JPS60231764A - Planar heating material filled with electrically conductive metallic fiber - Google Patents

Planar heating material filled with electrically conductive metallic fiber

Info

Publication number
JPS60231764A
JPS60231764A JP8694884A JP8694884A JPS60231764A JP S60231764 A JPS60231764 A JP S60231764A JP 8694884 A JP8694884 A JP 8694884A JP 8694884 A JP8694884 A JP 8694884A JP S60231764 A JPS60231764 A JP S60231764A
Authority
JP
Japan
Prior art keywords
metallic fiber
planar heating
thermoplastic resin
resin
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8694884A
Other languages
Japanese (ja)
Inventor
Tamio Oi
大井 民男
Koji Okumura
幸司 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP8694884A priority Critical patent/JPS60231764A/en
Publication of JPS60231764A publication Critical patent/JPS60231764A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide the titled material having excellent mechanical characteristics and electrical conductivity and suitable for use as a material for heaters and as a structural material for low-temperature resistant devices and melting devices, by filling a thermoplastic resin with an electrically conductive metallic fiber. CONSTITUTION:5-20vol% short metallic fiber having an average diameter of 20-120mum and an aspect ratio of 30-100, selected from among Fe, Cu, Al, Ni and their alloys, is mixed with a thermoplastic resin selected from among PP, ABS resin, nylon, polyphenylene ether and polyphenylene oxide. The mixture is molded into a desired shape to obtain a desired planar heating material having a volume resistance of 0.2-15OMEGA.cm.

Description

【発明の詳細な説明】 〔発明の対象〕 本発明は樹脂材に導電性金属短繊維を充填した面状発熱
材料に関するもので、更に詳述ずれば、暖房製品の表面
の発熱材料又は冬期屋根などの氷雪を溶融するために使
用する面発熱材料に関するものである。
[Detailed Description of the Invention] [Subject of the Invention] The present invention relates to a planar heat generating material in which a resin material is filled with conductive metal short fibers. The invention relates to surface heating materials used to melt ice and snow.

〔従来技術〕[Prior art]

面状宛熱祠ば、暖房カーペット、電気毛布などの暖房製
品に、また道路や水道管などの凍結防止用の材料として
使用されており、この従来の面発熱材には、アルミ箔、
又は金属繊維(例えば銀)を耐熱フィルムに蒸着したも
の、またカーボン粒子を樹脂に混入したものが使用され
ている。
It is used in heating products such as sheet heating pads, heating carpets, and electric blankets, and as a material for preventing freezing of roads and water pipes. Conventional sheet heating materials include aluminum foil,
Alternatively, metal fibers (for example, silver) are deposited on a heat-resistant film, or carbon particles are mixed into a resin.

〔従来技術の問題点とその技術的分析〕前記従来の面発
熱材料について、 (1) 金属を蒸着した耐熱フィルムは製品形状に応じ
た発熱体にする場合に、製品形状の湾曲半径が小さい場
合には、その部分の発熱効率が大きく低下し、更にフィ
ルムの場合は構造体に貼り合せて使用する必要があり、
フィルム貼り合せに作業工数がかかり、 (2) カーボン粒子入り樹脂材については、樹脂に対
してカーボンを15〜20νOL%入れ、体積固有抵抗
が101Ω−cm前後の面発熱材であるが、この面発熱
材はカーボン粒子の混入のために、材料の機械的特性(
曲げ、引張り)が低下し材料として脆くなり、更に体積
固有抵抗が高いために、発熱材として使用する場合には
、高電圧を加えるとか、抵抗を小さくするために電極間
の長さを短かくせねばならない、という欠点がある。
[Problems in the prior art and their technical analysis] Regarding the conventional surface heating materials, (1) When using a metal-deposited heat-resistant film as a heating element according to the shape of the product, if the radius of curvature of the product shape is small. , the heat generation efficiency of that part decreases significantly, and in the case of a film, it is necessary to use it by bonding it to a structure.
(2) The carbon particle-containing resin material is a surface heating material with a volume resistivity of around 101 Ω-cm, which contains 15 to 20 νOL% of carbon to the resin. Due to the inclusion of carbon particles in heat generating materials, the mechanical properties of the material (
(bending, tensile) decreases, making the material brittle, and also has a high volume resistivity, so when used as a heat generating material, it is necessary to apply a high voltage or shorten the length between the electrodes to reduce resistance. There is a drawback that it is necessary.

