17, a liquid quantity adjusting device 18 and an adjusting valve 19 are provided additionally. With this piping application, the full lift of a condensate pump is reduced, and it becomes possible that the maximum utility pressure of a delivery line of the condensate pump is made to fall within a range of under 20kg/cm<2>g, water chambers of the air ejector and the gland steam condenser become fed to only a required quantity of water and the diameters of the water chamber and the condensate pipe are reduced.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は発電プラントの復水系統に係り、特に、空気抽
出器やグランド蒸気復水器が設置されている条件におい
て、復水ポンプ全揚程を低減し、かつ、復水系統の最高
使用圧力の低減等に好適な復水系統に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a condensate system of a power generation plant, and in particular, the present invention relates to a condensate system for a power generation plant, and in particular, to reduce the total head of a condensate pump under conditions where an air extractor or a gland steam condenser is installed. The present invention relates to a condensate system suitable for reducing the maximum operating pressure of the condensate system.

〔発明の背景〕[Background of the invention]

従来の原子力発電プラントの例について第1図により説
明する。
An example of a conventional nuclear power plant will be explained with reference to FIG.

原子炉1で発生した蒸気で、タービン2で膨張により仕
事をした後、復水器3で凝縮され復水となる。復水は復
水ポンプ4で吸出され、復水脱塩装置5、復水脱塩装置
6で不純物が除去された後、復水配管7を介して空気抽
器8、グランド蒸気復水器9を冷却した後、復水昇圧ポ
ンプ10で昇圧され、給水加熱器11で加熱昇温され、
給水ポンプ12で昇圧した上、給水管13を介して原子
炉1に戻る閉回路を形成している。空気抽出器5及びグ
ランド蒸気復水器6は、通常、負荷運転時の他に起動停
止過程の無負荷運転時にも復水器3の真空を維持するた
め、運転を継続するが、この際には、復水再m環弁14
を開き、復水器3に戻る復水再循環運転により空気抽出
器8とグランド蒸気復水器9の最小流量を確保する。
The steam generated in the nuclear reactor 1 performs work through expansion in the turbine 2, and then condenses in the condenser 3 to become condensed water. Condensate is sucked out by a condensate pump 4, impurities are removed by a condensate desalination device 5 and a condensate desalination device 6, and then passed through a condensate pipe 7 to an air extractor 8 and a grand steam condenser 9. After cooling, the pressure is increased by the condensate boost pump 10, and the temperature is raised by the feed water heater 11.
A closed circuit is formed in which the pressure is increased by the water supply pump 12 and then returned to the reactor 1 via the water supply pipe 13. The air extractor 5 and the grand steam condenser 6 normally continue to operate in order to maintain the vacuum in the condenser 3 not only during load operation but also during no-load operation during the start-stop process. is the condensate re-m ring valve 14
is opened and the condensate recirculating operation returns to the condenser 3 to ensure a minimum flow rate of the air extractor 8 and the grand steam condenser 9.

空気抽出器8とグランド蒸気復水器9の機能を確保する
ための所要冷却水量は800MWe級では約500T/
hと少ないが、800MWe級の復水全量約5000T
/hを通水するため、過剰分は水室内のオリフィスを通
すことにより冷却管をバイパスさせる。
The amount of cooling water required to ensure the functions of the air extractor 8 and the gland steam condenser 9 is approximately 500T/W for the 800 MWe class.
h, but the total amount of 800 MWe class condensate is about 5000 T.
/h, the excess water is passed through an orifice in the water chamber, thereby bypassing the cooling pipe.

従来技術の問題点の第一は、空気抽出器8とグランド蒸
気復水器9は所要水量が小さい割には損失水頭が合せて
約10mと大きく、その結果、復水ポンプ4の全揚程が
約150mとなり、復水ポンプ用モータの補機動力が8
00MWe級の場合、二台合計で約3000 K Wと
大きくなっている。
The first problem with the prior art is that the air extractor 8 and the gland steam condenser 9 have a large water head loss of approximately 10 m in total despite the small amount of water required, and as a result, the total head of the condensate pump 4 is reduced. It is about 150m, and the auxiliary power of the condensate pump motor is 8.
In the case of 00MWe class, the total power of the two units is about 3000KW, which is large.