〔技術的課題〕[Technical issues]

そこで本発明は面状発熱体として、暖房製品及び、耐寒
、溶融用の構造材料として使用する場合に、機械的特性
に優れ、コスト的に安くかつ導電性にすぐれた、樹脂複
合材料をその技術的課題とするものである。
Therefore, the present invention has developed a resin composite material that has excellent mechanical properties, is low in cost, and has excellent conductivity when used as a sheet heating element in heating products and as a structural material for cold resistance and melting. This is a major issue.

〔技術的手段及びその作用〕[Technical means and their effects]

□ 上記技術的課題を解決するために講じた技術的手段
は、鉄、銅、アルミニウム、ニッケル及びその合金より
なる平均直径20〜120μmでアスペクト比(長さ/
径)が307100である導電性金属短繊維を、ポリプ
ロピレン(PP)、アクリロニトリル・ブタジェン・ス
チレン(ABS)、ナイロン(NY)、ポリフェニレン
エーテル(PPE)、ポリフェニレンオキサイド(PP
O)の熱可塑性樹脂に5〜20 VOL%混入し、製品
形状に成形するものである。
□ The technical measures taken to solve the above technical problems are iron, copper, aluminum, nickel, and their alloys with an average diameter of 20 to 120 μm and an aspect ratio (length/
Conductive metal short fibers having a diameter of 307,100 are used to make polypropylene (PP), acrylonitrile butadiene styrene (ABS), nylon (NY), polyphenylene ether (PPE), polyphenylene oxide (PP).
It is mixed into the thermoplastic resin (O) at 5 to 20 VOL% and molded into a product shape.

前記熱可塑性樹脂に導電性金属短繊維を混入して成形し
た場合には、構造材として適した機械的強度を有し、体
積固有抵抗値も10 Ω−cm以下で極めて良好である
When molded by mixing conductive metal short fibers into the thermoplastic resin, it has mechanical strength suitable for a structural material, and has an extremely good volume resistivity value of 10 Ω-cm or less.

樹脂に導電性金属繊維を混入する場合は均一に混入でき
ることが必要であり、これを満足しかつ性能上支障をき
たさない範囲は前記短繊維の平均径が20〜120μm
で、アスペクト比(長さ/径)が30〜15’Oであり
、より好ましくは平均直径が40〜90μmでアスペク
ト比記0が良い。
When mixing conductive metal fibers into resin, it is necessary to mix them uniformly, and the range that satisfies this and does not cause any performance problems is that the average diameter of the short fibers is 20 to 120 μm.
The aspect ratio (length/diameter) is 30 to 15'O, more preferably the average diameter is 40 to 90 μm, and the aspect ratio is preferably 0.

第1表にはナイロン−6樹脂に、導電性金属短繊維であ
る60μmで、アスペクト比−50の黄銅繊維を15 
vow、%混入したものと、カーボン粒子20〜30μ
mをi 5 VOL%混入した場合の機械的特性につい
ての比較を示す。
Table 1 shows that nylon-6 resin is coated with 60 μm conductive metal short fibers and brass fibers with an aspect ratio of -50.
vow, % mixed and carbon particles 20-30μ
Comparison of mechanical properties when m is mixed at i 5 VOL% is shown.

第 1 表 上表より黄銅繊維入りのナイロン樹脂がすぐれているこ
とが判る。
From Table 1 above, it can be seen that nylon resin containing brass fibers is superior.

次に導電性金属繊維とカーボン粒子の電気抵抗について
は、カーボン粒子は100cmで、導電性金属短繊維は
10 Ω印で、金属短繊維が相当低いものである。熱可
塑性樹脂のアクリロニトリル・ブタジェン・スチレン(
A −B −S樹脂)に黄銅繊維(90μm X 3 
m)を混入した場合の充填率と体積固有抵抗の関係を第
1図のグラフに示す。これにより充填率j5VOL%程
度の少ない混入で体積固有抵抗は10−′〜10−2Ω
cmと非常に低いことが判る。このように樹脂に導電性
金属繊維を8〜20 VOL%混入したものは、従来の
カーボン粒子を樹脂材に混入した場合に比較して、機械
的強度及び導電性にすくれているものである第2表は黄
銅繊維とカーボン粒子とをA・B・S樹脂に混入した場
合の、体積固有抵抗の炭化に伴う(樹脂に黄銅繊維の混
入率を替えた場合の)、各電気特性の比較を示す。
Next, regarding the electrical resistance of the conductive metal fibers and carbon particles, the carbon particles have a diameter of 100 cm, and the conductive metal short fibers have a 10 Ω mark, which is considerably lower for the metal short fibers. Thermoplastic resins acrylonitrile, butadiene, styrene (
A-B-S resin) and brass fibers (90 μm x 3
The graph in FIG. 1 shows the relationship between the filling rate and the volume resistivity when m) is mixed. As a result, the volume resistivity can be reduced to 10-' to 10-2Ω with a small amount of mixing at a filling rate of about j5VOL%.
It can be seen that it is very low. In this way, resin mixed with 8 to 20 VOL% of conductive metal fibers has lower mechanical strength and electrical conductivity than conventional resin materials mixed with carbon particles. Table 2 shows a comparison of each electrical property when brass fibers and carbon particles are mixed into A, B, and S resins, due to carbonization of the volume resistivity (when the mixing ratio of brass fibers is changed in the resin). shows.

第 2 表 第2表より導電性金属短繊維は体積固有抵抗が低いため
に同一の発熱量を得るためには使用電力、電流内の設計
の自由度が大きく、カーボン混入の場合に比して電極数
も少なくすることができる樹脂材に導電性金属短繊維の
混入量が5 VOL%以下の場合には、電気抵抗が大き
くなり、高電圧が必要となり安全面及び材料の絶縁破壊
などから見ても問題があり、又混入量が25 VOL%
以上であると抵抗値が小さくなりすぎ電流が大となり、
発熱体の製品としてみた場合接続電線及び電気容量など
の点より問題がある。
Table 2 As shown in Table 2, conductive short metal fibers have a low volume resistivity, so in order to obtain the same calorific value, there is a greater degree of freedom in designing the power and current used, compared to when carbon is mixed. The number of electrodes can also be reduced.If the amount of conductive metal short fibers mixed in the resin material is less than 5 VOL%, the electrical resistance will increase and a high voltage will be required, which is dangerous from a safety standpoint and dielectric breakdown of the material. However, there is a problem, and the amount of contamination is 25 VOL%.
If it is more than that, the resistance value becomes too small and the current becomes large.
When viewed as a heating element product, there are problems due to connection wires and electric capacity.

〔本発明による特有の効果〕[Special effects of the present invention]

本発明は、次の特有の効果を生じる、すなわち前記熱可
塑性樹脂に導電性金属短繊維を混入して製作した面状発
熱体は、カーボン粒子入り面状発熱体に比して、機械的
性質にすぐれ、導電性もずくれているが、更に +11 カーボン粒子は球形のために、マトリックスに
充分保持されないために、表面処理が必要であるが、前
記金属短繊維は横方向に長いために、マトリックスに保
持され易く、表面処理の工程が必要ない。
The present invention has the following unique effects; namely, the planar heating element manufactured by mixing conductive short metal fibers into the thermoplastic resin has mechanical properties that are superior to those of the planar heating element containing carbon particles. However, since the carbon particles are spherical, they are not retained well in the matrix, so surface treatment is necessary. However, since the short metal fibers are long in the lateral direction, It is easily retained and no surface treatment process is required.