第二は復水ポンプ4の吐出ラインの最高使用圧力が20
kg/a1gを越え、吐出ラインの機器、配管、弁の溶
接検査が必要となり、コストアップとなる。
The second is that the maximum working pressure of the discharge line of condensate pump 4 is 20
kg/a1g, welding inspection of discharge line equipment, piping, and valves is required, which increases costs.

最近のプラントは20kg/cIITgを越えないよう
にする対策として、従来の特性(実線)から第2図の一
点鎖線のように、復水ポンプ4の特性を仕様点Aと締切
点Bの全揚程の比率(スロープ)H11/HAを従来よ
り低く押え、かつ、締切全揚程HIIの製作バラツキを
小さく押えるために、モデルにより開発を行なったり、
製作後、規定値内に押えるため、トリ゛ミングする等の
対策を実施しているが、この結果、復水ポンプ4自身の
コストアップを招いている。
As a measure to prevent the current from exceeding 20 kg/cIITg, recent plants have changed the characteristics of the condensate pump 4 from the conventional characteristics (solid line) to the total head between specification point A and cut-off point B, as shown by the dashed line in Figure 2. In order to keep the ratio (slope) H11/HA lower than before, and to suppress manufacturing variations in the cut-off total head HII, we developed models.
After manufacturing, measures such as trimming are taken to keep the condensate pump 4 within specified values, but this results in an increase in the cost of the condensate pump 4 itself.

第三の問題点は、空気抽出器8とグランド蒸気復水器9
は所要水量が少ないにもかかわらず、復水の全量を通水
するため、氷室部が過大な設計となっていることである
The third problem is the air extractor 8 and the gland steam condenser 9.
Although the amount of water required is small, the ice chamber is designed to be oversized in order to pass the entire amount of condensate.

第四の問題点は空気抽出器8とグランド蒸気復水器9は
建屋の機器配置の構成上復水ポンプ4、復水濾過脱塩装
置8、復水過塩装置!9よりも階高に設置されるのが一
般的で、800 MW e級で直径約700閣の大口径
復水管が建屋階を上・下、かつ蛇行していることにより
、建屋的配管スペース上のインパクトとなり、かつ、配
管コストも問題となっている。
The fourth problem is that the air extractor 8 and the ground steam condenser 9 are configured with the condensate pump 4, condensate filtration and desalination device 8, and condensate supersalt device! It is generally installed at a floor height higher than 9, and the 800 MW e-class large-diameter condensate pipe with a diameter of approximately 700 km meandering up and down the building floors, making it difficult to increase the piping space in the building. impact, and piping costs have also become an issue.

〔発明の目的〕[Purpose of the invention]

本発明の目的は従来技術の問題点の解決を可能ならしめ
る系統を提供するものである。
The object of the invention is to provide a system that makes it possible to solve the problems of the prior art.

〔発明の実施例〕[Embodiments of the invention]

第3図により本発明の実施例について説明する。 An embodiment of the present invention will be explained with reference to FIG.

復水ポンプ4から吐出された復水は復水濾過装置5、復
水脱塩装置6で不純物を除去した後、復水配管7の主流
から一旦分岐する小口径の分岐復水管15を設け、更に
、小容量のポンプ16を設け、空気抽出器8とグランド
蒸気復水器9に通水を行なう。通水量を一定にするため
、流量計17及び液量調整器18、調整弁19を追設す
る。この構成における各設備の仕様は、ポンプ容量は約
500T/h、全揚程は15m前後、復水配管の直径は
約200mとなる。また、空気抽出器8とグランド蒸気
復水器9の氷室も所要量約500T/hに見合って軽量
化する。
After removing impurities from the condensate discharged from the condensate pump 4 through a condensate filtration device 5 and a condensate desalination device 6, a small-diameter branch condensate pipe 15 is provided which branches off from the main stream of the condensate pipe 7. Furthermore, a small capacity pump 16 is provided to supply water to the air extractor 8 and the gland steam condenser 9. In order to keep the amount of water flowing constant, a flow meter 17, a liquid amount regulator 18, and a regulating valve 19 are additionally installed. The specifications of each equipment in this configuration are that the pump capacity is approximately 500 T/h, the total head is approximately 15 m, and the diameter of the condensate pipe is approximately 200 m. Furthermore, the weight of the ice chambers of the air extractor 8 and the grand steam condenser 9 is also reduced in accordance with the required capacity of about 500 T/h.