(2)カーボン粒子の面状発熱体は、金属短繊維の面状
発熱体に比して、同一面積の発熱体の場合に、導電率か
ら多くの電極が必要となる。
(2) Compared to a planar heating element made of short metal fibers, a planar heating element made of carbon particles requires more electrodes due to its electrical conductivity when the heating element has the same area.

(3)カーボン粒子を混入して射出成形により面状発熱
体を成形した場合に、カーボン粒子は偏在し易いために
均一・に分散させるのが難しいが、金属短繊維は分散し
易く、マトリックスに均一に分散するため、均一・性の
ある製品が作り易い〔実施例〕 以下、上記技術的手段の一具体例を示す実施例について
説明する。
(3) When a planar heating element is molded by injection molding with carbon particles mixed in, carbon particles tend to be unevenly distributed and it is difficult to disperse them uniformly, but short metal fibers are easily dispersed and do not fit into the matrix. Since it is uniformly dispersed, it is easy to produce products with uniformity and properties. [Example] Hereinafter, an example showing a specific example of the above-mentioned technical means will be described.

(実施例−1) 導電性金属短繊維として黄銅繊維の直径60μmX3龍
を熱可塑性樹脂の6−ナイロンに8VOL%混入し1.
混練押出しを行ない、長さ7IIlll、直径が3鶴の
ペレット材料を作製した。
(Example-1) 8 VOL% of brass fibers with a diameter of 60 μm x 3 dragons were mixed into a thermoplastic resin of 6-nylon as conductive short metal fibers.1.
Kneading and extrusion were performed to produce pellet materials with a length of 7IIll and a diameter of 3.

この材料をインラインスクリュータイプ射出成形機にて
平板300 X 300 X 2 mmを成形した。
This material was molded into a flat plate of 300 x 300 x 2 mm using an in-line screw type injection molding machine.

この平板の両端に銀ペーストをつけ、エレクトロメータ
で抵抗を測り体積固有抵抗を算出し、また平板に電圧(
V)をかけ電流を流し発熱温度(r)を測定した、これ
を第2図のグラフのAにて示す。尚、この場合の体積固
有抵抗は14.8Ωcmである。
Apply silver paste to both ends of this flat plate, measure the resistance with an electrometer to calculate the volume resistivity, and apply a voltage (
V) was applied, a current was applied, and the heat generation temperature (r) was measured, which is shown by A in the graph of FIG. Note that the volume resistivity in this case is 14.8 Ωcm.

(実施例−2) 導電性金属短繊維としてアルミ合金繊維の直径90μm
 X 3 ++mを熱可塑性樹脂のポリプロピレンに充
填率15 VOL%混入した。以下は実施例−1と同じ
方法で行った、この場合の体積固有抵抗値(以下Rとい
う)R−2Ωcmである、この場合の電圧と上昇温度と
の関係をグラフBに示す。
(Example-2) Diameter of aluminum alloy fiber 90 μm as conductive short metal fiber
X 3 ++m was mixed into polypropylene, a thermoplastic resin, at a filling rate of 15 VOL%. Graph B shows the relationship between the voltage and the temperature rise in this case, which is the volume resistivity value (hereinafter referred to as R) R-2Ωcm, which was performed in the same manner as in Example-1.

(実施例−3) 実施例−2と同じで充填率を20 VOL%としたもの
で、R= 0.2Ωcmである。この場合の電圧と上昇
温度との関係をグラフCに示す。
(Example 3) Same as Example 2, but with a filling rate of 20 VOL%, and R=0.2 Ωcm. Graph C shows the relationship between voltage and temperature rise in this case.

(比較例−1) カーボン粒子としてケッチェンブラックECを用い実施
例 1と同し方法により充填率として15 VOL%と
して複合材を製造した。この場合のR−250Ωcmで
電圧と上昇温度との関係をグラフDに示す。
(Comparative Example-1) A composite material was manufactured using Ketjenblack EC as carbon particles and in the same manner as in Example 1, with a filling rate of 15 VOL%. Graph D shows the relationship between voltage and temperature rise at R-250 Ωcm in this case.

(比較例−2) 比較例−1の平板より73 X 73 X 2 節の平
板を切りとり発熱温度を測定した、グラフ已に示す。R
=250Ωcmである。この結果、面積で約1/20の
大きさのものか実施例−1とほぼ同じ値 〜を示すこと
が判る。
(Comparative Example-2) A flat plate of 73 x 73 x 2 sections was cut out from the flat plate of Comparative Example-1, and the exothermic temperature was measured, as shown in the graph below. R
=250Ωcm. As a result, it can be seen that the area is approximately 1/20 of the size, or approximately the same value as Example-1.

(比較例−3) 導電性カーボンと塩化ビニール樹脂の組成物(ザンノミ
、S−135)を測定したR=130Ωcmであり、そ
の板厚は1.31で81.6 X 81.6mmの短冊
片に加工してこれに100Vの電圧を印加した、これを
Fに示す。
(Comparative Example-3) A composition of conductive carbon and vinyl chloride resin (Zannomi, S-135) was measured. R = 130 Ωcm, the plate thickness was 1.31, and the strip was 81.6 x 81.6 mm. A voltage of 100V was applied to this, which is shown in F.

この結果、面積で約1/15の大きさのものが実施例−
1とほぼ同じ値を示すことが判る。
As a result, the area of the example was about 1/15.
It can be seen that the value is almost the same as 1.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のマトリックス−導電性金属短繊維を混
入した場合の充填率と体積固有抵抗との関係グラフであ
り、第2図は本実施例及び比較例との電圧と面状発熱体
の表面温度との関係を示すグラフである。 特許出願人 1イレン稍蕃胚魯本式会社 代表者中井令夫 (n<→ 第1図 y (vOLX) V令 (V)
Fig. 1 is a graph showing the relationship between the filling rate and the volume resistivity when the matrix of the present invention is mixed with conductive short metal fibers, and Fig. 2 is a graph showing the relationship between the voltage and the sheet heating element of the present example and the comparative example. 3 is a graph showing the relationship between surface temperature and surface temperature. Patent Applicant 1 Reio Nakai (n<→ Figure 1 y (vOLX) V Order (V)

Claims (1)

【特許請求の範囲】 (11熱可塑性樹脂に導電性金属短繊維を2〜25VO
L%充填した、樹脂複合組成体で、その体積固有抵抗が
0.2ΩC11l〜15Ωcmの範囲にある導電性金属
繊維入り面状発熱材料。 (2)前記導電性金属短繊維は鉄、銅、アルミニウム、
ニッケル及びその合金よりなる平均直径20〜120μ
mで、アスペクト比が30〜100である、特許請求範
囲第1項に示す面状発熱材料。 (3)前記熱可塑性樹脂には、ポリプロピレン、アクリ
ロニトリル・ブクジエン・スチレン、ナイロン、ポリフ
ェニレンエーテル、又はポリフェニレンオキサイドより
なる特許請求範囲第1項に示す面状発熱材料。
[Claims] (11 Thermoplastic resin containing 2 to 25 VO
A planar heating material containing conductive metal fibers, which is a resin composite composition filled with L% and has a volume resistivity in the range of 0.2ΩC11l to 15Ωcm. (2) The conductive metal short fibers include iron, copper, aluminum,
Average diameter 20-120μ made of nickel and its alloys
The planar heat generating material according to claim 1, having an aspect ratio of 30 to 100. (3) The planar heat-generating material according to claim 1, wherein the thermoplastic resin is polypropylene, acrylonitrile-bukdiene-styrene, nylon, polyphenylene ether, or polyphenylene oxide.
JP8694884A 1984-04-30 1984-04-30 Planar heating material filled with electrically conductive metallic fiber Pending JPS60231764A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8694884A JPS60231764A (en) 1984-04-30 1984-04-30 Planar heating material filled with electrically conductive metallic fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8694884A JPS60231764A (en) 1984-04-30 1984-04-30 Planar heating material filled with electrically conductive metallic fiber