他の実施例について第4図により説明する。第3図の流
量計17での損失水頭を低減するため、空気抽出器8と
グランド蒸気復水器9の約500T/h通水時の差圧を
一定に調整する差圧調整器20を設け、調整弁19の開
度を制御する。
Another embodiment will be explained with reference to FIG. In order to reduce the head loss at the flow meter 17 shown in FIG. 3, a differential pressure regulator 20 is provided to keep the differential pressure between the air extractor 8 and the grand steam condenser 9 constant when approximately 500 T/h of water flows. , controls the opening degree of the regulating valve 19.

また、第5図では、第4図で、空気抽出器8とグランド
蒸気復水器9を直列に設置していたものを、併列設置と
する。
Moreover, in FIG. 5, the air extractor 8 and the gland steam condenser 9 are installed in parallel, whereas in FIG. 4, the air extractor 8 and the gland steam condenser 9 are installed in series.

また、第3図におれる空気抽出器8とグランド値気復水
器9を併列にする構成もある。
There is also a configuration in which the air extractor 8 and the ground air condenser 9 shown in FIG. 3 are arranged in parallel.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、 (1)復水ポンプの全揚程が約10m低減され(第2図
の破線)、復水ポンプ駆動用モータの軸動力が、800
MWe級では約200 KWの低減となる。一方、小容
量のポンプの軸動力は約29KWと小さい。従って、軸
動力の合計低減は約180KWとなる。
According to the present invention, (1) The total head of the condensate pump is reduced by approximately 10 m (dashed line in Figure 2), and the shaft power of the condensate pump drive motor is reduced to 800 m.
For MWe class, the reduction is approximately 200 KW. On the other hand, the shaft power of a small capacity pump is as small as about 29KW. Therefore, the total reduction in shaft power is approximately 180KW.

(2)復水ポンプの吐出ライン最高使用圧力を20kg
/a1g未満に納めることが可能となり、復水ポンプの
製作コストの低減となる。
(2) The maximum working pressure of the condensate pump discharge line is 20 kg.
/a1g, which reduces the manufacturing cost of the condensate pump.

(3)空気抽出器、グランド蒸気復水器の氷室には所要
量のみ通水となるため氷室の大巾な低減となる。
(3) Only the required amount of water is passed through the ice chambers of the air extractor and grand steam condenser, resulting in a significant reduction in the ice chamber size.

(4)空気抽出器、グランド蒸気復水器周りの復水管口
径が800MWe級で70’Omから200鵬に低減さ
れる。
(4) The condensate pipe diameter around the air extractor and grand steam condenser is reduced from 70'Om to 200'Om for 800MWe class.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の発電プラントの概略系統図、第2図は復
水ポンプにおける流量と全揚程の特性図。 第3図は本発明による空気抽出器とグランド蒸気復水器
周りの系統図、第4図、第5図は本発明の他の実施例の
空気抽出器とグランド蒸気復水器周りの系統図である。 4・・・復水ポンプ、5・・・復水濾過装置、6・・・
復水脱塩装置、7・・・復水管、8・・・空気抽出器、
9・・・グランド蒸気復水器、10・・・復水昇圧ポン
プ、15・・・分岐復水管、16・・・ポンプ、17・
・・流量計、19第 l 凶 12 // 第 3 口
Figure 1 is a schematic system diagram of a conventional power generation plant, and Figure 2 is a characteristic diagram of flow rate and total head in a condensate pump. FIG. 3 is a system diagram around an air extractor and a grand steam condenser according to the present invention, and FIGS. 4 and 5 are system diagrams around an air extractor and a grand steam condenser according to other embodiments of the present invention. It is. 4... Condensate pump, 5... Condensate filtration device, 6...
Condensate desalination device, 7... Condensate pipe, 8... Air extractor,
9... Grand steam condenser, 10... Condensate boost pump, 15... Branch condensate pipe, 16... Pump, 17.
...Flowmeter, 19th l 12th // 3rd port

Claims (1)