Publications (1)

Publication Number Publication Date
JPS60231764A true JPS60231764A (en) 1985-11-18

Family

ID=13901090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8694884A Pending JPS60231764A (en) 1984-04-30 1984-04-30 Planar heating material filled with electrically conductive metallic fiber

Country Status (1)

Country Link
JP (1) JPS60231764A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226210A (en) * 1989-01-23 1993-07-13 Minnesota Mining And Manufacturing Company Method of forming metal fiber mat/polymer composite
EP0696614A1 (en) * 1994-08-08 1996-02-14 Hoechst Aktiengesellschaft Material for the preparation of electrically conductive compounds in thermoplastic molded bodies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846508A (en) * 1981-09-14 1983-03-18 日本石油化学株式会社 Conductive material and method of producing same
JPS5878499A (en) * 1981-11-05 1983-05-12 アイシン精機株式会社 Resin material for shielding electromagnetic wave
JPS5887142A (en) * 1981-11-20 1983-05-24 Showa Denko Kk Polyolefin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846508A (en) * 1981-09-14 1983-03-18 日本石油化学株式会社 Conductive material and method of producing same
JPS5878499A (en) * 1981-11-05 1983-05-12 アイシン精機株式会社 Resin material for shielding electromagnetic wave
JPS5887142A (en) * 1981-11-20 1983-05-24 Showa Denko Kk Polyolefin composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5226210A (en) * 1989-01-23 1993-07-13 Minnesota Mining And Manufacturing Company Method of forming metal fiber mat/polymer composite
EP0696614A1 (en) * 1994-08-08 1996-02-14 Hoechst Aktiengesellschaft Material for the preparation of electrically conductive compounds in thermoplastic molded bodies
US5932324A (en) * 1994-08-08 1999-08-03 Hoechst Aktiengesellschaft Material for producing electrically conducting connections in thermoplastic moldings

Similar Documents

Publication Publication Date Title
EP0038716B1 (en) A ptc circuit protection device
Chu et al. Smart conducting polymer composites having zero temperature coefficient of resistance
US4203088A (en) Pressure-sensitive multiple resistor elements
EP0140893B1 (en) Self-limiting heater and resistance material
US4382024A (en) Electrically conductive rubber
Chekanov et al. Positive temperature coefficient effect of epoxy resin filled with short carbon fibers
WO2004023845A1 (en) Seat-like heating units using carbon nanotubes
JPS60231764A (en) Planar heating material filled with electrically conductive metallic fiber
CN101192461A (en) High polymer PTC chip electrical heating composite process
JPS58115779A (en) Electrically connecting structure and method of electrically connecting same
JPH1145616A (en) Forming method of conductive filler, conductive paste and circuit body
WO2021168656A1 (en) Pptc heater and material having stable power and self-limiting behavior
JPS624749A (en) Blend type electrically conductive composite material
JP3119265B2 (en) Tubular heating element
JPH05217711A (en) Ptc composition
JPS5963688A (en) Panel heater and method of producing same
JPH07272833A (en) Sheet-form heat emitting body of plastic
CN1124869A (en) High molecular polymer thermistor with positive temp. coefficient
RU2019065C1 (en) Process of manufacture of flexible resistive heater
KR790001972B1 (en) Articles having a positive temperature coefficient of resistance
JPH062234Y2 (en) Sheet heating element
JPS5949183A (en) Panel heater
JPH0646074Y2 (en) Sheet heating element
JPS6193581A (en) Low temperature planar heat generating body
JPS6248352B2 (en)