【特許請求の範囲】 1、蒸気タービンよりの蒸気を凝縮する復水器と、原子
炉での分解ガス及び大気中より漏れ込む空気を前記復水
器を介して抽出し、復水器内を真空にする空気抽器と、
前記蒸気タービンのグランドシール蒸気復水器と、前記
復水器内の凝縮された復水を吸出し圧送する復水ポンプ
と、この復水ポンプ吐出水を下流側の復水昇圧ポンプに
導く復水管とを備えた発電プラントにおける復水系統に
おいて、 前記復水管から一旦分岐し前記復水昇圧ポンプの入口の
前記復水管に戻る別ルートの配管を設け。 この分岐ライン上にポンプ、弁を設け、前記空気抽出器
および前記グランドシール蒸気復水器を設置したことを
特徴とする発電プラントにおける復水系統。
[Claims] 1. A condenser that condenses steam from a steam turbine, and extracts cracked gas from the nuclear reactor and air leaking from the atmosphere through the condenser, and cleans the inside of the condenser. an air extractor to create a vacuum;
A grand seal steam condenser of the steam turbine, a condensate pump that sucks out and pumps condensate condensed in the condenser, and a condensate pipe that guides the condensate pump discharge water to a condensate boost pump on the downstream side. In a condensate system in a power generation plant comprising: A separate route of piping is provided that once branches from the condensate pipe and returns to the condensate pipe at the inlet of the condensate boost pump. A condensation system in a power generation plant, characterized in that a pump and a valve are provided on the branch line, and the air extractor and the gland seal steam condenser are installed.
JP59088303A 1984-05-04 1984-05-04 Condensate system Expired - Lifetime JPH0633958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59088303A JPH0633958B2 (en) 1984-05-04 1984-05-04 Condensate system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59088303A JPH0633958B2 (en) 1984-05-04 1984-05-04 Condensate system

Publications (2)

Publication Number Publication Date
JPS60232490A true JPS60232490A (en) 1985-11-19
JPH0633958B2 JPH0633958B2 (en) 1994-05-02

Family

ID=13939156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59088303A Expired - Lifetime JPH0633958B2 (en) 1984-05-04 1984-05-04 Condensate system

Country Status (1)

Country Link
JP (1) JPH0633958B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618289A (en) * 1979-07-23 1981-02-20 Toshiba Corp Steam condenser
JPS5630583A (en) * 1979-08-21 1981-03-27 Hitachi Ltd Operation of side stream type condensation system and apparatus for flushing device in side stream type condensation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5618289A (en) * 1979-07-23 1981-02-20 Toshiba Corp Steam condenser
JPS5630583A (en) * 1979-08-21 1981-03-27 Hitachi Ltd Operation of side stream type condensation system and apparatus for flushing device in side stream type condensation system

Also Published As

Publication number Publication date
JPH0633958B2 (en) 1994-05-02

Similar Documents

Publication Publication Date Title
CN105605551B (en) A kind of system and method for utilization turbine by-pass steam heating pot stove feedwater
CN101706038A (en) Steam jet waste steam recycling device and steam jet waste steam recycling system
CN113404563A (en) Low-pressure cylinder cutting heat supply unit low-heating and back-heating system
CN201555020U (en) Steam jet type residual steam recovery and recycling device and system
CN113404556B (en) Steam turbine low pressure bearing seal cooling system
CN2530042Y (en) Direct air cooling turbine steam exhauster for power station
CN108915808A (en) Double pressure back pressure turbine heating systems
US6128901A (en) Pressure control system to improve power plant efficiency
CN109028277A (en) Low-pressure heater water level flexible control method under thermal power plant unit depth peak regulation operating condition
CN1201073C (en) Method and device for increasing the pressure of a gas
CN208793049U (en) Double pressure back pressure turbine heating systems
JPS60232490A (en) Condensating system
CN216950498U (en) Hot water waste heat utilization steam turbine flow control device based on flash evaporation technology
CN215491151U (en) Shaft-exhaust turbine pipeline drainage system
CN104990065B (en) Boiler feedwater circulation deaerating type of cycles in turbine LP rotors
CN207819678U (en) Automatic water replenishing system
CN1020495C (en) Improved system for routing preseparator drains
CN209940916U (en) TWLJ steam turbine oil temperature and pressure compensation oil filter
CN208249900U (en) A kind of nitrogen sledge processed for oil field nitrogen operation
CN113294217A (en) Back pressure type steam turbine heat regeneration system with small steam turbine and thermodynamic balance design method
CN218209522U (en) Boiler sparse-expansion exhaust steam noise reduction recovery system
US4330997A (en) Feedwater heating in a steam turbine
JPS61108814A (en) Gas-steam turbine composite facility
CN217051932U (en) Flash evaporation condensate treatment device and system
CN218509556U (en) Steam utilization regulating system